SOME CONSTANTS ASSOCIATED WITH THE RIEMANN
ZETA-FUNCTION

William E. Briggs

The following proposition was stated without proof by Ramanujan [3, p. 134] and
Hardy [ 2]; two proofs have recently been given by Chowla and the author [1].

THEOREM: The Riemann zeta-function has the representation

¢s) =5 f i+ Z_:o (-11)! T2 (s - 1P,

where

N

N, on n

Yo = lim z:log t_J‘log Xax |.
N>wl * 1 X

The purpose of this paper is to investigate the magnitudes and signs of the con-
stants y,,.

1. THE SIGNS OF THE CONSTANTS

THEOREM 1. Infinitely many v, are positive, and infinitely many are negative.
From the identity

£(s) = 25¢s-1 sinf’zlr r(l-s)t(1 - s)

it follows that

® et - 2m) = (1) 220 Dleom) (m=1,2,3, ).

Comparing this with the power series representation of ¢(s), one obtains the rela-
tion

(2) ¢(1 - 2m) = - Exl‘h' + }?0 (L%Zfi(—zm)n = - gﬁ + 2_:0% (2m)".

From (1) it follows that the sign of ¢(1 - 2m) is (-1)™, since all other factors are
positive. Hence, if m is positive and even, (2) shows that the y,, can not all be non-
positive. Assume that there exist only a finite number of positive y,, and that N is
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the largest integer for which vy, > 0. Let M be the smallest integer larger than N
for which yy)4 < 0. Then each nonzero term in the series

o0

¥n n
n=M n} (zm)
is negative, and in particular
M
YM(Zm)
3) o <0.

On the other hand
1 N ')’n n N
-5t = op@m) <k(N+1)2m), where k= max yy;
n=0 0<n<N

here k is positive, since yy > 0. Now let k'= -y, > 0, and choose m large
enough so that

k

2m>F(N+ 1)M!.
Then
(mM-N > £ N+ DM,
and
k_'l\(/%n_LM > k(N + 1)(2m)N,

which shows that ¢(1 - 2m) < 0, which in turn contradicts (1) for even m. Hence
there exists an infinite number of positive y,. A similar argument holds under the
assumption that there exists only a finite number of negative y,, and a contradiction
is reached by taking m odd. This proves the theorem.

Approximate values of y,, can be computed from the expression

i log™ t _ log™t!r _log’r
t n+1 2r ?

t=1

where r is chosen large enough so that the second derivative of (log™ x)/x is posi-
tive for x > r. This gives the following values:

vy = =0.073, y, = -0.516, y, = -0.147, v, = 0.002.
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2. AN UPPER BOUND FOR v,

Various representations of y,, can be obtamed by applying the following easily
derived sum formula [5, p. 31}:

Let f(x) have a continuous second derivative in Q < x <R. Set p(x)=1/2 - {x},

X
where {x} denotes the fractional part of x, and let o(x) = f p(t)dt. Then
(1)

R
S 10= [ fWax+ pRIR) - Q@) - SRR + 0@F(Q) + | oITH)a.
Q <x<R Q Q

In the present case, let Q = 1 and f,(x) = (log™x)/x, and take the limit as R> «
to obtain the formula

) Yy = f (%) £," (x) dx.

1

Since

sin 2k7wt
p(t) = kzl %

when t is not an integer,

o(x) = -

1 g cos 2k7mx 1
.”2

3 e 12

Substituting this in (4) and integrating by parts twice, one obtains the representation

o0

(5) Ya =2 Y | cos(2kmx) f (x)dx.
k=1

Another representation can be obtained by considering the function
(log®!x)/(n + 1). By a mean-value theorem,

1 n+l +1 _log"k 1|n logn‘lxk - log"xy
n+1,:log (k+ 1) - log" k]-—-————k +3 = ,

k

where xi = k+ 0 (0 < 8 < 1). On summing both sides from k=1 to k=x - 1 and
taking the limit as x> -, one gets the representation

co
) u =_;_ E log" x) - 2n log™~
= Xk
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LEMMA.,

x =2 §k=nl+0{(-2—e-.} (e =k + 83, 0< 0, < 1)

This lemma follows from the relation

= o]

had n n n
> log Xk _ I 108 X ix + O{max (1°g2x)} ,
k=1 Xk X 1<xloo - X7 7

since the integral equals n! and the maximum involved occurs at exp n/2.
THEOREM 2.

n=(25)" e (Jew| <.

The theorem follows from (6) and the lemma. It can also be obtained by consider-
ing the absolute value of the integral in (4).

Infinitely many of the constants y, are much smaller than Theorem 2 indicates.
Using the fact that ¢(s) - 1/(s - 1) is an entire function of order one, and applying the
theorem [4, p. 253] which states that the necessary and sufficient condition that

oo . . .
Z, a,z™ be an entire function of order r is that

log1/ja
liminf——l—nl=l,
n>w nlogn r

one obtains the resuit

log n! - log |y,
lim inf =1
n > 0 nlogn

This implies that

log |v, |
1iminf-—|—i=o,
n> o Nlogn

which in turn implies
THEOREM 3. If €> 0, then the inequalities

n€? < |yy| <ne®

hold for infinitely many n.
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