A PROJECTION OPERATOR ON HARMONIC MAPPINGS

by

C. J. Titus

1. INTRODUCTION. Throughout this paper, D will denote a simply connected domain in the xy-plane. Let u = u(x,y) and v = v(x,y) be a pair of real-valued functions with continuous second partial derivatives on D; and let w denote the mapping of D into the uv-plane which is defined by these functions. The Jacobian matrix of w,

$$J = \begin{pmatrix} u_{x} & u_{y} \\ v_{x} & v_{y} \end{pmatrix} ,$$

satisfies the matrix differential equation

(1)
$$J_x e_2 - J_v e_1 = 0$$
,

where e_1 and e_2 are the unit vectors $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$, and where the subscripts indicate that each element of J has been replaced by the corresponding partial derivative. If w is a harmonic mapping, then the further equation

$$J_y e_2 + J_x e_1 = 0$$

is also satisfied. With the notation ξ = Je2 and η = Je1, equations (1) and (2) can be written as the vector differential equations

$$\xi_x = \eta_y$$
, $\xi_y = -\eta_x$,

formally similar to the Cauchy-Riemann equations.

It should be noted that if a two-by-two matrix J of differentiable functions satisfies equation (1), it is the Jacobian matrix of a mapping.

2. DEFINITION OF PROJECTION OPERATOR. Henceforth, J will denote the Jacobian matrix of a harmonic mapping w with the components u and v. The operator P will be defined by the relation

$$\hat{J} = P[J] = (\hat{J} + KJK^{-1})/2$$
, where $K = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Received by the editors December 6, 1953.

92 Titus

The matrix J is itself the Jacobian matrix of some mapping; for

$$\hat{J}_{x} e_{2} - \hat{J}_{v} e_{1} = [(J_{x} e_{2} - J_{v} e_{1}) + K(J_{x} e_{1} + J_{v} e_{2})]/2,$$

and the right member is zero by equations (1) and (2).

Since

$$P[P[J]] = [(J+KJK^{-1}) + K(J+KJK^{-1})K^{-1}]/4 = P[J]$$

the operator P has the projection property. A simple computation shows that a matrix function is invariant under P if and only if it is of the form

$$\begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}$$

or, in terms of the elements of J, if and only if

$$u_x = v_y$$
 and $u_y = -\dot{v}_x$.

Thus the Jacobian matrix of a harmonic mapping is invariant under P if and only if the mapping function is analytic.

In detail, the projection operator P can be written in the form

$$P[J] = \frac{1}{2} \begin{pmatrix} u_x + v_y & u_y - v_x \\ v_x - u_y & v_y + u_x \end{pmatrix};$$

by integration, an analytic function W = U + iV is determined, modulo an additive complex constant, by the relations

$$U = \frac{1}{2} \int (u_x + v_y) dx + (u_y - v_x) dy,$$

$$V = \frac{1}{2} \int (v_x - u_y) dx + (v_y + u_x) dy.$$

3. AN INEQUALITY. Let |J| and ||J|| denote the determinant and modulus of J, respectively, so that

$$|J| = u_x v_y - u_y v_x$$
 and $||J||^2 = u_x^2 + u_y^2 + v_x^2 + v_y^2$.

If |P(J)| is the determinant of P[J], a simple computation gives the result

$$|P[J]| - |J| = (||J||^2 - 2|J|)/4$$
.

The right-hand side is always non-negative, and therefore

$$|P[J]| \ge |J|$$
.

In particular, it follows that

$$\iint\limits_{\mathbf{D}} \mathbf{P}[\mathbf{J}] | \ dxdy \ge \iint\limits_{\mathbf{D}} |\mathbf{J}| \ dxdy$$

for every domain D over which the integrals exist. This establishes the following extremal property of analytic functions.

For each harmonic mapping w that projects into an analytic function W, let

$$I(w) = \iint |J| dxdy.$$

Then $I(w) \leq I(W)$.

4. SOME TOPOLOGICAL RESULTS. Let t be a real number, and let

(3)
$$\hat{J}_t = (J + t KJK^{-1})/2$$
.

A simple computation shows that \hat{J}_t satisfies equations (1) and (2); for each t, \hat{J}_t is therefore the Jacobian matrix of a harmonic mapping. In particular, for t=1, $\hat{J}=P[J]$; in other words, \hat{J}_1 is the Jacobian matrix of an analytic function. Equation (3) yields the relation

(4)
$$|\hat{J}_t| = [(1 + t^2) |J| + t ||J||^2]/4$$
.

Let $\{\hat{W}_t\}$ be the class of harmonic mappings which are the integrals of $\{\hat{J}_t\}$, where the constants of integration are chosen so that, for some point p_0 in D, $\hat{W}_t(p_0)$ is independent of t. Such a family $\{\hat{W}_t\}$ will be called a normalized integral of the family $\{\hat{J}_t\}$. The proof of the fact that each \hat{W}_t is uniformly continuous in t on every compact subset is simple and is left to the reader.

A theorem of G.S. Young and the author which will appear elsewhere states that if a mapping has a non-negative Jacobian which is zero only where it has rank zero, then the mapping is quasi-interior; see page 9 in [1]. A theorem of Whyburn ([1] Theorem 7.2, p. 10,) states that if a sequence of quasi-interior mappings converges uniformly on every compact subset of D, then the limit mapping is quasi-interior on D. By the first theorem, W_0 is quasi-interior for every $t \neq 0$ if $|J| \geq 0$. By the second theorem, W_0 = w is then quasi-interior. Therefore, we have the following result.

THEOREM. If w is a harmonic mapping such that $|J| \ge 0$ on a domain D, then w is quasi-interior in D.

It follows immediately from the quasi-interiority of w that on every compact subset S of D the maximum of $|w| = u^2 + v^2$ is achieved on the boundary of S. It would be interesting to know if the condition $|J(w)| \ge 0$ and $|J(w)| \ne 0$ on D is sufficient for lightness of w and hence for interiority of w.

If w is a harmonic mapping such that $|J(w)| \ge 0$ and the rank of J(w) is nowhere zero on D, then on every compact subset of D the mapping w is the uniform limit of local homeomorphisms. This follows directly from the fact that if the rank of J(w) is nowhere zero, then ||J|| is nowhere zero, and therefore one sees from (4) that $|\hat{J}_t(w)| > 0$ if $t \ne 0$. Thus each mapping \hat{W}_t ($t \ne 0$) is a local homeomorphism on D.

Finally, if w is light, then w and W are very closely related topologically. First of all, there exists over every compact subset of D a uniformly continuous deformation which keeps fixed the points at which \hat{J}_t has rank zero. At t=1, these points are the zeros of the complex derivatives of W. Thus at every point p of D there exists a neighborhood U of P over which w and W are homeomorphic to the same power of z.

BIBLIOGRAPHY

[1] G. T. Whyburn. Open mappings on locally compact spaces. Mem. Amer. Math. Soc. no. 1 (1950).

University of Michigan