CONCERNING A PROBLEM OF ALEXANDROFF
R. L. Wilder

In his well-known paper [1] Oz local properties of closed sets, P. Alexandroff
introduced the notion of r-dimensional condensation and employed it to establish the
invariance of the property of regular (n - r - 1)-accessibility of a closed set in
euclidean n-space. In Section 6, where he discussed the diificulties surrounding the
attempt to set up local Betti groups, he indicated that these difficulties vanish when
the space is either (1) r-lc or (2) devoid of r-dimensional condensation. In the con-
cluding section of his paper he stated the following problem.

PROBLEM V1. What relations are theve between the absence of condensation (in
all dimensions) and local connectedness (also in all dimensions)?

So far as I have been able to find, no one has specifically treated this problem al-
though, as pointed out below, it is partially settled as a corollary of certain theorems
in my book Topology of Manifolds [2], and while the complementary parts of the solu-
tion have been known to me for some time, I have never published these (see the Re-
marks following the statement of Theorem 2 below). Because of the possible impor-
tance of these matters in connection with the application of local Betti groups to lc®
spaces, however, it seems desirable to publish them.

1. IMPLICATIONS OF THE lc™ PROPERTY FOR
LACK OF CONDENSATION

In [2], the following theorems are proved.

A. If the locally compact Hausdovff space S is lc®, then p*(x) <w for all x € S
and r < n; and if in addition S is semi-(n + 1)-connected at some x € S, then
p*lx) <w. (2], p. 211, Th. 2.26.)

B. If S is a locally compact Hausdovff space such that p*(x) < w for some point
x of S, then S has no r-dimensional condensation at x. (([2], p. 358, Cor. 1.12.) Al-
though the proof is given only for the case where x is of countable character—a
corresponding proof was also given by Alexandroff ([1], p. 18, Cor. I)—there is little
difficulty in revising the proof to remove this restriction.)

Combining these two theorems, we have

THEOREM 1. If the locally compact Hausdorff space S is lc, then S has no
n-dimensional condensation at any-point; and if in addition S is semi-(n + 1)-
connected at some point X, then S has no (n+ 1)-dimensional condensation at X.

Remark, That n-lc would bé insufficient to ensure lack of n-dimensional con-
densation is shown, for instance, by the well-known example

S={xy)]0<x<1,y=sin1/x} U{(0,y)|-1<y<1}, with n=1.

Also, that lc™ at x alone is not sufficient to ensure lack of n-dimensional condensa-
tion at x is shown by the following example: Let
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M, = {0,y 0<y<1}, M ={x0]0<x<1},

M, = {(x,y)|x=1/n,0<y<1} (@=2,3, );

0
and let S = U M, . At x= (0, 0), S is lc* but has 1-dimensional condensation.
n=0

2. IMPLICATIONS OF LACK OF CONDENSATION
FOR LOCAL CONNECTEDNESS

Simple examples show that the converse of Theorem 1 fails. Alexandroff gives
the following example ([1], p. 24): Let S consist of all points on the circumferences
(x - 1/27% + y? = 1/4", mutually tangent at their single common point p = (0, 0); S
has no condensation in any dimension at p, yet is not 1-1c at p. However, it is still
possible to state an important implication:

THEOREM 2. If the locally compact, separable, melvic space S is of finite
dimension and has no r-dimensional condensation at any point (for all r), then S is
locally connected.,

Remarks. The restriction to finite dimension in the hypothesis is necessary.
This may be shown, for example, by a configuration in the fundamental cube of Hilbert
space consisting of a sequence of disjoint 'spheres S® (n=1, 2, 3, +--) converging to a
point p; this configuration has no condensation in any dimension, but it is not locally
connected at p. Although the configuration is not connected, it is easily modified so
as to yield a continuum in Hilbert space consisting of spheres S™ which are connected
in sequence by straight line intervals, and which converge to a straight line interval
at all of whose points (with the possible exception of one) the configuration fails to be
locally connected.

On the other hand, it seems likely that the restriction “separable, metric” is un-
necessary. It is used here solely in order to be able to imbed the space S in euclidean
space. Our proof, then, is not intrinsic. However, the intrinsic type of proof seems to
run into unsolved problems concerning the dimensions of the carriers of (Cech) cycles.
On the other hand, the present proof depends on a theorem which has considerable in-
terest in its own right, since it is a direct generalization of the classical theorem of
Schoenflies concerning the positional character of a Peano continuum in the plane (see
[2], p. 116). We refer to Theorem 3 below. [ Theorem 3 was announced in an abstract
[ 3], but not published heretofore since it did not fit into the framework of [2], in which
the other results (such as Theorem A above) of the cited paper were published.]

THEOREM 3. Let M be a closed, connected subset of the euclidean space E®
such that (1) the diameters of the domains complementary to M form a null sequence,
and (2)if B is the boundavy of a domain D complementary to M, then B is vegularly
s-accessible from D for s=0, 1, «--, n - 2. ThenM is locally connected,

Proof. Suppose M is not locally connected. Then there exist concentric (n - 1)-
spheres K, K, of radii r,, r, respectively, such that r, > r,, and such that if I is
the domain bounded by K,U K,, there are infinitely many components M; of
MN (K, UK,UI) that meet both K, and K,. Let K be a third (n - 1)-sphere, con-
centric with K, and of radius (r, + r,)/2. Let Z° be a nontrivial cycle carried by
x,U x, (see [2], p. 142, Def. 11.4) such that x, € K, and x, € K,. Then Z™-!, the
fundamental (n - 1)-cycle of K based on any subdivision of K, is linked with Z°.
Consequently, there exists a positive number e < (r, - rz)/ 2 such that any e-approxi-
mation to Z™"! is also linked with Z°. We now arrange the proof in three steps.
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(1) If D is a domain complementary to M, meeting S(K, e) but neither K, nor K,,
then the boundary of D, being a continuum, lies wholly in one set Mj. Hence if we add
to M all such domains D, the resulting set M' has the property that those of its com-
plementary domains that meet S(K, e) also meet K, UK, and are therefore finite in
number (by condition (1) of the hypothesis); the domains of this type we denote here-
after by Dy, (m = 1, 2, -++, k), and the boundary of D, we denote by B, (Each M;j,
with the added domains D for which F(D) € Mj, will be denoted by M;'.)

(2) We next define a sequence of positive numbers ej (j = 1, 2, ---, n). First,
e, = ¢, where e is defined as above. In general, having defined e; for 1 <i<n- 1,

we define ej+] as follows: If x e KN U B, there exists a number dx > 0 such
that any (n - i - 1)-cycle of D, N S(x, dx) (m = 1, 2, .-+, k) bounds an (n - i)-chain on
xUD, of diameter less than e;/8; this is a result of condition (2) of the hypothesis.

Similarly, if ye K - KN U Bm, there exists a number dy> 0 such that either

Sy, dy) € M'n 8(y, ei/8) or S(y, dy) C (E™- M')NS(y, ei/8). The set of all neighbor-
hoods of types S(x, dy), S(y, dy) covers K and hence has a finite subset Gj+) which
covers K. The elements of Gj4+1 of type S(x, dy) we denote generically by Ux(i+1)s
and those of type S(y, dy) by Uy(i+1). The number e;;; is selected so that any point
set which contains a point of XK and is of diameter less than e;;; lies wholly in at
least one element of G;+), and so that e;;] < e;/8.

Having defined e,_;, we define the number e, as follows: With i=n-1,
we proceed as in the preceding paragraph, with the additional stipulation, how-
ever, that d, is chosen so that any point of D, N S(x, dy) (m=1, 2, -+, k)
may be joined to x by an arc of xU D, of diameter less than e,_1/16 (see [2], pp.
353-354.) We thus obtain the following property: If a € D,N S(x, dx) and
b € D,N S(x, dx), for example, then the nontrivial cycle based on the pair of points
a, b bounds a chain of XUD, UD, of diameter less than e,.)/8. Finally, e, is
chosen less than e,_;/8.

~

(3) We now establish the existence of a cycle Z2-1 which e-approximates zn-1
and yet fails to meet a certain set M;. This will contradict the fact that Z° bounds
on K, UK, UM;.

Let S be a barycentric subdivision of K of mesh less than e,. Let H denote a
set Mj such that (a) no vertex of S lies on H, (b) no point x corresponding to a
Ux; € Gy (i=2, 3, -+, n) lies on H, and (c) no point y corresponding to a Uy; € G;
lies on H (and hence no Uy; contains points of H).

Now let ab be a 1-simplex of S (we denote simplexes by a sequence of symbols
of their vertices). If ab fails to meet H, we retain it; otherwise, there exist finitely
many closed intervals a,.b, of ab whose endpoints a,, b, (with the possible exception
of a, b) lie in E™ - M', and such that all points of HN ab lie on the intervals a,b;.
[This follows from Theorem 1.3, p. 100 of [2], if there we let A= Hnab, B=aUDb,
S = M'nab. Since components of Hnab are also components of M'Nab, the set

C= U xeAC(X) is A itself, and by the conclusion of the cited theorem, M'Nnab=EUF,
where E and F are separated, and where A C E, BC F. Let d = d(A, B); then
S(HNab, d/2)n ab is an open subset of ab, a finite number of whose components a, b,
cover HNab.] Since the diameter of ab is less than e,, ab lies wholly in one ele-
ment of Gy, which is necessarily a Uy,. Hence the nontrivial cycle on each a,., b,
bounds a 1-chain in this U,, of diameter less than e,_i/8, which meets M' in at
most the point x. It follows that there exists a broken line with end-points a, b not
meeting H, and of diameter less than e, _1/8. This broken line may be used as an ap-
proximation replacing ab. And in this manner, proceeding through the set of all 1-
simplexes of S, we arrive at an approximating set of broken lines that fails to meet H.
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Consider next a 2-simplex abc of S. Its boundary l-simplexes have been replaced
by broken lines constituting a polygon P, and the original fundamental 1-cycle Z! on
the boundary of abc may be replaced by the obvious 1-cycle Z! on the approximating
polygon P. Since P is of diameter less than e,_), Z! bounds a chain K2 of diameter
less than en.1, where |K2| consists of a finite set of closed 2-simplexes of some
subdivision of EZ, If |K2| fails to meet H, we retain it. Suppose, however, that |K2|
meets H. Since |K2| is of diameter less than en_) and contains a point of K (the
point a, for instance), it must lie in an element Ux(n-1) of G,_1. And since there
exists a separation of M'n ||K2|| (if L is a chain, then 1L| denotes a complex and
||| denotes a point set; see [2], pp. 53, 55) into separated sets E and F such that
E > Hn|K?| and F> |Z!|, (see Theorem 1.3, p. 100 of [2]), a suitable subdivision
of |K2| yields a 2-chain K2 such that |K2[|> H n| K2|| and ||0K2|| lies in E® - M'.
Let 8K?= L. Since L' lies in Uy(n-1), there exists a 2-chain Lz of (E® - M")Ux,
of diameter less than e,_ /8, whose boundary is L!. We may assume that the car-
rier of L2 is either a finite polyhedron of some subdivision of E™, or an infinite
polyhedron (together with x) which has only a finite number of simplexes exterior to
any neighborhood of x ([1], pp. 15-16). And since x ¢ H, we may replace |L?| by a
finite polyhedron |f2| which differs from |L2| only in a small neighborhood of x,
satisfies the relation dL2 = B_KZ, and does not meet H. Finally, the simplex abc is to
be replaced by |L?*| U|K? - K?| = C®., Each 2-simplex of S is treated similarly, of
course.

The procedure for replacing the 3-, 4-, +--, (n - 2)-simplexes by approximations
that do not meet H is carried out in a manner analogous to that above. And in the
final step of the process, each (n - 1)-simplex is replaced by an approximating poly-
hedron Kn'll obtained from a chain K™~%, just as abc was replaced by C? above,
where K®-1 lies in E™ - H. The union of the chains K-! is a cycle Z®-! that forms
an e-approximation of 7-1 which fails to meet H. As stated above, this constitutes
a contradiction. ' ‘ '

Remark, The fact that regular (n - 2)-accessibility alone would not have been
sufficient in Theorem 3 may be shown by the following example, with n = 3: Let S,
be the surface of the unit cube in the first quadrant of 3-space having vertices
(0, 0, 0), (1, 1, 1), etc. For n=2, 3, 4, **+, let Sn denote the set of all points in this
cube such that x = 1/n. Let K denote the set of all points on the top of the cube (that
is, in the plane z = 1) which do not lie on the (edges of) the sets S, (n>2). Finally,

o0
let S= Y __ ;Sn - K. Then S is not locally connected, although it is regularly 1-
accessible at all points.

3. PROOF OF THEOREM 2

Since S is separable, metric and of finite dimension, we may consider it to be im-
bedded in a euclidean space E™ (see[4], p. 60, for instance). We may also assume
that n is large enough so that E™ - S is a single domain. Let C be a component of S.
Then C is open in S; for suppose p € C is a limit point of S - C. Then there exists a
sequence {x,} of points x, of S - C, having p as a sequential limit point, and such
that if C, denotes the component of S containing x,, then C,NC,, is empty, for
n # m. Since S has no 0-dimensional condensation at p, there exists, corresponding
to each open set P containing p, an open set @ such that p € Q ¢ P and such that
every cycle Z° mod S - P carried by a compact subset of S - x is homologous to zero
mod S - Q (see [2], p. 356, Lemma 1.6). Since each x, carries a 0-cycle mod S - P,
it follows that the component C, must meet S - Q. If then we take concentric spheres
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K,, K, with center p and lying in Q, we may show by the methods used in proving
Theorem 3 (with components of the sets Cnn I playing the roles of the sets Mj) that
this situation leads to a contradiction, and we conclude that the components of S are
open. That the accessibility conditions of the hypothesis of Theorem 3 are satisfied
follows from the duality between lack of r-dimensional condensation and regular

(n - r - 1)-accessibility (see [2], p. 356, Theorem 1.9).

Theorem 3 can now be applied to show that each component of S is locally con-
nected, and hence S is itself locally connected.
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