QUASI-PROJECTIVE GEOMETRY OF TWO DIMENSIONS
Jesse Wright

1. INTRODUCTION. If the group of automorphisms of projective geometry, that
is, the group of collineations, is augmented by adjoining the correlations, the result-
ing extension is closed under composition, and it again forms a group. It is natural
to ask for a formulation of the geometry which has this group as its group of auto-
morphisms, since none of the familiar geometries admits the correlations as auto-
morphisms. The name quasi-projective geometry is given to this theory, the two-
dimensional version of which is the subject of this paper. The significance of the
prefix “quasi” is to be found in the relationship between quasi-projective and pro-
jective geometries. The theory of quasi-projective geometry contains the incidence
relation of projective geometry. However, it does not contain the property of being
a point, since this property is not preserved by the correlations, which by definition
are automorphisms of the theory. Thus quasi-projective, projective, affine, and
Euclidean geometries form a series of successively richer theories.

The problem considered in this paper may be stated as follows: first, to formu-
late quasi-projective geometry as a deductive theory and, second, to develop some of
the theorems in the elementary part of this theory. The present section will be de-
voted to a discussion of the nature of quasi-projective goemetry and its role in the
hierarchy of geometries. A mathematical subject matter may be treated as a deduc-
tive theory or formal language, and also as a system which is characterized by a
particular group of automorphisms. Both of these views of quasi-projective geometry
are presented here.

It is implicit in the use of symbolic languages in the description of mathematical
objects (such as a projective plane) that some, but not in general all, of the properties
of the object or model are expressed in the language. This means that there is a
process of abstraction involved in the relationship between the language and the object.
Consequently, two languages L and L' may be so related that every model of one
is a model of the other while L has greater expressive power than L'. The language
L' will be said to be more abstract than L. Familiar instances of this relationship
occur among the well-known geometries: affine and equi-affine; equiform (character-
ized by the group of similarity transformations) and Euclidian; and affine and Euclidian
are pairs of geometries in which the first is more abstract than the second. In con-
trast, projective geometry as given by the minimal set of axioms of Veblen and Young
is not more abstract than real projective geometry.

In order to analyze the relationship between quasi-projective and projective ge-
ometries, a set of axioms for the latter will be given.

The formulation of projective geometry employs individual variables u, v, ---, y, z
which range over points and lines combined; a constant P for the concept, point; and
the symbol I which means x is on y when it appears in the expression xIy. It
should be recognized that the concept, line, can be introduced into the system by the
following definition: Lx for not Px. Although the incompletely symbolized versions
of the axioms presented here suffice for the present purpose, in the final analysis
1A to 7A are to designate the given statements completely symbolized in terms of
P, of I, of u, ---, z, and of the required logical operators.

Received by the editors July 12, 1954,

115



116 g JESSE WRIGHT

1A. If x and y are points, thereisa z on x and y.

2A. If x and y are not points, thereisa z on x and y.

3A. If x and y are distinct points and x and y areon u and v,
then u and v are not distinct.

4A. There are three points x, y, and z for which there is no u on x,
y, and z.

5A. If x is not a point, then there are three distinct points u, v, and w
which are on x.

6A. If x ison y, then y is on x.

TA. If x is on y, then either x is a point and y is not a point; or x is
not a point and y is a point.

It should be noted, incidentally, that 1A to 6A alone are not adequate for ordinary
projective geometry, since if T is a transformation which preserves incidence for
distinct points, it could not be shown that if xIx, then (Tx)I(Tx). It should be em-

. phasized that these axioms are not essentially different from other sets of axioms
for the most general two-dimensional projective geometry. This formulation was
chosen on grounds of convenience in the present discussion.

Quasi-projective geometry is obtained from projective geometry by a process of
abstraction in which the concept, point, is eliminated. The theorems of projective
geometry which do not contain the symbol P constitute the body of theorems of
quasi-projective geometry. For example, the statement, for every x there are
three distinct elements u, v, and w which are incident to x, can be proved in pro-
jective geometry and is, therefore, a theorem of quasi-projective geometry. The
first problem to be considered then is that of axiomatizing the set of statements which
have been specified as the theorems of quasi-projective geometry.

Further consideration of the language which contains 1A to 7TA will show how
axioms for quasi-projective geometry can be found. There is no way in quasi-
projective geometry to state that x is a point or that x is not a point. However,
for two elements x and y it can be asserted that both x and y are points or both
are not points: the statement that for some z the elements x and y are both inci-
dent to z expresses this relationship without any reference to points.

Although no statement in quasi-projective geometry can have the interpretation,
X is a point; the relation between x and y, x has the same dimension as y, (that
is, both x and y are points or both are lines), can be expressed without reference
to the term, point, in the form: for some u, the elements x and y are incident to
u. In projective geometry it can be proved that this relation is reflexive, symmetric,
and transitive; and that it leads to exactly two equivalence classes, which are the
class of points and the class of lines. The first goal then in axiomatizing quasi-pro-
jective geometry is to postulate properties of the incidence relation which will guar-
antee that “x and y have a common incident” is an equivalence relation between x
and y, and that the resulting partition is a dichotomy. The principle of duality for
projective geometry implies that with respect to the categories, point and line, only
the relative distribution of elements need be considered. From this point of view
any statement in projective geometry can be translated into quasi-projective geometry
with the aid of the relation “x has the same dimension as y.” Thus an adequate set
of axioms for quasi-projective geometry can be obtained by franslating some set of
projective axioms into the more abstract language and supplementing them by axioms
from which the elementary properties of the relation “x has the same dimension as
y” can be deduced.

The study of geometry by the axiomatic method can be supplemented by a con-
sideration of transformations which are associated with it in a natural way. A
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one-to-one correspondence with all the individuals or primitive elements of a ge-
ometry as domain and range is said to be an automorphism with respect to a formal
language for the geometry if it “preserves” all the constants appearing in the lang-
uage. Here the word, constant, is used in a purely formal sense, referring to one of
the two main categories into which the atomic symbols of a formal language are
divided; e.g., the line at infinity, the incidence relation, the property or one-term
relation of being a point. The automorphisms of a geometry form a group called the
Klein group of that geometry. Within the formal language it is possible to impose
conditions on an arbitrary binary relation which guarantee that it is a one-to-one
correspondence and that as such it “preserves” the constants of the language. Con-
sequently the Klein group has initially an abstract or formal character and becomes
concrete only when the whole axiomatic structure is interpreted. The Klein group,
of course, is not unique in this respect; the same statement applies to any other un-
defined or defined term in a formal system.

The language in which 1A to 7TA appear has for its Klein group the collineations
(that is, the incidence-preserving transformations which map points into points and
lines into lines) of projective geometry. On the other hand, the correlations (that is,
the incidence-preserving transformations which map points into lines and lines into
points) are excluded from the Klein group because they do not preserve the property
of being a point. The problem of formulating axiomatically the geometry whose Klein
group includes both the collineations and correlations leads again to quasi-projective
geometry. Thus two alternatives are open: quasi-projective geometry may be re-
garded as the formal language absilvacted from projective geometyry by the elimina-
tion of the term, point; ov as the geometry whose Klein gyoup consists of the col-
lineations and correlations.

2. AXTIOMS. The language in which two-dimensional quasi-projective geometry
is formulated consists of the following symbols: constant (undefined term) I, indi-
vidual variables, u, v, -, y, z and logical symbols &, E, =, /, >. The symbol I
is a two-term predicate or relation, the expression xIy meaning that x is incident
to y. The symbol E is the existential quantifier; e.g., (Ex)xIy means “there exists
an x such that x is incident to y.” The expression (x)F(x) will be interpreted as
“F(x) holds for all x.” The universal quantifier, e.g. (x), at the beginning of a
formula is usually omitted. The symbols = and & are logical identity and conjunc-
tion (and), respectively. The symbol > represents material implication; e.g.,
xIy > yIx means if xlIy, then yIx. The symbol /, superimposed on any relation
symbol, represents the denial of that relation; e.g., xfy means that x and y are
not incident. The type of language employed here is called an applied first-order
functional calculus. The usual postulates for such a system will be presupposed.

The following abbreviations are of use in stating the axioms: xIylz for xIy & ylz
(similarly for four or five variables), and #(---) for “the elements represented by the
variables in parentheses are pairwise dislinct.”

The five axioms given below characterize the most general two-dimensional quasi-
projective geometry which would be admitted as a geometry. These axioms allow
some anomalous interpretations such as the Fano plane as well as non-Desarguean
geometries and geometries over skew fields.

Al. x¥x; i.e., incidence is irreflexive.

A2. (Exyz)xlu & ylu & zlu & #(x,y,z)]; i.e., every element of the ge-
ometry is incident to at least three other elements.

A3. (x,y,2z)> (Eu)xIuly or ylulz or xIulz]; i.e., for every triplet of
distinct elements of the geometry there is an element which is in-
cident to at least two of them.



118 JESSE WRIGHT

A4, wixlylz & # (W,X,y,z) > wlz; i.e., if four distinct elements are such that
each is incident to the next, the first is not incident to the last.

A5. ulvixlylz & # (u,v,x,y,z) >ulz; i.e., if five distinct elements are such
that each is incident to the next, then the first is not incident to the last.

The significance of an axiom is sometimes illuminated by a model in which it is not
satisfied and in which all of the other axioms are satisfied. The models to be described
below incidentally show the consistency and independence of each of the eight axioms
for two-dimensional quasi-projective geometry.

M. A projective plane. The range of the individual variables includes the points
and also the lines of the projective plane. The symbol 1 is interpreted as incidence
in the projective plane. All the axioms are satisfied by M. The consistency of the
axioms becomes manifest when a finite projective plane is taken as the model.

M1. A projective plane in which the incidence velation has been extended so that
X is incident to x for all x. As before, the range of the individual variables includes
the points and the lines of the projective plane. The symbol I is interpreted as the ex-
tended incidence relation defined above. Al is violated and A2 to A5 are satisfied.

M2. Figure 1. In this case the individual variables range over the vertices of the
hexagon and xIy means that x and y are on the same side of the figure. All the
axioms are satisfied except A2,

M3. Two disjoint projective planes., The individual variables range over all
points and lines in the two planes, and the symbol I denotes incidence in one or the
other plane. A3 fails when a point of one plane and a point and a line of the other
plane are the x,y, and z of the axiom.

M4. The points and planes of projective three-space. In this instance the indi-
vidual variables range over the points and the planes of the model, and the symbol I
means incidence in the projective geometry. A4 fails since there are many planes on
two distinct points.

Figure 1, Figure 2.

M5. Figure 2. The vertices of the graph constitute the range of the individual
variables, and the relation I holds for two vertices when they are on the same one-
cell of the graph. A5 is violated by many cycles of five elements which appear in the
figure. The graph of figure 2 can be obtained by identifying opposite vertices of a
dodecahedron. A study of the figure will show that two elements which are not inci-
dent have a common incident, so that A3 is satisfied in a rather trivial way. The
validity of the other axioms is easily verified.

This section concludes with the definitions of xDy (read: x and y have the same
dimension) and xCy (read: x and y are complementary) which play an important
role in the ensuing theory.
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DEFINITION 1. xDy sfands for (Eu)xuly.

In the next section it will be shown that D is an equivalence relation which effects
a dichotomy of the primitive elements. The two equivalence classes of D are the
quasi-projective analogues of the classes of points and lines of projective geometry,
although it is not possible to define either of these classes in quasi-projective geometry
separately. The role of D is analogous to that of equality of area in affine and equi-
affine geometry. Two triangles may be said to be equal in area in affine geometry in
which the area of a triangle cannot be defined. On the other hand, area is significant
in equi-affine space.

DEFINITION 2. xCy stfands for xDy & xJy.

In projective terms this means that two elements are regarded as complementary
if one is a point, the other is a line, and the line is not incident to the point. These two
terms are fundamental to the theory developed in the next section.

3. ELEMENTARY THEOREMS. The exposition of quasi-projective geometry be-
gins with the derivation of a preliminary result, the symmetry of the incidence rela-
tion. The next step is to show that D is an equivalence relation whose partition is a
dichotomy. Then follows a series of theorems which are quasi-projective analogues
of familiar theorems of projective geonietry.

The following lemma can easily be established by reference to the indicated
axioms:

Ll. (Ex & y,xZy)[xluly & ylulx].

Proof: For every u there are distinct elements x, y, z such that xlu & ylu &
zIu (A2). For some element w, xIwly or yIwlz or xIwlz (A3). Any one of these
conditions would involve a violation of A4 if w and u were not equal. Therefore,
uly or ulz; suppose that ulz holds. A repetition of the argument with y, z, x in
that order in the application of A3 yields ulx or ulz. Suppose that uIx occurs. Then
xIuly & ylulx. Q. E. D.

The first theorem is an analogue, for three elements, of the fourth and fifth axioms.
T1. xIylz > x¥z & XxIx.

Proof: If #(x,y, z) fails, the theorem follows immediately (A1). The proof is com-
pleted by a contrapositive argument in two cases from the assumptions that xIylz &
xIz or zIx) & # (x,y, z).

Case 1. (xIy or yIx) & {(yIz or zly) & (xIz or zIx), where OF is exclusive disjunc-
tion (i.e., one or the other alternative, but not both).

There exist elements u, v, w which satisfy the conditions (a) ulxIu & vIylv & wlzlw
and (b) A, y,z)&# (v, x,2z)& # (w, x,y) (L1). Then, # (u, v, w, X, y, z) follows
(b, A1, A4). There is an element r which satisfies the condition (¢) xIrly or yIrlz
or xIrlz. Furthermore, # (r,u, v, w, X, y, z) holds (Al, A4, A5). Therefore, each
of the alternatives in (c) is contradictory (A5).

Case 2. xIylzlylxlz.

There exist elements u, v, w satisfying the conditions (a) ulx & vly & wiz and
) A#u,y,z)&#% W, x,2z)& # (W, X, y) (A2). Then, # (u, v, w, X, y, z) holds (b, Al,
A4). There is an element r which satisfies the condition (¢). zIrly or yIrIx or
zIrix (A3). Furthermore, # (r,u, v, w, X, y, z) holds (A1, A4, A5). Therefore, each
alternative of (c) is contradictory (A5). Q. E. D.

The symmetry of I can now be established.
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T2. ulx > xIu.

Pyoof: There are elements y, v such that yIx & vIx and # (u, v, y) (A2). Then,
# (u, v, X, y) holds (Al). There is an element z such that zly & z # x (A2). It fol-
lows that # (%, y, z,u, v) is valid (A1, T1). There exists an element w such that
viwlu or ulwlz or vIwlz (A3). Moreover, # (w,y, z,u, v) holds (T1, Al). Con-
sequently, ulwlz is impossible and vIwlz is likewise impossible (A5). If x # w,
then vIwlulx & vIx & # (u, v, w, x) would hold. Since this is impossible (A5), x =w
and xIu. Q. E. D.

The symmetry of I is so closely interwoven with the development which follows
that T2 will often be tacitly assumed in the course of the proof.

The remark which follows is a strengthened version of A5, in that it shows that
distinctness is not required.

R1. ulvixlylz > ufz (A1, T1).
T3. ulviwlxly - (Ez)ylIzlu.

Proof: # (u, v,y) holds (Al, T1). Therefore, for some element z, yIzIu or
ulzlv or ylzlv (A3). Only ylzIu is possible (T1,R1). Q. E. D.

From the preceding resulis it is easy to deduce that D is an equivalence relation.
T4. The relation D is veflexive, symmeltric, and transitive.

Proof: (Ex)xIu (A2). Therefore D is reflexive; i.e., (Exjulxlu (T2). Also, D is
symmetric; i.e., ulviwIxly > (Ez)ylzIu (T3). Q. E. D.

T5. (Eux)(z)uPx & (zDu or zDx)].

Proof: By means of the laws of logic which were presupposed, it may be inferred
that (Eux)xIu (A2). Therefore uPx (Definition of D). Also, zDu or zDx (A3, T1).
Q. E. D.

The customary differentiation of points from lines in geometry is reflected in the
concepts and terminology which have evolved in this branch of mathematics; e.g.,
quadrangle, quadrilateral, collinearity, concurrence, ete. In projective geometry var-
ious concepts and relations involve some elements which are specified to be points and
others which are specified to be lines, although the duality of points and lines makes it
apparent that such a distinction is not essential. Three relations which are especially
suitable to formulation in quasi-projective geometry will be defined.

DEFINITION 3. Dep.(x,y, z) stands for (Eu)ulx & uly & ulz]; that is, (x,y, z)
are dependent.

DEFINITION 4. Ind.(x, y, z) stands for @)ufx or ufy or ufz] & xDy & yDz;
that is, (x,y, z) ave independent. Note that (x, y, z) are neither dependent nor in-
dependent if two of them are not in the same equivalence class of D.

Harmonic sets are usually defined as quadruplets of points (or perhaps lines) which
are related in a certain way to a complete quadrangle (or quadrilateral).

The harmonic relationship can best be described without the use of a formal defini-
tion by reference to eight elements which satisfy the following condition: sItIulvIwIxIylzls
& #(s, t,u,v,w, x,y, z). If ximlw & tInIx & ulply & vIqlz, then (m, n, p, q) can be
defined as an harmonic set.

The statement “there exist three distinct independent elements in the quasi-projec-
tive plane,” which is the analogue of the projective axiom 4A, is an immediate logical
consequence of the next theorem.
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T6. (Eyz)Ind.(x,y, z}].

Proof: There exist elements u, v, for which ulxlv & # (x, u, v) (A2, Al). Simi-
larly, there exist elements y, z, such that ylu & # (u, x, y) & zIv & # (x, v, z) (A2,
Al). I, for some w, xIw & yIw & zIw, then w=u & w = v (A4) which is contra-
dicted by the distinctness of u and v. Therefore every w is not incident to one
of the elements x, y, z. Since X,y, z are in the same equivalence class of D (Def.
1, T3), they are independent. Q. E. D.

The remaining theorems in this section are designed to establish for the relation
C some of the properties of the primitive, I.

T7: xCX.
Proof: xDx (T4). Therefore, x¢x (Def. 2). Q. E. D.

DEFINITION 5. (w, X, y, z) &S a quadrifigure slands for Ind.(x,y, z) & Ind.(w, y, Z)
& Ind.(w, y, z) & Ind.(w, X, z) & Ind.(w, X, y).
L2. (Ew, x, y)W, x,y, z) is a quadrifigurel.

Proof: There are elements x, y for which Ind.(x, y, z) holds (T6). There are
elements s, t, r, such that xItly & yIrlz & xIsIz (Def. 5, T3). There is an element
u such that ulx & # (u, s. t) (Al). Only one element is incident to both r and u (A4).
Therefore there is an element w which is incident to u and not incident to r (A2).
Then, wDx & wDy & wDz (T4). Finally, Ind.(w, X, y) & Ind.(w, y, z) & Ind.(w, X, z)
(A4). Also, (w, x,y,z) (A4). Q. E. D.

The following remark is an immediate consequence of the definition of independence:
R2. Ind.(x, y, z) & ylulz > xCu.

The next theorem should be compared with A2.

T8. (Exyz)[xCu & yCu & zCu & # x, v, z)].

Proof: There exist r, s, t for which (r, s, t, u) is a quadrifigure (L2). For some
elements x,y, z, rIzIsIxItlyIr (Def. 4, T3). Then # (x,y, z) holds (A4). Since
(u, x, y, 2) is a quadrifigure, xCu & yCu & zCu (Def. 5, R2). Q. E. D.

A characteristic difference between projective geometry and Boolean Algebra is
that two elements of a Boolean algebra cannot have the same complement while every
pair of points (or lines) have a common complement. Although the existence of a com-
mon complement is sufficient for the deduction of T10 below, a stronger result is ob-
tained as

T9. xDy>(Eu,v)[uCx & uCy & vCx & vCy & u # vl.

Proof: For some w,z XIw& ylw & zIw & z#x & z #y (Def. 1, A2). There are
elements u, v such that ulx & vIz & # (u, v, w) (A2). Obviously, (x,y) and (u, v)
are in different equivalence classes of D. Finally, xFu & x¥v & y¥u & y¥v (A4).

Q. E. D.

The substitution of C for I in A3 leads to

T10. (Eu)[(XCu & yCu) or (yCu & zCu) or (xCu & zCu)].
Proof: The theorem follows easily by the use of A3 and T9,
Again, the substitution of C for I in A5 leads to

T11. uCv & vCx & xCy & yCz > u@z.

Proof: The theorem follows easily from T5 and Def. 2.
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T12. xIy if and only if x¢y & not (Eu){xCuCyl.

Proof: x@y if and only if xIy or (Eu)[xluly] (Def. 2). x¢y if and only if xIy or
(Bu)xCuCy] (T11). Therefore, xIy if and only if x¢y & not (Eu)xCuCy]. Q. E. D.

Note the resemblance between T12 and Definition 2. Definition 2, expressed with-
out the abbreviation D, is converted into Theorem 12 by the interchange of C and I.
Axioms for quasi-projective geometry can be introduced with the use of only C as a
primitive or undefined term. In this case T12 can serve as a definition of incidence.
In such a system T11 is the key to the definition of the equivalence relation which
divides the elements into the two classes in each of which all the elements have the
same dimension.

The theorems involving “C” lead to a principle of deduction from which new
theorems can be generated. Let T represent any theorem in quasi-projective
geometry, expressed without the use of abbreviations, and let T* represent the re-
sult of replacing all occurrences of “I” in T by “C”. Then, if T can be deduced
from Al, A2, A3 and A5 without the use of A4, it is known that T* is also a theorem
in quasi-projective geometry. The principle can easily be extended to include the case
where T can be deduced from the same four axioms together with other statements
involving I and valid also for C. For example, since both I and C are symmetric,
T* is a theorem if T can be deduced from the axioms other than A4 plus T2.

4. CONCLUSION. Quasi-projective geometry as presented in Section 2 is aimed
at only the most basic aspects of the theory, and consequently it includes many uncom-
mon geometries along with the familiar ones. However, with the theory developed here,
the quasi-projective counterpart of any special projective geometry can be constructed.
The quasi-projective counterpart of any statement expressed in the language of pro-
jective geometry can be obtained by a simple procedure. The variables for elements
are those used for points and for lines in the projective statement, and I is placed be-
tween two variables if it was between them in the original statement. Finally, if two
variables represent two points or two lines, the existence of a third element incident
to both of them is asserted. Axioms for the corresponding quasi-projective geometries
are obtained if this process is applied to projective axioms such as those concerned with
the Fano configuration, the Desargues configuration, the Pappus configuration, the density
of points on a line, continuity, etc. The point of view of quasi-projective geometry is
advantageous for the study of the above-mentioned configurations. However, since the
theory of self-dual (or more precisely, symmetric) configurations of quasi-projective
geometry has been developed in terms of linear graphs, its presentation is reserved
for a later paper.

The exact relationship between quasi-projective and projective geometry may be
formulated along the following lines. The sub-group of automorphisms of quasi-
projective geometry which have one equivalence class of the equal-dimension rela-
tion as an invariant must be the group of automorphisms of projective geometry. If
this is the case, projective geometry should be logically equivalent to A5 plus B,
where B denotes certain additional axioms which will make a new primitive P the
name of an equivalence class of the “equal-dimension” relation. The two theories
already have the same primitives or constants, and it is clear, from an examination
of the appropriate theorems in Section 3, that each axiom of one theory is a theorem
of the other. Note the analogy between this situation and that which occurs in the
comparison between projective and affine geometry.

The study of quasi-projective geometry is only part of a larger investigation in
metamathematics. The terms “logical equivalence” and “abstraction,” as applied to
formal mathematical theories, require explication. One of the procedures being fol-
lowed is to develop in some detail certain examples for what light they will shed on
the general metamathematical theory.
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