NOTE ON THE POLYA AND OTTER FORMULAS
FOR ENUMERATING TREES

Frank Harary

The purpose of this note is to demonstrate that Otter’s elegant formulation [2]
of the number of trees may be derived directly from Pélya’s equations [3] without
any additional theory of trees.

1. POLYA’S EQUATIONS

A tree is a connected graph with no cycles (see Konig [1, Chap. V]). A branch
of a tree, determined by a vertex P and a line PQ, consists of all vertices and
lines reachable from P by paths starting with the line PQ. The weight of a branch
of a tree is the number of lines it contains. The weight of a vertex P of a tree is
the maximum of the weights of the branches at P, The cenier of mass of a tree
consists of all vertices of minimum weight. It is well known that the center of mass
of a tree consists either of a single vertex or of two adjacent vertices.

Two trees are isomorphic if there exists a one-to-one adjacency preserving
correspondence between their sets of vertices. A rooted tree is a tree in which one
vertex (the 7oof) is distinguished. Two rooted trees are isomorphic if there exists
an isomorphism between them which maps one root onto the other. Let t,; be the
number of (nonisomorphic) trees with n lines, or equivalently with n + 1 vertices,
and let T, be the corresponding number of rooted trees. Let T(x) = E;?:o T,x"
then the generating series T(x) satisfies Cayley’s functional equation (see [3, p.
149]): )

(1) T(x) = exp § x;1:T(xr),

r=1
from which the numbers T, can be computed recursively. Otter [2, equations (6)
and (7)] obtains explicitly the recursion equations implicit in (1).

Let t} and t!! be the number of trees having n lines, whose center of mass con-
sists of one and two vertices respectively, so that t, = t} + th. Pdlya [3, pp. 207 and
203] develops formulas (2) and (3) below, which give t;, and t% in terms of the known
numbers T,,.

By coef, {f(x)} we mean the coefficient of x? in the power series of f(x). Using
this notation, P6lya obtains

(2) t! = coef, {(1 - x)-TO (1-x9 —Tl... a - xnﬂ)-Tm} ,

where m = [n/2] - 1. One sees readily that

(3) ty =0, tgm+1=(Tm+ 1>.
2
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2. OTTER’S EQUATION

An automorphism of a graph G is an isomorphism of G with itself. Two vertices
of a graph are similar if there exists an automorphism of G mapping one onto the
other. Similarity of two lines is defined analogously. An exceptional line of a graph
is one whose vertices are similar. For any tree, let p, k, and k. be the number of
dissimilar vertices, lines, and exceptional lines, respectively. Otter [2] discovered
and proved the dissimilarity characteristic equation for trees:
(4) p-(k"ke)=1;

and from this equation, he succeeded in deriving the following concise equation ex-
pressing the generating series t(x) = ,.¢t,x™ in terms of the known function T(x).

(5) tx) = T(x) - 5 [T2(x) - T3]

3. DERIVATION OF OTTER’S EQUATION FROM THOSE OF POLYA

We now proceed from (2) and (3) directly to (5) without using (4).

Let T (x) = Err’;oTnxn be the first m + 1 terms of the series T(x). Then (2)
can be written in the form:

(2" t) = coefn{expél—?—rTm(xr)} (m = ['Iﬁl] - 1). )

The equivalence of (2') to (2) is shown as follows:

exp 3 TTm(xr) = exp Y, T 2, Tgx*s
r=1 s=0

r=1
m X xr(s+1)
=exp X Ty X *
s=0 ~r=1 T

m
exp (— ZO T, log (1 - x5+1)>
s:

' 1-x"T0q._ x2) L. a - xm+1)'Tm.

Let t'(x) = E:=0 tl x™ and t"(x) = Th=gthx?, so that t(x) = t'(x) + t"(x). Then it
follows from (3) that

t"(x) = § %Tm(Tm+ 1) xem+l
m=0

that is,

() t"G) = 5
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To derive an expression for t'(x), we note that

r=1

o m
exp 2 1:; T(x?) = exp{- ZOT slog (1l - xs+1)}
s=

o0
=Tx)exp 2 T log(l-xstl),

s=m+l

Therefore, equation (2') with m = [n/2] - 1 becomes

(7) t, = coefn{T(x)[l + X Tglog(l-xstl)

s=m+l

1 [ 2 2
o 5 1 - +1 XYy .
T2 (s=§1+l Tslog(l - x2 )) * ]}

But
> - 2 h(s+1
X T log(l-xst)=- % ZTSX (]: )’
s=m+l s=m+l h=1
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so that m + 2 is the smallesydegree of x which occurs in this sum. Hencé 2m + 4

is the smallest degree of x in the third term inside the brackets of (7). But

2m + 4 >n, since m =[n/2] - 1, and thus there is no contribution to the coefficient

of x™ after the first two terms in the brackets of (7). Therefore we see that

t coefn{T(x)[l + =§+1 T, log (1 - xs+1)]}

coefn{T(x)[l - S_Z E Tsﬁshi-i) ]}

+1 h=1

Now by exactly the same argument, all terms after h = 1 in the last expression can

be ignored, since they do not contribute to the coefficient of x@, and we have

o0
t! = coefn{T(x) [1 - X T/ xstl }}
s=m+l

= coefn{T(x) [1 - xTx) + izr::) T xS+l :’}

From this last equation, one sees at once that

tl= X T, T, + coefn{ TE)([1 - xT(x)] },

that is,
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t'x) = T) [1 - xTE)] + X x2 1’% TyTooo -
n=0 s=0

But interchanging the order of summation and using the fact that m =[n/2] - 1, one
obtains the following simplification of the double series in the preceding equation.

o0 m m 00

2 xn L T_.T =2 X T.T. .. xt

n=0  s=0 ° 517 Ton-zs+z S P-s-l
o0

©0

= }:'Ts
s=0 k=s+1
[+ o] 00
=x > T. ¥ T, xkts
s=0 k=s+1

The last equality follows by the use of a conventional summation technique. Collect-
ing these results, we have

o0
(8) t'(x) = T®) - 2T2x) -2 X T 2x25 ,
2 2 s=0
Finally, addition of equations (6) and (8) gives (5).
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