INTERFERENCE PHENOMENA FOR ENTIRE FUNCTIONS

R. P. Boas, Jr.

1. Let f(z) be an entire function of exponential type, bounded at the positive and negative integers. According to Cartwright's theorem [2, p. 180], if the type τ of f(z) is less than π , the function is bounded on the real axis; and there exists a number C, depending only on τ , such that $|f(x)| \leq C \sup |f(n)|$ for all real x. If, however, $\tau = \pi$, it is evident that f(n) can be bounded while f(x) is unbounded (example: $f(z) = z \sin \pi z$). The possibility remains that the values of f(x) may interfere with each other in such a way that a certain combination will be bounded even though f(x) itself is not. S. Bernstein [1] showed that if f(x) = o(|x|), the boundedness of f(n) implies

(1.1)
$$\left| f(x + \frac{1}{2}) + f(x - \frac{1}{2}) \right| < C \sup \left| f(n) \right|;$$

the best value for C in (1.1) is $8/\pi$ (misprinted in [2], p. 219). (To see that (1.1) is really significant, we must observe that f(n) bounded and f(x) = o(|x|) do not necessarily imply f(x) = O(1) when $\tau = \pi$; see §5.) Timan [4] showed that o(|x|) can be replaced by $o(|x|^2)$ provided that (1.1) is weakened to

$$f(x + \frac{1}{2}) + f(x - \frac{1}{2}) = O(1)$$
.

He also generalized Bernstein's interference operator to

(1.2)
$$L[f] = \int_{-\infty}^{\infty} f(x+t) d\rho(t),$$

with

(1.3)
$$\int_{-\infty}^{\infty} e^{\sigma |x|} |d\rho(x)| < \infty \quad \text{for some } \sigma > \pi \text{ ,}$$

and proved corresponding results; in particular, L[f(x)] is bounded, whenever f(n) is bounded, f(x) = o(|x|), and $\tau = \pi$, if and only if $\int_{-\infty}^{\infty} e^{\pm i\pi t} d\rho(t) = 0$.

I shall replace (1.2) by the still more general operator $L = \lambda(D)$, where D = d/dx and $\lambda(t)$ is regular on the closed segment $[-i\pi, i\pi]$ of the imaginary axis. When $\lambda(t)$ is regular in the disk $|t| \leq \pi$, the operator $\lambda(D)$ can be defined by

(1.4)
$$\lambda(D) f(z) = \sum_{n=0}^{\infty} \lambda_n f^{(n)}(z) \qquad \left(\lambda(t) = \sum_{n=0}^{\infty} \lambda_n t^n\right),$$

for all entire functions of exponential type π . In the general case, $\lambda(D)$ has to be defined differently (3.2), and is applicable only to functions of exponential type π whose indicator diagrams reduce to segments of the imaginary axis, i.e. which are $O(e^{\epsilon |x|})$ on the real axis for every positive ϵ . The result now reads as follows: for functions of exponential type π , the condition $\lambda(\pm i\pi) = 0$ is necessary and sufficient for f(n) = O(1) and f(x) = o(|x|) to imply

$$|\lambda(D)f(x)| \leq C \sup |f(n)|$$
,

and for f(n) = O(1) and $f(x) = o(x^2)$ to imply

$$\lambda(D)f(x) = O(1).$$

(This is more than is stated in [2], p. 221.) In Timan's case $\lambda(t) = \int_{-\infty}^{\infty} e^{tu} d\rho(u)$,

which under (1.3) is regular in the strip $|\Re(t)| \leq \pi$. Another special case, which indeed antedates Bernstein's interference theorem (it was given, not quite completely, by Macintyre [3]), corresponds to $\chi(t) = \pi^2 + t^2$: if f(z) is of type π , then f(n) = O(1) and f(x) = o(|x|) imply

$$|\pi^2 f(x) + f''(x)| \leq C \sup |f(n)|;$$

f(n) = O(1) and $f(x) = o(|x|^2)$ imply

$$\pi^2 f(x) + f''(x) = O(1)$$
.

It is easily verified (§2) that if f(n) is bounded and $f(x) = o(|x|^q)$ for some q > 1, then f(z) is of the form $g(z) + P(z)\sin \pi z$, where P(z) is a polynomial of degree less than q, and g(z) is an entire function of exponential type π which is o(|x|) on the real axis. Hence the extension of our results to q > 1 involves only the consideration of functions of the form $P(z)\sin \pi z$. The conclusion (§5) (stated in part by Timan for operators (1.2)) is that L[f(x)] = O(1) for all f such that f(n) = O(1) and $f(x) = o(|x|^q)$, if and only if $\lambda(t)$ has at least (q-1)-fold zeros at $\pm i\pi$; if $\lambda(t)$ has at least q-fold zeros, an inequality of the form

$$\lambda(D) f(x) \leq C \sup |f(n)|$$

holds.

It is possible to use still more general operators, corresponding to cases where $\lambda(t)$ is not even analytic, but this introduces further complications and will not be considered here.

2. Our first lemma is essentially known (cf. [4]).

LEMMA 1. If $\{a_n\}$ is a bounded sequence and

(2.1)
$$g(z) = a_0 \frac{\sin \pi z}{\pi z} + z \sin \pi z \sum_{n=-\infty}^{\infty} \frac{(-1)^n a_n}{n\pi (z-n)},$$

where Σ ' omits the term corresponding to n=0, then g(z) is an entire function of exponential type π , takes the values a_n at z=n, and is o(|x|) on the real axis; if in addition $a_0=0$, then $|g(x)| \leq A|x|$ for real x, where A depends only on $\sup |a_n|$.

Since the series on the right of (2.1) converges uniformly in any bounded region, g(z) is an entire function. If $|a_n| < A$ and z = x + iy, then

$$\left|\sin\,\pi\,z\,\textstyle{\sum^{1}}\frac{\left(-1\right)^{n}\,a_{n}}{\pi\,n(z\,-\,n)}\,\right|\leq A\textstyle{\textstyle{\sum^{1}}}\left|\frac{\sin\,\pi\,(z\,-\,n)}{\pi\,(z\,-\,n)}\,\right|\cdot\,\frac{1}{|n|}\,.$$

The term (or terms) for which n is closest to z contributes o(1) for real z, and $O(e^{\pi |z|})$ in general. For real x this contribution is, in fact, at most $2/(|x| - \frac{1}{2})$ for $|x| \ge 1$ and at most 1 otherwise, since the term with n = 0 is omitted. Thus this part of the sum contributes at most 4A|x| to g(x). The remaining sum is termwise less than

$$A\pi^{-1}e^{\pi |y|}\sum^{n}\frac{1}{|n(x-n)|}$$
,

where Σ " omits n = 0 and also the term or terms with $|n - x| \le \frac{1}{2}$. It is readily calculated that Σ " = o(1) as $|x| \to \infty$, and so Lemma 1 is established.

LEMMA 2. If f(z) is an entire function of exponential type π which is $o(|x|^q)$ as $|x| \to \infty$ and has f(n) = 0 $(n = 0, \pm 1, \pm 2, \cdots)$, then $f(z) = P(z)\sin \pi z$, where P(z) is a polynomial of degree less than q.

This is an easy consequence of a theorem of Pólya and Valiron (see [2], p. 156, 9.4.2), which asserts that $f(z) = P(z) \sin \pi z$, with the degree of P not exceeding q, under the hypothesis that $|f(z)| \le \epsilon (|z|) e^{\pi |z|}$ with $\epsilon (r) = O(r^q)$. In fact, if f(z) is of exponential type π and is $o(|x|^q)$ on the real axis, put $F(z) = z^{-q} \{ f(z) - Q(z) \}$, where Q(z) is the polynomial consisting of the Maclaurin expansion of f(z) through z^{q-1} ; then F(z) is of exponential type π and F(x) = o(1). Consequently ([2], p. 82, 6.2.4), $|F(x+iy)| \le Me^{\pi |y|}$ with $M = \sup |F(x)|$, whence

$$|f(z)| \le Me^{\pi |y|} |z|^{q} + |Q(z)|.$$

Therefore by the theorem of Pólya and Valiron, $f(z) = P(z) \sin \pi z$ with P(z) of degree at most q. Since $f(x) = o(|x|^q)$, P(z) must actually be of degree at most q - 1.

LEMMA 3. If f(z) is an entire function of exponential type π which is o(|x|) on the real axis and has f(n) bounded, then

(2.2)
$$f(z) = f'(0) \frac{\sin \pi z}{\pi} + f(0) \frac{\sin \pi z}{\pi z} + z \sin \pi z \sum_{n=1}^{\infty} \frac{(-1)^n f(n)}{n \pi (z - n)},$$

where Σ^{l} extends over $1 \leq |n| < \infty$.

This is a theorem of Valiron [5]; cf. [2], p. 221, where a factor τ^{-1} should be supplied in the first term on the right.

If f(z) satisfies the hypotheses of Lemma 2 except that the values f(n) are bounded instead of 0, form the function g(z) of (2.1) with $a_n = f(n)$. By Lemma 1, g(z) - f(z) satisfies the hypotheses of Lemma 2 and so is of the form $P(z) \sin \pi z$. This justifies the remarks about the case q > 1 near the end of §1.

LEMMA 4. If f(z) is an entire function of exponential type π , if f(0) = 0 and $|f(x)| \le A|x|$ for real x, and if $\phi(x)$ is the Laplace-Borel transform of f(z), then $|\phi(z)| \le A(|z| - \pi |\sin \theta|)^{-2}$ for $|z| > \pi$.

The function $\phi(z)$ is defined as the Laplace transform of f(z) for $\Re(z)>0$ and as the analytic continuation of this outside the segment $[-i\pi, i\pi]$ of the imaginary axis. The analytic continuation may be effected by rotating the line of integration in

$$\phi(z) = \int_0^\infty f(t) e^{-zt} dt,$$

so that

$$\phi(\mathbf{r}e^{i\theta}) = e^{-i\theta} \int_{0}^{\infty} f(te^{-i\theta}) e^{-\mathbf{r}t} dt$$

for $r > \pi \mid \sin \theta \mid$. (See, e.g., [2], p. 74.) If g(z) = f(z)/z, we have $|g(x)| \le A$, hence [2, pp. 82-83] $|g(z)| \le A e^{\pi \mid y \mid}$, and $|f(z)| \le A \mid z \mid e^{\pi \mid y \mid}$. Thus

$$\begin{aligned} |\phi(\mathbf{r}e^{i\theta})| &\leq A \int_0^\infty t e^{\pi t |\sin \theta| - rt} dt \\ &= A(\mathbf{r} - \pi |\sin \theta|)^{-2} \quad (\mathbf{r} > \pi |\sin \theta|). \end{aligned}$$

LEMMA 5. If $\{g_k(x)\}$ is a set of entire functions of exponential type π which satisfy $|g_k(x)| \leq A|x|$ for real x, if $\phi_k(t)$ is the Laplace-Borel transform of $g_k(x)$, and if $g_k(x) \rightarrow f(x)$ uniformly in every bounded domain, where f(x) is an entire function of exponential type π with Laplace-Borel transform $\phi(t)$, then $\phi_k(t) \rightarrow \phi(t)$, uniformly for t at a positive distance from $[-i\pi, i\pi]$.

For real positive x, $|g_k(x)e^{-xt}| \leq Axe^{-xt}$, and so $g_k(x)e^{-xt}$ converges dominatedly to $f(x)e^{-xt}$ for each real positive t. Hence $\phi_k(t) \rightarrow \phi(t)$ for $0 < t < \infty$. By Lemma 4, the transforms $\phi_k(z)$ are bounded uniformly in any domain at a positive distance from $[-i\pi, i\pi]$. Vitali's theorem now establishes the conclusion of the lemma.

3. If f(z) is an entire function of exponential type π and is $O(e^{\epsilon|x|})$ on the real axis for every positive ϵ , we have Pólya's representation

(3.1)
$$f(z) = \frac{1}{2\pi i} \int_C e^{zt} \phi(t) dt,$$

where $\phi(t)$ is the Laplace-Borel transform of f(x) and C is a contour surrounding $[-i\pi, i\pi]$. (See [2], p. 74.)

Definition. If $\lambda(w)$ is regular on $[-i\pi, i\pi]$, we define the operator $L = \lambda(D)$ by

(3.2)
$$L[f(z)] = \frac{1}{2\pi i} \int_{C} e^{zt} \lambda(t) \phi(t) dt,$$

when f(z) has the representation (3.1).

If $\lambda(w)$ is regular for $|w| < \pi$, (3.2) can be written in the form (1.4).

LEMMA 6. If the functions $g_k(z)$ are as in Lemma 5, then as $k \to \infty$, $L[g_k(z)] \to L[f(z)]$.

For, if C is as in (3.1), we have

$$L[g_k(z)] = \frac{1}{2\pi i} \int_C e^{zt} \lambda(t) \phi_k(t) dt,$$

and we can take the limit under the integral sign, by bounded convergence (Lemma 4). LEMMA 7. If

(3.3)
$$g(z) = \int_{-\pi}^{\pi} e^{izt} d\alpha(t),$$

with $\alpha(t)$ of bounded variation, and if L[g] is defined as in (3.2), then

(3.4)
$$L[g(z)] = \int_{-\pi}^{\pi} e^{izt} \lambda(it) d\alpha(t).$$

In fact, if $\phi(z)$ is the Laplace-Borel transform of g(z), we have

$$\begin{split} \phi(\mathbf{r}e^{\mathbf{i}\theta}) &= e^{-\mathbf{i}\theta} \int_{0}^{\infty} g(te^{-\mathbf{i}\theta}) \, e^{-\mathbf{r}t} dt & (\mathbf{r} > \pi \, \big| \sin \theta \, \big|) \\ &= e^{-\mathbf{i}\theta} \int_{0}^{\infty} e^{-\mathbf{r}t} dt \int_{-\pi}^{\pi} e^{\mathbf{i}te^{-\mathbf{i}\theta} u} d\alpha(u) \\ &= e^{-\mathbf{i}\theta} \int_{-\pi}^{\pi} d\alpha(u) \int_{0}^{\infty} e^{-(\mathbf{r}-\mathbf{i}e^{-\mathbf{i}\theta}u)t} dt \\ &= e^{-\mathbf{i}\theta} \int_{-\pi}^{\pi} \frac{d\alpha(u)}{\mathbf{r}-\mathbf{i}e^{-\mathbf{i}\theta}u} = \int_{-\pi}^{\pi} \frac{d\alpha(u)}{\mathbf{r}e^{\mathbf{i}\theta}-\mathbf{i}u} \,. \end{split}$$

Hence

$$\frac{1}{2\pi i} \int_{C} e^{zt} \lambda(t) \phi(t) dt = \frac{1}{2\pi i} \int_{C} e^{zt} \lambda(t) dt \int_{-\pi}^{\pi} \frac{d\alpha(u)}{t - iu}$$

$$= \frac{1}{2\pi i} \int_{-\pi}^{\pi} d\alpha(u) \int_{C} \frac{e^{zt} \lambda(t)}{t - iu} dt$$

$$= \int_{-\pi}^{\pi} e^{iuz} \lambda(iu) d\alpha(u).$$

LEMMA 8. If $\lambda(it)$ is such that

(3.5)
$$e^{ist} \lambda(it) = \sum_{-\infty}^{\infty} c_n(s) e^{int} \quad (-\pi \le t \le \pi),$$

with $\Sigma \left| c_n(s) \right| < \infty$ for s = 0 and $s = s_0$, where s_0 is real and not an integer, then $\Sigma \left| c_n(s) \right|$ is a bounded function of $s \leftarrow \infty < s < \infty$.

Let $\lambda(it) = \sum c_n(0) e^{int}$; then

$$2\pi c_n(0) = \int_{-\pi}^{\pi} e^{-int} \lambda(it) dt = F(n),$$

where $F(z) = \int_{-\pi}^{\pi} e^{-izt} \lambda(it) dt$. Then, for any real s_0 that is not an integer,

$$2\pi c_n(s_0) = \int_{-\pi}^{\pi} e^{-int} e^{is_0 t} \lambda(it) dt = F(n - s_0).$$

Thus the function G(z) = F(z/2) is entire and of exponential type $\pi/2$, with $\Sigma \left| G(2n) \right| < \infty$ and $\Sigma \left| G(2n - 2s_0) \right| < \infty$. If we arrange the points 2n, $2n - 2s_0$ in a single increasing sequence $\{k_n\}$, we have $|k_n - n| < C$ for some fixed C. Consequently [2, p. 197],

$$\int_{-\infty}^{\infty} |G(x)| dx \le C_1 \sum |G(k_n)|$$

with a universal constant C1, and this in turn implies [2, p. 101] that, for all real s,

$$\sum |\mathbf{F}(\mathbf{n} - \mathbf{s})| < C_2 \sum (|\mathbf{F}(\mathbf{n})| + |\mathbf{F}(\mathbf{n} - \mathbf{s}_0)|)$$

with a universal C_2 . Thus $\sum |c_n(s)| < 2\pi C_2$.

4. We can now prove our main theorem.

THEOREM 1. If f(z) is an entire function of exponential type π which is o(|x|) on the real axis and bounded on the integers, and if L is the linear operator associated with $\lambda(t)$ by (3.2), with $\lambda(\pm i\pi) = 0$ and $\lambda(t)$ regular on $[-i\pi, i\pi]$, then

$$\big| L[f(x)] \big| \leq C \sup \big| f(n) \big|,$$

with

$$C = \sup_{s} \sum |c_n(s)|, \quad e^{ist} \lambda(it) = \sum_{s=0}^{\infty} c_n(s) e^{int};$$

and no smaller C can be used in (4.1), even if we require that f(x) = O(1) instead of f(x) = o(|x|).

Suppose to begin with that f(0) = 0. By Lemma 3 we have $f(z) = \lim_{k \to \infty} g_k(z)$, uniformly in any bounded region, where

(4.2)
$$g_{k}(z) f'(0) \frac{\sin \pi z}{\pi} + z \sin \pi z \sum_{|n| < k}^{'} \frac{(-1)^{n} f(n)}{n\pi (z - n)}.$$

Since $g_k(n) = f(n)$ for $|n| \le k$, and $g_k(n) = 0$ otherwise, Lemma 1 implies that $|g_k(x)| \le A|x|$, where A is independent of k. By Lemmas 5 and 6, this implies

$$L[g_k(z)] \rightarrow L[f(z)]$$
.

However, each $g_k(z)$ is of the form

(4.4)
$$g_k(z) = \int_{-\pi}^{\pi} e^{izt} d\alpha_k(t),$$

where α_k is of bounded variation. Indeed, $\sin \pi z$ and $z^{-1}\sin \pi z$ have this form; so does the function $(z - n)^{-1}\sin \pi z = \pm (z - n)^{-1}\sin \pi (z - n)$, whence also the function $(z \sin \pi z)/(z - n) = \sin \pi z + (n \sin \pi z)/(z - n)$. Now, using Lemma 7, we have

(4.5)
$$L[g_k(z)] = \int_{-\pi}^{\pi} e^{izt} \lambda(it) d\alpha_k(t).$$

Since $e^{ist}\lambda$ (it) is regular on $[-\pi, \pi]$ and vanishes at both ends, its Fourier coefficients are $O(n^{-2})$, and consequently it has an absolutely convergent Fourier series on $(-\pi, \pi)$ for every real s. Let

$$e^{ist}\lambda(it) = \sum_{-\infty}^{\infty} c_n(s) e^{int}$$
.

Using this in (4.5) and integrating term by term, we obtain

$$L[g_k(x)] = \sum_{-\infty}^{\infty} c_n(s) \int_{-\pi}^{\pi} e^{i(n+x-s)t} d\alpha_k(t)$$

$$=\sum_{-\infty}^{\infty} c_n(s) g_k(n+x-s);$$

taking s = x, we have

$$L[g_k(s)] = \sum_{-\infty}^{\infty} c_n(s) g_k(n) = \sum_{|n| \le k} c_n(s) f(n).$$

Letting $k \rightarrow \infty$ we have, by Lemma 6,

(4.6)
$$L[f(s)] = \sum_{-\infty}^{\infty} c_n(s) f(n).$$

Up to this point we have supposed that f(0) = 0. However, (4.6) still holds without this restriction. For, applied to f(z) - f(0), it yields, by the linearity of L,

$$L[f(s)] - f(0)L[1] = \sum_{-\infty}^{\infty} c_n(s) f(n) - f(0) \sum_{-\infty}^{\infty} c_n(s).$$

We have

$$L[1] = \frac{1}{2\pi i} \int_C \lambda(t) e^{zt} t^{-1} dt = \lambda(0),$$

from (3.2); on the other hand, $\sum c_n(s) = \lambda(0)$ by (3.5).

Hence we have, by Lemma 8,

$$|L[f(s)]| \leq \sup_{s} \sum |c_n(s)| \cdot \sup_{n} |f(n)|$$
,

and this is (4.1).

To show that no smaller C can be used, let ϵ be positive and find an s and a k such that $\sum_{-k}^{k} |c_n(s)| > C - \epsilon$. Then construct the function g(z) of Lemma 1 with $a_n = \operatorname{sgn} \, c_n(s)$ for $|n| \leq k$, $a_n = 0$ for |n| > k. Then g(x) = O(1), and we have

$$L[g(s)] = \sum_{-k}^{k} |c_n(s)| = \sum_{-k}^{k} |c_n(s)| \cdot \sup |g(n)| > C - \epsilon.$$

5. We now show that the condition $\lambda(\pm i\pi) = 0$ is essential.

THEOREM 2. Let $\lambda(t)$ be regular on $[-i\pi, i\pi]$, with either $\lambda(i\pi) = \lambda(-i\pi) \neq 0$, or else $\lambda(i\pi) \neq \lambda(-i\pi)$. (i) There exists no C such that (4.1) is true for every entire f of exponential type π which is bounded on the real axis; (ii) there exists an entire function of exponential type π which is o(|x|) on the real axis and bounded on the integers, but with L[f(x)] not bounded on the real axis.

In the first case the function $\lambda(t) - \lambda(i\pi)$, and in the second case the function $\lambda(t) + ibt + c$, with suitable b and c, has the properties of $\lambda(t)$ of Theorem 1. Hence, respectively,

$$|\lambda(D) f(x) - \lambda(i\pi) f(x)| \le C \sup |f(n)|$$

or

$$|\lambda(D)f(x) + ibf'(x) + cf(x)| < C \sup |f(n)|.$$

Thus (4.1) cannot be satisfied unless it is satisfied, respectively, for the operator I (identity) or the operator ibD + cI (where D denotes differentiation). However, it fails for both, as the example $f(z) = \sin \pi z$ shows. This establishes the first assertion of Theorem 2.

The second assertion of Theorem 2 is less immediate. We have to construct, first of all, an entire function f(z) of exponential type π with f(x) = o(|x|), f(n) = O(1), and $f(x) \neq O(1)$. Such a function is given by

$$f(z) = z \sin \pi z \sum_{n=1}^{\infty} \frac{1}{n(z-n)}$$

as was shown by Timan [4]. In fact, we have f(n) = 0 for $n \le 0$, $f(n) = (-1)^n$ for n > 0, and f(x) = o(|x|) by Lemma 1. For $z = m + \delta$, m > 0, $0 < \delta \le 1/2$,

$$\pm f(z) = (m + \delta) \sin \pi \delta \sum_{n=1}^{\infty} \frac{1}{n(m-n+\delta)}$$

Now

$$(m + \delta) \sum_{n=1}^{\infty} \frac{1}{n(m-n+\delta)} = \left(\sum_{n=1}^{m} + \sum_{n=m+1}^{\infty}\right) \left(\frac{1}{n} + \frac{1}{m-n+\delta}\right)$$

$$= 2 \log m + \int_{m+1}^{\infty} \left(\frac{1}{x} - \frac{1}{x-m-\delta}\right) dx + O(1)$$

$$= \log m + O(1),$$

so that f(x) is certainly unbounded. Moreover, for $z=m+\delta$, $0<\delta<1/2$,

$$cf(z) + ibf'(z) = \pm (m + \delta) \big\{ c \sin \pi \delta + \pi ib \cos \pi \delta \big\} \sum_{n=1}^{\infty} \frac{1}{n(z - n)}$$

+ ib
$$\sin \pi z \sum_{n=1}^{\infty} \frac{1}{n(z-n)}$$
 - ib $\sin \pi z \sum_{n=1}^{\infty} \frac{1}{n(z-n)}$.

Since $c \sin \pi \delta + \pi ib \cos \pi \delta$ vanishes for at most one δ in $0 < \delta < 1/2$, the first term on the right is unbounded, by what we have just proved; the second term is bounded by Lemma 1; and the third term is also bounded. For, with x real and positive, but not an integer,

$$\sum_{n=1}^{\infty} \frac{1}{n(x-n)^2} = \frac{1}{x^2} \left(\sum_{n < x} + \sum_{n > x} \right) \left(\frac{1}{n} - \frac{1}{n-x} + \frac{x}{(n-x)^2} \right)$$

$$= \frac{1}{x^2} \left\{ 2 \log x + x \cdot O(1) + O(1) + \int_{x+1}^{\infty} \left(\frac{1}{t} - \frac{1}{t-x} + \frac{x}{(t-x)^2} \right) dt \right\}$$

$$= O(1/x).$$

6. We now investigate the extent to which the hypothesis f(x) = o(|x|) can be relaxed to $f(x) = o(|x|^q)$ with q > 1. Since $f(x) + Ax^{q-1} \sin \pi x$, with arbitrary A, satisfies the same hypotheses as f(x), in Bernstein's case (for example) we cannot have an inequality $|L[f(x)]| \le C \sup |f(n)|$ when q = 2; for $L[x \sin \pi x]$, although bounded, is not identically zero. As we saw in §2, if $\{f(n)\}$ is bounded and $f(x) = o(|x|^q)$, we have $f(x) = g(x) + P(x) \sin \pi x$, where g(n) = f(n), g(x) = o(|x|), and P(x) has degree at most q - 1. Since Theorem 1 applies to g(x), what we can say about L[f(x)] depends on what we can say about $L[P(x) \sin \pi x]$. Now we have

$$P(z) \sin \pi z = \int_C e^{zw} \psi(w) dw,$$

where $\psi(w)$ is analytic everywhere, except for poles of the same order (at most q) at $\pm i\pi$. Since

$$L[P(z) \sin \pi z] = \int_C \lambda(w) \psi(w) e^{zw} dw$$

and $\lambda(\pm i\pi) = 0$, the operator L converts $P(z)\sin \pi z$ into $Q_1(z)\sin \pi z + Q_2(z)\cos \pi z$, where the degrees of Q_1 and Q_2 are at least one less than that of P(z). If $\lambda(w)$ has zeros of order at least q - 1, Q_1 and Q_2 are constants and $L[P(z)\sin \pi z]$ is bounded; if $\lambda(w)$ has zeros of order at least q, $L[P(z)\sin \pi z] \equiv 0$. We then have the following theorem.

THEOREM 3. If f(z) is an entire function of exponential type π which is bounded on the integers and is $o(|x|^q)$ (q > 1) as $|x| \rightarrow \infty$, if $\lambda(t)$ is regular on $[-i\pi, i\pi]$ and has zeros of order at least p at $\pm i\pi$, and if L is the operator defined by (3.2), then

$$\left| L[f(x)] \right| \le C \sup \left| f(n) \right|$$
 if $p \ge q$;
 $L[f(x)] = O(1)$ if $p > q - 1$;

and more generally

$$L[f(x)] = O(|x|^k)$$
 if $p > q - k - 1$ $(k = 1, 2, \dots, [q] - 1)$.

For the Bernstein and Macintyre cases, $\lambda(t)=2\cosh t/2$ and $\lambda(t)=\pi^2+t^2$, respectively, and p=1. In particular, the original interference theorem can be generalized to read: If $f(x)=o(|x|^q)$, q>1, and f(n)=O(1), then

$$f(x + 1/2) + f(x - 1/2) = O(|x|^k)$$

if k is any integer not less than q - 2.

REFERENCES

- 1. S. Bernstein, Extension of properties of trigonometric polynomials to entire functions of finite degree, Izv. Akad. Nauk SSSR, Ser. Mat. 12 (1948), 421-444 = Collected Works, vol. 2, 1954, pp. 446-467 (in Russian).
- 2. R. P. Boas, Jr., Entire functions, Academic Press, New York, 1954.
- 3. A. J. Macintyre, Laplace's transformation and integral functions, Proc. London Math. Soc. (2) 45 (1938), 1-20.
- 4. A. F. Timan, On interference phenomena in the behavior of entire functions of finite degree, Dokl. Akad. Nauk SSSR (N.S.) 89 (1953), 17-20 (in Russian).
- 5. G. Valiron, Sur la formule d'interpolation de Lagrange, Bull. Sci. Math. (2) 49 (1925), 181-192, 203-224.