INTERFERENCE PHENOMENA FOR ENTIRE FUNCTIONS

R. P. Boas, Jr.

1. Let f(z) be an entire function of exponential type, bounded at the positive and
negative integers. According to Cartwright’s theorem [2, p. 180], if the type 7 of f(z)
is less than w, the function is bounded on the real axis; and there exists a number C,
depending only on 7, such that |f(x)| < C sup |f(n)| for all real x. If, however,

T = 7, it is evident that f(n) can be bounded while f(x) is unbounded (example:

f(z) = z sin wz). The possibility remains that the values of f(x) may interfere with
each other in such a way that a certain combination will be bounded even though f(x)
itself is not. S. Bernstein [1] showed that if f(x) = o(|x|), the boundedness of f(n)
implies

(1.1) [f(x+ %) + £(x - 2)| < C sup |1(@)];
the best value for C in (1.1) is 8/7 (misprinted in [2], p. 219). (To see that (1.1) is
really significant, we must observe that f(n) bounded and f(x) = o(|x|) do not neces-
sarily imply f(x) = O(1) when 7 = 7; see §5.) Timan [4] showed that o(|x|) can be
replaced by o(|x[?) provided that (1.1) is weakened to

fx+3)+1f(x - 1)=0().

He also generalized Bernstein’s interference operator to

(1.2) L[f] = f "t + Ddp(t),
with
(1.3) fw ool |dp(x)| < ©» for some o> 7,

and proved corresponding results; in particular, L[f(x)] is bounded, whenever f(n) is
w .

bounded, f(x) = o(|x|), and 7 = m, if and only if J ettt dp(t) = 0.
-00

I shall replace (1.2) by the still more general operator L = A(D), where D = d/dx
and A(t) is regular on the closed segment [-i7, im] of the imaginary axis. When A(t)
is regular in the disk [tl < m, the operator A(D) can be defined by

(1.4) AD)E@) = T, 1™ ) (A(t): >, tn),
n=0 n=0
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for all entire functions of exponential type wn. In the general case, A(D) has to be
defined differently (3.2), and is applicable only to functions of exponential type n
whose indicator diagrams reduce to segments of the imaginary axis, i.e. which are
O(e‘E Ix I) on the real axis for every positive €. The result now reads as follows:
for functions of exponential type =, the condition A(+im) = 0 is necessary and suffi-
cient for f(n) = O(1) and f(x) = o(lxi) to imply

A(D)ix)| < C sup [fm)] ,
and for f(n) = O(1) and f(x) = o(x2) to imply
A(D)(x) = 0O(1).

> o]

(This is more than is stated in[2], p. 221.) In Timan’s case A(t) = f et dp(u),

-
which under (1.3) is regular in the strip |%(t)|< = . Another special case, which
indeed antedates Bernstein’s interference theorem (it was given, not quite completely,
by Macintyre [3]), corresponds to A (t) = 7% + t3: if £(z) is of type =, then f(n) = O(1)
and f(x) = o(|x|) imply

| 72 £(x) + £" (x)| <C sup |£(n)];
f(n) = O(1) and (%) = o(|x|2) imply
T2 f(x) + £"(x) = O(1).

It is easily verified (§2) that if f(n) is bounded and f(x) = o(|x|q) for some q > 1,
then f(z) is of the form g(z) + P(z)sin 7z, where P(z) is a polynomial of degree less
than q, and g(z) is an entire function of exponential type 7 which is of |x|) on the
real axis. Hence the extension of our results to q > 1 involves only the consideration
of functions of the form P(z)sin nz. The conclusion (§5) (stated in part by Timan for
operators (1.2)) is that L[f(x)] = O(1) for all f such that £(n) = O(1) and f(x) = o(|xlq),
if and only if A(t) has at least (q - 1)-fold zeros at +iw; if A (t) has at least q-fold
zeros, an inequality of the form

A(D)f(x) < C sup [f(n)|

holds.

It is possible to use still more general operators, corresponding to cases where
A(t) is not even analytic, but this introduces further complications and will not be
considered here.

2. Our first lemma is essentially known (cf. [4]).
LEMMA 1. If {a,} is a bounded sequence and

2.1) g(z) = ao_s_ip__qg_ + z sin 7z Zw' (-1)7an
: T2 ne o7z - n ’

where ' omits the tevm corresponding to n= 0, then g(z) is an entive function of
exponential type w, takes the values a, at z = n, and is o{|x|) on the real axis; if
in addition a, = 0, then |g(x)| < Alx| for real x, where A depends only on sup |ay).
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Since the series on the right of (2.1) converges uniformly in any bounded region,
g(z) is an entire function. I |a,|< A and z = x + iy, then

. v (-1 an 1| sin 7(z - n) 1
SlnﬂZZm SAE __’IT(?-__I—IT -l—I—I-I.

The term (or terms) for which n is closest to z contributes o(1) for real z, and
O(e™ !2l) in general. For real x this contribution is, in fact, at most 2/(]x| - 1) for
|x|> 1 and at most 1 otherwise, since the term with n = 0 is omitted. Thus this part
of the sum contributes at most 4A|x| to g(x). The remaining sum is termwise less
than

1,7 lyls" 1
A7n-le Zm,

where =" omits n =0 and also the term or terms with |n - x| < z. It is readily
calculated that =" = o(1) as |x|> «, and so Lemma 1 is established.

LEMMA 2. If {(z) is an entire function of exponential type w which is o(|x|%)
as |x|>= and has ()= 0 (n= 0, +1, +2, -..), then 1(z) = P(z)sin nz, where P(z)
is a polynomial of degree less than q. ‘

This is an easy consequence of a theorem of P6lya and Valiron (see [2], p. 156,
9.4.2), which asserts that f(z) = P(z)sin 7z, with the degree of P not exceeding q,
under the hypothesis that If(z)|_<_ € (|z|)e7'r Iz1 with € (r) = O(r9). In fact, if £(z) is
of exponential type 7 and is o(|x|d) on the real axis, put F(z) = z-a{i(z) - Q(z)},
where Q(z) is the polynomial consisting of the Maclaurin expansion of f(z) through
zd-1; then F(z) is of exponential type 7 and F(x) = o(1). Consequently ([2], p. 82,
6.2.4), |F(x + iy)| < Me7 I¥! with M = sup |F(x)|, whence

|£(z)| < MeT Mz [Q@)|.
Therefore by the theorem of Pélya and Valiron, f(z) = P(z)sin 7z with P(z) of de-

gree at most q. Since f(x) = o(|x|9, P(z) must actually be of degree at most q - 1.

LEMMA 3. If £(z) is an entive function of exponential type m which is o(|x|) on
the real axis and has f(n) bounded, then

sin 7z sin 7z . 1 (-1)"f(n)
— + £(0) -5tz sin TZ2. @ - n)’
where Z' extends over 1< In| < w.

This is a theorem of Valiron [5]; cf. [2], p. 221, where a factor 7-! should be
supplied in the first term on the right.

(2.2) £(z) = £'(0)

If f(z) satisfies the hypotheses of Lemma 2 except that the values f(n) are
bounded instead of 0, form the function g(z) of (2.1) with a,, = f(n). By Lemma 1,
g(z) - £(z) satisfies the hypotheses of Lemma 2 and so is of the form P(z)sin 7z.
This justifies the remarks about the case g > 1 near the end of §1.

LEMMA 4. If i(z) is an entive function of exponential type =, if £(0) = 0 and
lf&)| < Alx| for real x, and if ¢(x) is the Laplace-Borel transform of £(z), then
|6(z)| < A(|z] -7 |sin 8])°2 for |z|> m.

The function ¢(z) is defined as the Laplace transform of f(z) for 9i(z) > 0 and
as the analytic continuation of this outside the segment [-i7w,in] of the imaginary
axis. The analytic continuation may be effected by rotating the line of integration in
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o(z) = f “Ht) e-*tat,

0

so that

o0
p(reif) = e"igj f(te-10) e-rtdt

0

for r > 7|sin 6]. (See, e.g., [2], p. 74.) I g(z) = £(z)/z, we have |g(x)| < A, hence
[2, pp. 82-83] |g(z)|_<_ AeT 1Vl and lf(z)lSAIz] emlyl, Thus

o]
|$(reid)| < AJ tetisin O]-rt4¢

0
=Alr - n|sin 8)™ (x> = |sin 6]).

LEMMA 5. If {g1{x)} is a set of entive functions of exponential type m which
satisfy g (x)| < A|x| for veal x, if ¢\(t) is the Laplace-Bovel transform of gy (x),
and if g (x)>{(x) uniformly in every bounded domain, wheve 1(x) is an entive func-
tion of exponential type T with Laplace-Borel transform ¢(t), then ¢ (t) > ¢(t), uni-
formly for t at a positive distance from [-im, in].

xt xt

For real positive x, |gy(x)e *t| < Axe ™', and so gi{x)e™ converges domi-
natedly to f(x)e-*t for each real positive t. Hence ¢y(t) > ¢(t) for 0 <t < ». By
Lemma 4, the transforms ¢(z) are bounded uniformly in any domain at a positive
distance from [-iw, ir]. Vitali’s theorem now establishes the conclusion of the
lemma.

3. If f(z) is an entire function of exponential type 7 and is Of(e €1x1) on the real
axis for every positive €, we have Pllya’s representation

(3.1) f(z) = 7271[—1 f eZty)dt,
C

where ¢(t) is the Laplace-Borel transform of £(x) and C is a contour surrounding
[-im, iw]. (See [2], p. 74.)

Definition. If Nw) is vegular on [-in, in], we define the opevator L = ND) by
(3.2) L{f@)] = 5o f =t A (1) (t) dt
71 Jg

when 1(z) has the representation (3.1).

If A(w) is regular for [wl < m, (3.2) can be written in the form (1.4).

LEMMA 6. If the functions €.(2) are as in Lemma 5, then as k>,
L{g ()] > Lf(z)].

For, if C is as in (3.1), we have
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Ligy(2)] = —2%,-; Jc eZt a(t) ¢y (t)dt,

and we can take the limit under the integral sign, by bounded convergence (Lemma 4).
LEMMA 7, If

ﬂ -
3.3) a(z) = f eiztdn(t),
-7

with a(t) of bounded varviation, and if L[g] is defined as wn (3.2), then

7r .
(3.4) Lig(z)] = f elZt \(it) de(t).
-7

In fact, if ¢(z) is the Laplace-Borel transform of g(z), we have

[+ o]
$(reif) = e'ieJ glte19e-tdt (r > 7|sin 9])
v 0

e ™ 0
- e-19[ e'rtdtj e ite Yuqq(u)
o -

LN w0 .0
= e~10 da(u)j. e~(r-ie™Pu)t g¢

=T 0

sig (T __da() T dao)
r - ie~ify "~ o reif - ju *

Jom

Hence

1 t =1 t " da(w)
i Cez M) (t) dt = 5o fcez A(t)dt f_”t- fu

T zt

_ 1 e Alt)

=53 j da(u) f o dt
_71' C

T
= f elVZ ) (iu)da(u).
-7
LEMMA 8. If A(it) is such that

(3.5) elst\(it) = g}ocn(s) et (r <t< ),



128 R. P. BOAS, JR.
with = |cp(s)| <  for s=0 and s = s,, where s, is real and not an integer, then
Z |cnl(s)| is a bounded function of s (- w < s <w).

Let A(it) = Z¢,(0) eint; then

m
27 ¢, (0) = f e-int)(it)dt = F(n),
-

w
where F(z) = f e -izt)(jt)dt. Then, for any real s, that is not an integer,
S

w
27 ¢ (8y) = f e-inteiset) (it)dt = F(n - s,).
-7

Thus the function G(z) = F(z/2) is entire and of exponential type 7 /2, with
Z|G(2n)| < « and Z|G(2n - 25,)| < . If we arrange the points 2n, 2n - 2s, in a
single increasing sequence {kn}, we have ]kn - nl < C for some fixed C. Conse-
quently [2, p. 197],

| lewax < ciplew,)]

with a universal constant C,, and this in turn implies [2, p. 101] that, for all real s,
ZIFm - 8)| < GE(Fm)|+ |Fin - s,)])

with a universal C,. Thus Z|c.(s)| < 27C,.
4. We can now prove our main theorem.

THEOREM 1. If £(z) is an entive function of exponential type m which is o(|x|)
on the real axis and bounded on the integers, and if L is the linear operator asso-
ciated with MNt) by (3.2), with \xin) = 0 and A(t) regular on [-iw, in], then

@.1) |L[f(x)]| < C sup |£(n)],

with

o0

C=sup Z|ca(s)|, elSfa(it)= = cals)eint;
S - 00

and no slmclzller C can be used in (4.1), even if we require that £(x) = O(1) instead of
f(x) = o(|x]).

Suppose to begin with that £(0) = 0. By Lemma 3 we have f(z) = limy ., g5(2),
uniformly in any bounded region, where

Since gik(n) = f(n) for |n| <k, and gy{n) = 0 otherwise, Lemma 1 implies that
ng(x)ls A]xl , where A is independent of k. By Lemmas 5 and 6, this implies
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L[g(z)] > L[f(z)].
However, each g, (z) is of the form
T
4.4) guz) = f eizt day (t),
-
where ax is of bounded variation. Indeed, sin #z and z-!sin 7z have this form; so
does the function (z - n)~!sin 7z = +(z - n)~! sin 7(z - n), whence also the function
(z sin 72)/(z - n) = sin 7z + (n sin 7z)/(z - n). Now, using Lemma 7, we have
” -
(4.5) Lig, ()] = f eizta(it) day(t).
-7
Since eist) (it) is regular on [-7, 7] and vanishes at both ends, its Fourier co-

efficients are O(r2), and consequently it has an absolutely convergent Fourier series
on (-m, ) for every real s. Let

o0
eist(it) = ¥ c,(s) el®t,
-0

Using this in (4.5) and integrating term by term, we obtain

0 T
Llgi®)] =3 cals) | ei®-s)tqg ()
00 -1 .

= § cn(s)gxn + x - 8);

-00

taking s = x, we have
Llg(8)] =X cals)grm) = X culs)im).
-0 |n Sk
Letting k>« we have, by Lemma 6,
(4.6) L[f(s)] =X c(s)i(n).

Up to this point we have supposed that £(0) = 0. However, (4.6) still holds without
this restriction. For, applied to f(z) - £(0), it yields, by the linearity of L,

1{1(s)] - f(OL[1] = X c_(s)f(m) - £(0) = c(s).
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We have
1 zt, g
L[1]=-§——. )L(t)e t dt=7\.(0),
Ti c

from (3.2); on the other hand, Zc,(s) = M0) by (3.5).

Hence we have, by Lemma 8,

|L[t&)]| < supX|c,(s)] - sup |£(m)],

and this is (4.1).

To show that no smaller C can be used, let € be positive and find an s and a k
such that Z)lfkl cn(s)|> C - €. Then construct the function g(z) of Lemma 1 with
a, = sgn cy(s) for |n|<k, a,=0 for |[n|>k. Then g(x) = O(1), and we have

X ok
L{g(s)] = zkl c,(s)| = leclcn(S)I-sup le@)|>cC - e.

5. We now show that the condition A{+iw) = 0 is essential.

THEOREM 2. Let A(t) be regular on [-iw, iw], with either A(im) = A(-im) # 0,
or else A(im) # A(-iwm). (i) There exists no C such that (4.1) is true for every entive
f of exponential type w which is bounded on the veal axis; (ii) there exists an entire
JSunction of exponential type w which is o(lxl) on the real axis and bounded on the
integers, but with L[f(x)] not bounded on the veal axis.

In the first case the function A(t) - A(iw), and in the second case the function
A(t) + ibt + ¢, with suitable b and ¢, has the properties of A(t) of Theorem 1.
Hence, respectively,

|A(D)£(x) - A (im)f(x)| < C sup |f(n)]
or
|A(D)f(x)+ ibfr(x) + cf(x)l < C sup |f(n)| .

Thus (4.1) cannot be satisfied unless it is satisfied, respectively, for the operator I
(identity) or the operator ibD + cI (where D denotes differentiation). However, it
fails for both, as the example (z) = sin 7z shows. This establishes the first as-
sertion of Theorem 2,

The second assertion of Theorem 2 is less immediate. We have to construct,
first of all, an entire function f(z) of exponential type 7 with f(x) = o(lxl ), £(n) = O(1),
and f(x) # O(1). Such a function is given by

o0

. 1
f(z) = z sin 72 nglm’
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as was shown by Timan[4]. In fact, we have f(n) = 0 for n <0, f(n) = (-1)® for n> 0,
and f(x) = o(|x|) by Lemma 1. For z=m+ 8, m>0,0<5<1/2,

) g 1
+f(z) = (m + 8)sin 76 nglm.

Now

0 1 m 00 1 1
(m + 6)n{:l n(m - n+ o) nz=:1 +n=§n+l)(ﬁ+ m-n+ 5)

* 1 1
2logm+J = e ——————— Jdx + O(1)
X X-m-296
m+1

log m + O(1),

so that f(x) is certainly unbounded. Moreover, for z=m+ 6, 0< 6 < 1/2,

o0
. . . 1
cf(z) + ibf'(z) = +(m + 6){c sin 76 + 7ib cos "G}nglfﬂz_-_nf

o0 o0

+ ib sin 712 = l _ibsinrz & 1 __.
n=110(z - n) n=1 n(z - n)

Since c sin 76 + wib cos 76 vanishes for at most one 6 in 0 < 6 < 1/2, the first
term on the right is unbounded, by what we have just proved; the second term is
bounded by Lemma 1; and the third term is also bounded. For, with x real and
positive, but not an integer,

o0

1 1 1 1 X
n§1n(x-n52_x_2 n§x+nz>:x n n-x" (n-x)z)

_ 4 2log x + x-0O(1) + O(1) + ” 1__1 < dt
x2 i\t t-x (t-x?2

= 0(1/x).

6. We now investigate the extent to which the hypothesis f(x) = o(|x|) can be re-
laxed to f(x) = o(|x|?) with q > 1. Since f(x)+ Ax9-1 gin X, with arbitrary A,
satisfies the same hypotheses as f(x), in Bernstein’s case (for example) we cannot
have an inequality |L[f(x)]] < C sup |f(n)| when q= 2; for L[xsin 7x], although
bounded, is not identically zero. As we saw in §2, if {f(n)} is bounded and f(x) =
o(|x|q), we have £(x) = g(x) + P(x) sin 7x, where g(n) = f(n), g(x) = 0(|x|), and P(x)
has degree at most q - 1. Since Theorem 1 applies to g(x), what we can say about
L[f(x)] depends on what we can say about L[P(x)sin 7x]. Now we have
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P(z)sin 7z = J‘ eV w(w)dw,
C

where Y(w) is analytic everywhere, except for poles of the same order (at most Q)
at +iw. Since

L[P(z)sin 7z] = J Aw) Y (w) eV dw
C

and A(im) = 0, the operator L converts P(z)sin 7z into Q,(z)sin 7z + Q,(z) cos 7z,
where the degrees of Q, and Q, are at least one less than that of P(z). I A(w) has
zeros of order at least q - 1, Q, and Q, are constants and L[P(z)sin #wz] is bounded;
if A(w) has zeros of order at least q, L[P(z)sin 7z] = 0. We then have the following
theorem.

THEOREM 3. If {(z) is an entive function of exponential type m which is bounded
on the integers and is o(|x|%) (@> 1) as |x|>, ifA(t) is vegular on [-iw, in] and
has zevos of order at least p at +iw, and if L is the operator defined by (3.2), then

|Lf&)]| < C sup |[f()| #f p> q;
Lf(x)]=0(1) ¥ p>q-1;

and movre genevally
LE®] = o(x[®) #p>a-k-1 (k=1,2, -, [q]-1).

For the Bernstein and Macintyre cases, A(t) = 2cosh t/2 and A(t) = 72 + 2, re-
spectively, and p = 1. In particular, the original interference theorem can be general-
ized to read: If £(x) = o(]x|%), > 1, and f(n) = O(1), then

fx+ 1/2) + f(x - 1/2) = o(|x[¥)

if k is any integer not less than q - 2.
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