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1. The primary purpose of this paper is a didactic one: we want to
present the theory of biorthogonal systems in a more general and system-
atic way than it has been done before; mostof our results are easy gener-
alizations of known theorems, especially of recent work on bases in Banach
spaces (see [2], [8], [10], [12], [13], [15]). The only special feature of
our treatment consists in laying more emphasis on the weak topologies’
than is usually done, and this proves to be the unifying principle of the
theory(l).

2. Let F and G be two vector spaces (over the real or the complex
number field) in duality [6]. A system consisting of a family (a, )\, 1,of
points of F and a family (b)), ¢ ;, of points of G is said to constitute a
biorthogonal system if <ay,by> =1 for all Ae L. and <a)\,'bﬂ> =0 for A #y,.

PROPOSITION 1. Let (a))\¢ 1, be a family of points of F. In order
that there exist in G a family (b)), ¢, forming with (a,) a biorthogonal

system, it is necessary and sufficient that (a,) be topologically free for
the topology o (F, G) (that is, for every AeL, a, does not belong to the
closed subspace generated by the a, of index p#N; see [4, p. 24]). More-
over if (b)) and (by) are twosuch families, then b} - by € A°, where A is
the closed subspace of F generated by the family (a}\); in particular,
b)\ = by for all Ae L, if and only if A = F.

The proof is an easy application of Hahn-Banach's theorem, and will
therefore be omitted.

3. Abiorthogonalsystem (cp),e > (d ) e M (c € F, d € G) is said
to be an extensmn of, a biorthogonal system (a)\)}\e L’ (b)\))\e if LCM,
and a, =c, , =d, for Ae L. A biorthogonal system (a ) (b )is max-
imal if ithas no proper extension. From. Zorn's lemma it follows immed -
iately that '

" PROPOSITION 2. Every biorthogonal system has a maximal exten-
sion. P

Maximal biorthogonal systems are characterized by the following
property:

PROPOSITION 3. Let (a,), (b,) be a biorthogonal system, A the
closed subspace (for o (F,G)) generated by (a}\), B the closed subspace

(1) We arefollowing the terminology and notations of [4], [5], [6] and [7].
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(for o(G, F)) generated by (b,). The three following conditions are equiv-
alent: 1° the system (ay), (b)) is maximal; 2° BO°CA; 3° A°CB.

The two last conditions are obviously equivalent since B99 = B. To
say that (ay), (b)) is not maximal means that there exist elements ae€ F,
b € G such that a is orthogonal to B, b orthogonal to A, and <a,b> = 1.
This 1mp11es that BC, containing a, is not contained in A (prop 1). Con-
versely, if there exists an element a € B® which is not in A, there exists
by Hahn - Banach's theorem, a hyperplane H of equatlon <x,b> = 0 which
contains A and does not contain a; then be A%, and <a,b> # 0; mult1ply-
ing b by a convenient scalar gives <a,b> = 1.

It is easy to give examples of maximal biorthogonal systems in a
Hilbertspace F = G, such that A and B both have orthogonal supplement-
ary subspaces of infinite dimension [11].

4. A t-space (French: ""espace tonnel€") is a locally convex Haus-
dorff space E having the following property [5]: in the dual E' of E, every
subset bounded for o(E', E) is equicontinuous ( hence strongly bounded and
relatively compact for o(E',E)). We speak then of bounded sets in E'
without qualification; in E (as generally in any locally convex space [14,
p- 198]) bounded sets for o(E, E') are also bounded for the original topology
of E, so no qualification is needed. The strong topology on E' has as a
fundamental system of neighborhoods the polars B° of bounded sets in E,
and as fundamental system of bounded sets the polars V© of neighborhoods
in E. It follows that on the dual E'" of E', the strong topology induces on
E the original topology on E, and every bounded subset of E is relatively
compact in E" for the topology o(E", E!').

We recall that (F)-spaces (and in particular Banach spaces) and
(LF)-spaces [7] are special cases of t-spaces.

5. Fromnowon, we shall always suppose that F is a t-space E and

G its dual E'. We are going toconsider especially-biorthogonal denumer -
able systems (ap), (b,), with ap€ E, bye E'. The closed subspace of E
(either for the strong or the weak topology o(E, E')) generated by (aj)
will be noted A.

PROPOSITION 4. The following properties are equivalent: 1) for

every x € E and every x'e E', the sums 3 rlj___0<an, x'><x, b,> are bounded
(in the field of scalars); 2) for every x' € E', the sums 2 1:_0<an,x'>bn

are bounded in E'; 3) for every x ¢ E, the sums 2n=0<x,bn>an are
bounded in E.

It is obvious that 2) and 3) imply 1). The fact that 1) implies 3) fol-
lows from the equivalence of weak and strong boundedness in E; the fact
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that 1) implies-2), from the equivalence of strong boundedness and.bound-
edness for o(E',E) in E'.

We shall say that a biorthogonal system (ap),(b,) is quasi-regular
if it possesses any one (hence all three) of the properties stated in prop. 4

PROPOSITION 5. Ifthe biorthogonal system (ap),(by) is quasi-reg-
ular, for every xe A, the series of general term <x,b,>a, converges
strongly to x. If B; is the strongly closed subspace of E' generated by
(bn)’ for every x'e By, the series of general term <ap,x'>b, converges
strongly to x'. '

The proofs are the same as for Banach spaces [2, p. 107]. Consid-

- N
er SN(X) = = n=0

E, and the assumption implies that in the space i(E) of linear continuous
mappings of E into itself, the sequence (SN)N=1.2, __is bounded for the
topology of pointwise convergence, hence equicontinuous [5, p. 7 th. 1].
As (sN(x) converges towards x (for the strong topology of E) for every x
which is a finite linear combination of the a,, it converges also to x for
any x in the closure of the set of these linear combinations [3, p. 29,
prop. 3]. Similarly, consider si(x') = = N <an,x'>b; sjy is a weakly
continuous linear mapping of E' into itself lz‘f—or the topology o(E', E)), and
for every x'e¢ E', the sequence (si\I(x')) is bounded in E'. It follows that
the sequence (Si\l) is equicontinuous when E' is given the strong topology
[5, p.- 13, prop. 8]; the end of the proof is similar. '

<x, bn>an; SN is a continuous linear mapping of E into

PROPOSITION 6 (see [15, p. 795, lemmas 1 and 2]). Let (ay),(by)
be a quasi-regular biorthogonal system. .

n

19 Forevery sequence ()\n) of scalars such that the sums 3 E_O}ghb

are boundedin E', there exists x'e¢ E' éuch that <a,,x'> =, for every n. -

2° Forevery x'"' ¢ E", thesums X §=0<x”,bn> a, are bounded in E

30 Conversely, for every sequence (un) of scalars such that the
sums 2 are bounded in E, there exists x'"'e E'" such that

a=0” n?n

<x",b,> =, for every n.

N . . '
1°© The sequence of the sums I n=0 A b, being bounded in E', has

a cluster value x' for the weak topology o(E',E); as <a,, & E:O Acbr> =A g
for every N > n, this implies that <a_,x'> =X for every n.

n
2° For every x'e E',

<z N__ <x'",b,>a ,x'> = <x", 2 N

]
n=0 n=0 <Fn* ¥> bn>.

is bounded, since the sums X xl:I-O <an,x'> bn are bounded in E', and x"
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is. strongly continuous in E' This shows that the sums:* ZS:O <x",b,> ap
are bounded in E.

3° The proof is the same as in 19, using the fact that a bounded set
in E is-relatively compact in E" for o(E", E').

"PROPOSITION 7. The biorthogonal system (ap,),(b,) being quasi -
regular, let ¢ be the natural homomorphism of E' onto E'/A°; for every
x' € E', the series of general term <a ,x'> qs(bn) converges to &(x') for
the weak topology o(E'/AO9, A) Similarly, let  be the natural homomor-
phism of E' onto E"/B (B° being the subspace orthogonal to B, in E™");
for every x€ E, the series of general term <x,b,> y(a,) convergesto
¥(x) for the topology o—(E"/Btl), B,).

The sequence (s! (x')) is bounded in E', hence relatively compact
for o(E', E), and there?I ore the sequence (¢(sp(x' )) has at leastone cluster
value ¢(y') for the topology o(E'/A°, A). But for any cluster value ¢(z')
of that sequence, <a_, ¢ (sj(x')) -#(2')> =<a,, sj(x')-z'> tends to 0 when
N runs through a convenient increasing sequence of integers. As soon as
N > n, <aﬁ, si\l(x')-z'> =<a,, x' -z'>, hence <a_,x'-z'> =0 forall n, which
proves that ¢(z') = ¢(x'). The relatively compact sequence (qs(s' (x')), hav-
ing only one cluster value ¢(x'), converges thercfore to ¢(x') for the top-
ology o (E'/A°, A) A similar proof applies to the second part of the pro-
position, using the fact that the sequence (SN(X)), being bounded in E, is
relatively compact for o(E",E') in E'".

COROLLARY. If B is the closed subspace of E', for the weak top-

ology o(E', E), generated by (b,), then, if the system (a,), (b,) is quasi-
regular, one has E' = B + A°, hence ANB° ={0} in E.

The preceding argument shows that, for any x'e E', the sequence
(si\l(x')) has a cluster value y' in E' for o{(E',E), and that ¢(y') =¢(x');
in other words y' - x'€ A®. On the other hand, every s'N(x') belongs to B,
hence also y', which proves our corollary.

7. Example 1. Let E = E' be a separable Hilbert space, (e,) an
orthonormal basis for E. Let us take a =e, -e . for all n >0, bn =
=egte] +--- +ey for all n > 0; then itis immediately verified that
(an), (bp) is a biorthogonal system such that A =B} = E. Let us show that

that system, although maximal, is not quasi-regular. For x =Z§0_0§nen,

x"‘z

o s . < N
it is readily verified that. Z <a ,x'><x,bp> =

n=0 "n®n’ =0

- - . N
_Ofn—r;n N N+1 (§o+§1+ +§N), as 2 neofnm, conrverges to
<x,x'>, we have only to choose x and x' such that the sequence of real
numbers 'r]N+1 (f +§ + - + & ) is unbounded. Take fn =1/(n+ 1), so

- that Z -0 §2<+oo, and§ +4+ + £~ log N; on the other hand,
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= +1 = 2 W = ~

take UN 1 0 exceptfor N 1 2 ’ hen 77N 1 1/(10g l_og N) 1/(n ].Og 2)_
S oo 2 < R + 4 ... +‘ ~ 1 1

Then 0 n 400 and T’N l(f fl fN) og W].Og og N for

n
N = 22 , which satisfies our conditions.

Example 2 (see [8, p. 188]). In all spaces whose elements are se-
quences of real numbers, e, will denote the sequence having all terms
equal to 0, except for the n-th term equal to 1. Let E be the space (¢ 1)
of Banach, E' its dual (m), and take a, =ep - en4] (n>0), b, =

e, te;+--- te, (n 2 0). This is a maximal biorthogonal system, since
B =E'. For x= }:OO &£ e eE, x' = zoo n e € E', we have, as in ex-
n=0°>n n n=0 ‘nn
’ Z ,b 3 ! = Z - . o . .
ample 1 n=0 <X n><an x> n= é:nnn 77N—I—l (go * gl * +gN)

The series of general term ¢ ~converges absolutely, and the sequence
('r,nn) is bounded, hence the series of general term §,n, converges, and the
sums 3 <x,b ><a ,x'> are bounded; this shows that the system (a,) >

(bn) is lr(11?1asi—regu1ar. However, it is easy to give examples of vectors
x,x' for whichthe series of general term «<x, b,><ap,x'> does notconverge:
take (£ ) such that the (absolutely convergent) series 32, ¢ has a sum
# 0, and take for (nn) a bounded sequence having no limit, for instance
nn = (_1)1’1_

8. PROPOSITION 8. The following properties are equivalent:

1) for every xe¢ E and every x'e E, the series of pgeneral term
<x,b,><ap,x'> converges in the field of scalars;

2) for every x'e E', the series of general term <a,,x'> b, con-
verges to p(x') € E' for the weak topology o(E', E);

3) for every x e E, the series of general term <x,bn> a, converges
to q(x) € E" for the weak topology o(E", E').

It is clear that 2) and 3) imply 1). The fact that 1) implies 2) follows
from the fact that the sequence (sjy(x')) is a Cauchy sequence for the top-
ology o(E',E), hence converges because it is relatively compact; a sim-
ilar argument applies to the sequence (sy(x)), which is relatively compact
in E" for the topology o(E", E').

We shall say that a biarthogonal system (ap),(b,) is weakly regular
if it has any one (hence all three) of the properties listed in prop. 8. Ex-
ample 2 of no. 7 shows there exists quasi-regular systems which are not

weakly regular.

PROPOSITION 9. Let (ag,),(b,) be a weakly regular biorthogonal
system. Then:

1° The mapping p defined in prop. 8 is a sirongly continuous pro-

jection of E' onto a strongly closed subspace Bj, having as its kernel the
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subspace A° (so that E' is the topological direct sum ([4], p. 15) of B,
and AC for the strong topology).

2° The mapping q defined in prop. 8 is a strongly continuous map-
ping of E into E", lcoinciding on E with the transposed mapping of p.

1© We have first to prove that, for any strong neighborhood of 0 in
E', which canbe taken of the form M®, where M is a bounded, symmetric
and convex subsetof E, thereisa strong neighborhood V of 0 in E' such
that the relation x'e V implies p(x') e M°®, that is, ,<x, p(x')>|§1 for
every xe M. Now, from the definitions, it follows that <x, p(x')> =
= lim sN <x, b ><a,,x'> = lim <sp(x),x'>. But the set of all elements
N-o0 n=0 n n N-o0 N
of the form sN(x), where x e M and N is an arbitrary integer, is a
bounded set P in E, since the sequence (sy) is equicontinuous in Z(E),
as we have seen in the proof of prop. 5; if we take V = P2, we will then

have |<x,p(x')>] <1 for all x e M and all x' ¢ V.
Moreover, if p(x') = 0, then Il\f'_)ngo<sN(x),x'> = 0 for all xe€ E. Tak-

ing x = a,; shows that <a_,x'> =0 for all indices n, and therefore the
kernel of p is A®. That p(p(x')) = p(x') follows from the fact that
<a,, p(x')> = <ap, x'> for all indices n.

2° The relation <x, p(x')> =11Iim <sn(x), x'> = <q(x), x'> shows that q
—00 .

is the restriction to E of the transposed mapping p' of p. Now it is
known that p' is acontinuous mapping of E' into itself, when E'' is given,
either the weak topology o(E", E'), or the strongtopology [1, p. 790, th. 1].

9. The three subsp.aces B, By, B, in E' are obviously such that
B;C B, CB; it will be seen later (n® 14) that they can be all distinct. We
are now goiag to investigate the cases in which two of these subspaces
coincide.

PROPOSITION 10. Let (a,),(b,) be a weakly regular biorthogonal
system. The following properties are equivalent:

1} B = B, ;
2) A + B? is dense in E ;

3) for every x e E, the series of general term <x, b,>a, converges
strongly to q(x) (in E').

The relation B =B, implies B NA° = {0} by prop. 9, hence
(BMA®°)C = E, and (BMNA°)° isthe strongand weakclosurein E of A + BO.
Conversely, if (BMAA®)° =E, then BNA® = {0}, and as BDB, and
B, N A° = {0}, B = Bp; this proves that assumptions 1) and 2) are equival-
ent. For every x € A + B9, sp(x) converges strongly to a point q{x) € A,
since x =y +2z, with ye A, z e B9 and therefore sp(x) = sy(y), which
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converges strongly to y (prop. 5). Let now x be an arbitrary element in
E; there exists y in A + B® such that x-y is arbitrarily small; in order
to prove that sp(x) converges strongly to q(x), it is enough to remark
that sN(z) is arbitrarily small with z ¢ E, uniformly in N, since the
sequence (syy) is equicontinuous in Z(E) (see proof of prop. 5). This
shows that 2) implies 3). Conversely, suppose that for every x ¢ E, the
sequence (spn(x)) converges strongly to q(x) e E". As sN(x)e A, q(x)
belongs to the strong closure A of A in E", and for every n, <q(x),h>
is the limit of <sy(x),b,> = <x,b,> as soon as n<N; this proves that
q(x) - x is orthogonalto B in E". Now, if x'e BN A%, «q(x) - x,x'> =0,
and on the other hand, <sN(x),;c'> =0 for all N, hence <q(x),x'> =0,
which shows that <x,x'> = 0 for all x e E, and therefore BN A° = {0} in
E'; we have already seen that this is equivalent to B = BZ’ hence 3)
"implies 1).

We shall say that a biorthogonal system (a,),(b,) is strongly reg-

ular if it satisfies property 3) of proposition 10; this obviously implies
weak regularity, as well as properties 1) and 2) of prop. 10.

10. PROPOSITION 11. Let (an), (bn) be a weakly regular biorthog -~
onal system. The following properties are equivalent:

1) A+ B°=E;

2) for every xe E, q(x)e E ;
3) the mapping p defined in prop. 8 is continuous for the weak top—
ology o(E', E).

The space E is then the strong topological direct sum of A and B°,
and the space E' is the topological direct sum (both for the strong topol -
ogy and the weak topology o(E!', E)) of B and A°.

As <x,p(x')> = <q(x),x'>, the equivalence of 2) and 3) is immediate
[6, p. 118]. If E = A + B9, then we have seen in the proof of prop. 10 that
this implies that q(x) € A. Conversely, if q(x) e E for all xeE, q is a
strongly continuous projection of E on A, and therefore E is the topol-
ogical direct sum (for the strong topology) of A and B®; moreover, p is
the transposed mapping of q, hence E' is the topological direct sum of B
and A° for o(E', E).

We shall say that a biorthogonal system (ap),(h,)is completely reg-
ular when it satisfies any one (hence all three) of the properties of prop. 11.

COROLLARY 1. Every quasi-regulér biorthogonal‘ system such that
A = E is completely regular.

For sucha system, the sequence (a,) is usually called a basis for E
[2, p. 110].



14 Jean Dieudonn€

We shall say that a locally convex space F is semi-complete for its
topology % if any Cauchy sequence in F, relative to the topology %, con-
verges to a point of F for #.

COROLLARY 2. 1° If E is strongly semi-complete, every strongly
regular biorthogonal system is completely regular.

20 If £ is weakly semi - complete (i.e., for the topology o(E, E'))
every weakly regular biorthogonal system is.completely regular.

The first part follows from the proof of prop. 10 and the fact that
the sequence (sp(x)) is then a Cauchy sequence in E for the strong top-
ology. A similar argument proves the second part, since then (sN(x)) is
a Cauchy sequence in E for the topology o(E,E'), hence q(x) ¢ E for every
x € E.

COROLLARY 3. If a maximal biorthogonal svstgm is strongly reg-
ular, then A = E and the system is completely regular.

This follows from prop. 10 and 11, since for a maximal system
BOP°CA, and A is closed in E.

11. PROPOSITION 12. Let (ap),(b,) be a weakly regular biorthog-
onal system. In order that Bj] = B2, it is necessary and sufficient that,
for every x'e E', the series of general term <an,x'> bn converges
strongly to p(x'). When this condition is satisfied, for every x" e E', the
series of generalterm <x'",b,> a,, converges to p'(x'") for the topology
c(E",E"').

It is clear that if, for every x' € E', the sequence (sj(x')) converges
strongly to a point of E', this limit is in B; by definition, and is equal to
p(x') (prop. 8), hence B; = B,. Conversely, if B} = B,, every element
x' € E' canbe written x' = y' + z', with y'e By and z'€ A® (prop. 9), hence
sj(x') = sjy(y') converges strongly to p(y') = p(x'). As E' is then the
direct topologmal sum of Bj and A® for the strong topology, E'" is (for
o(E'".E') the direct topological sum of BY and A®®, which is the closure
of A in E'" for the topology o(E",E'). For any x'" € E'", the sequence of
the sp(x'") = ZN _o<x",bp>a;, being bounded in E (prop. 6) has at least a
cluster point in E'" for the topology o(E'",E'); if a" and b'" are any two
such cluster points, it is readily seen that <a",bn'> =<b", by> = <x", by>
for any n (see proof of prop. 7), hence a'" - b'" is orthogonal to Bj; but
as a'' and b'"' obviously belong to A®®, a'" =b", and therefore, as the
sequence (sn{x')) is contained in a subset of E'" compact for o(E",E'), it
converges to a limit in that set. From the relation <sp(x"),x'> =
= <x'", sj(x')>, it follows immediately that the limit of sn(x") is p'(x'"),
where p' is the transposed mapping of p.

In general, for any weakly regular biorthogonal system, the fact
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that E' is the strong direct topological sum of A° and B, (prop. 9) im-
plies thatfor the strong topology as well as for the weak topology o (E", E'),
E" is the direct topological sum of A°® and of BS (orthogonal subspace
of B, in E"); note that BONE = BoﬂE B° (orthogonal subspace of B
in E)). In particular, Aoo is strongly isomorphic to the dual of the

(strong) subspace B, of E'.

12. The convergence of sy(x'") in E" for the topology o(E", EY,
for every x'" € E'", does not imply By = B, (see no. 14, example 3). But
we have the following propositions: ~

PROPOSITION 13. Let (ay),(by) be a quasi-regular biorthogonal
system; if B1 is semi-complete for the topology o’(E',E”), and if for
every x'" € E'", sp(x") converges (to p'(x'")) for the topology o(E",E!) ,
then the system is weakly regular and B; = B;.

From the weak convergence of s\(x) in E" for every x ¢ E it fol-
lows that the system is weakly regular (prop. 8); moreover, for every
x' € E', the sequence (sj(x')) is then a Cauchy sequence for the topology
o(E',E'"); as it belongs to By, it has a limit in B; for o(E',E"), hence
p(x') € By, and this proves Bj = B,.

It can be shown that in the assumptiors of prop. 13 the assumptlon
on ‘the convergence of sp(x') cannot be deleted, even if the system is or-
iginally supposed to be completely regular (no. 14, example 6).

PROPOSITION 14. Let (a,),(b,) be abiorthogonal system such that
for every x'" ¢ E', the series of general term <x”,bn> a, converges to an
element q(x") ¢ E for the topology o(E",E'). Then the system (ap),(b,)
is completely regular, and q is a strongly continuous projection of E'" on-
to A, sothat E" is the strong topological direct sum of A and B‘f. More-
over, A, with the topology induced by the strong topology of E, is then
naturally isomorphic to the strong dual of the, subspace B of E' (Bl be-
ing given the topology induced by the :tuong topology of E') [13, p. 978,
th. 9].

The assumption immediately shows that, for every index n,
<q(x"), by> = <x'",by>, hence sy(x") = sn(q(x'")); moreover, as sp(x") is
in A andconverges toanelement g(x") in E for the weak topology o(E, E'),
q(x") belongs to A, which is closed in E for o(E,E'). From prop. 5 it
follows that sp(q(x")) = sn(x"') converges strongly to q(x'"), and thenprop.
11 shows that the system (ap),(by) is completely regular. To prove g(x')
strongly continuous, it suffices to show that, for every bounded set M in
E' there exists another bounded set P in E' such that the relation x'" € P°
implies q(x") e M®. .But <sn(x"), x'> = <x'", sN(x')>, and we know that
when x' € M, the set of all elements s{(x') (N arbitrary) is a bounded set
P in E', the sequence (SN) being strongly equicontinuous in L (E') (proof
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of prop. 5); this shows that |<q(x") x'>| = lim |<x",si\l(x')>| <1 for
x' € M and x'" e PO. N-co o

As the dual of Bl is (algebralcally) naturally isomorphic to the
quotlent space E"/Bl, there is a natural 1-1 mapping of that dual onto A.
We have still to prove that the intersections with A of strong neighbor-
hoods of 0 in E are identical with the polars (in A) of bounded subsets
of By. This will certainly be the case, if we prove that every bounded
subset M of ‘B is contained in the weak closure (for o(E', E)) of a bounded
subset of B;. Now, when x'e M, we have seen above that the set of all
s (x') is a bounded subset PC B, and on the other hand, sj(x') con-
verges to x' for the topology o(E', E) (prop. 8 and 9), hence M is con-
tained in‘the weak closure of P.

Conversely, if the natural mapping of A into E"/B° is onto, this
means that E'" = A + B (algebraically at least), and therefore. that for
every x'' € E" there 1s an x ¢ A such that <x",b,> = <x, b, >; theconver-
gence of the series of general term <x'",bp>a, to x then follows immed
iately from prop. 5, if the system (ap), (bn) is supposed to be quasi-reg-
ular.

13. We shall say that a quasi-regular system (a,),(b,) is perfect
if B =B;. The system is then weakly regular by prop. 5 and corollary of
prop. 7, which show that for every x' ¢ E', the sequence (sjy(x')) is strong-
ly convergent. As we have then moreover B = B,, the system is also
strongly regular, and, from the relation B; = B,, it follows that sn(x")
converges in -E" for the topology o(E'",E'). Howegver, the system may
fail to be completely regular if E is not strongly semi-complete (see no..
14, example 5). In a reflexive space E, every quasi-regular biorthogon-
al system is perfect and completely regular, since strong and weak clos -
ure of a vector subspace of E' coincide, and E'" = E.

PROPOSITION 15. Let (a,),(b,) be a perfect biorthogonal system
satisfying the assumptions of prop. 14; then the system is completely reg-—
ular, and A and B; =B are reflexive spaces, which are dual to eachother.

The first assertion has been proved in prop. 14, and prop. 14 also
shows that A is the dual of B; = B; on the other hand, E being the strong
topologicaldirect sumof A and B©, the dual of A is (weakly and strongly)
isomorphic to the subspace B°° = B of E', hence A and B are reflexive.

14. Example 3. Let E be the space (ll), E' its dual (m), and
take a, = e, in E, b, =e, in E'. The system (a,),(b,) is obviously com-
pletely regular, with A =E, B = B, = E', whereas B)] is the space (c_)
of sequences converging to 0. We notice that although B, # By, sN(x”)
converges to q{x") € E for every x'" € E'" (in other words, the assumptions

of prop. 14 are satisfied), for the restriction of x" to B; being a contin-
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uous linear form, is identified with an element xe¢ E, rand <x",bn> =
= <x, by>,. which proves our assertion (see prop. 18).

Example 4. Let E be the space (m) of bounded sequences, E' its
dual, and take a, = e, in E, b, = e, in (ll)C E'. Then every x'€ E', re-
stricted to the subspace A = (c ) of E, is a continuous lmear form on
(cy)» hence can be identified thh an element x'e B = (£L1); from this it
follows immediately that B; = Bp, whereas B = E', since E', being the
bidual of By, is such that B; is dense in it for o(E', E).

From this and the preceding example, it is easy to define an example
of a weakly regular system for which all three of the subspaces B, B;, B,
are distinct; take for E the product (£1) X(m), with ar, =(ep,0), azny) =

= (0, ep). '

Example 5. Let H be aseparable Hilbert space, (e,) an orthonor-
mal basis of H. It is possible, using a method of Hausdorff [9, p. 303],
todefine a subspace F of H, containing the e,, which is distinct from H,
but is a Baire space, hence [5] a t-space. In the product HXH, consider
the space E generated by FX F and one more element of the form (a, a),
where a ¢ F; then E is still a Baire space by the Hausdorff argument,
hence a t-space; moreover, its dual is Hx H. Take a, = (e,,0) in E,
b, =(0,e,) in E'. Then it is obvious that A = F (considered as being in
the first factor of HXH) and B = B} = B, = H (considered as the second
factor of HXH); in other words, the given system is perfect, but E #
#A + B9 for B? is the second factor F, and E # FXF.

Example 6. Let E bethe (strongly closed) subspace of (¢1) gener-
ated by the sequence (a,), where an =ep - €enyl (n > 0); it is easy to ver-
ify that E is a hyperplane of ([ ), hence its dual E' can be identified
with a weakly closed hyperplane of {m). If we take by, =eg +e] +--- + ep
(n 2 0), then the system (a,),(b,) is quasi-regular (no. 7, example 2),
hence completely regular (cor. 1 of prop. 11). For any y in the dual of
(m), the-restriction of y to E' is a continuous linear form, hence equal
to some x'" € E'"; therefore <y,b,> =<x",b,> for all n. But if we take
y € (¢1) and not belonging to E, we know (no. 7, example 2) that the
series of general term <y, bp><ap, x'> is not convergent for convenient
choices of y in (£!) and x' in (m) (x' can be chosen in E', since its
projection on E', parallel to E© in (m), will give the same value to the
<ap, x'>). This shows that when B, #BZ, the series of general term
<x", b,>a,, may fail to be convergent for the topology oc(E", E'), although
E is semi-complete for o(E, E').

We may notice here, on the other hand, that in the example of a
basis given by R.C. James [10], the space E is not semi-complete for the
weak topology o(E, E'), but however the series of general term <x",b, > a,
is convergent to x" for the topology o(E", E').
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Example 7. Let E be the space (C) of continuous functions in the
interval I={0<t< 1} of the real line; its dual E' is the space of all
Stieltjes measures p¢ on I, andit contains as a subspace the Banach space
Ll of all Lebesgue integrable function on I (such afunction f, or rather the
whole class of functions equivalent to f, being identified with the measure
dp.(x) = f(x)dx as usual). Now take for (an) an orthdg‘onal system. in (C)
such that the development of any function f e (C) with respect to (a,) con-
verges strongly to f in (C); such a system is for instance the Franklin
orthogonal system [12, p. 122]; and take b, to be equal to a, but con-
sidered as an element of Ll. It is then clear that A = E and B; = Ll; on
the other hand, B = E' = B, by corollary 1 to prop. 11; thus, although Ll
is semi-complete for o{E',E") [2, p. 141], B, #B,.

15. For any finite subset J of the set of integers, we shall write
sJ(x) = ZneJ <x, b,> a, and S:T(x') = zne.]' <ap,x'> b,, and a similar def-
inition for sy(x") when x" ¢ E".

PROPOSITION 16. For a biorthogonal system‘:(an), (by), the follow-
ing properties are equivalent:

1) For every x e E andevery x' ¢ E', the sums ZneJ<X’ bn><an’ x>
are bounded (by a number depending on x and x') when J runs through
all finite subsets of the set of integers.

2) For every x € E and every x'e E', the series of general term
<x, b, ><aj, x'> is absolutely convergent. - ‘

3) For every x' € E', the series of general term <ap,x'> b, con-
verges unconditionally for the topology o(E', E). '

4) Forevery x € E, theseries of general term <x, b > a, converges
unconditionally in E", for the topology o(E", E'). .

The proof is immediate, and will be omitted.

We shall say that a biorthogonal system (a_),(b,) is absolute [13,
p- 971] if it satisfies the properties stated in prop. 16. An absolute bi-
orthogonal system is weakly regular, but it is still possible that for such
a system the three subspaces B, B, B, be distinct (see examples 3 and
4 in no. 14, which are absolute systems).

PROPOSITION 17. Let (a,),{b,) beanabsolute biorthogonal system .
Then, for every x € A, the series of general term <k,b,> a, converges
unconditionally to x for the strong topology, and for every x'e B;,the
series of general term <a,,x'> b, converges unconditionally to x' for the

strong topology.

The proof is similar to that of prop. 5: the set of all sy is bounded
in Z(E) for the topology of pointwise convergence, hence equicontinuous;
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similarly, the set of all s} is equicontinuous when E' is given the strong
topology, and the result follows at once from these two properties.

PROPOSITION 18. Let (an), (bn) be an absolute biorthogonal system.

Then:

1° For every x'' € E", the series of general term <x",b,> a, con-
verges unconditionally to p'(x') for the topology o(E", E').

29 If in addition E is semi-complete for o(E, E'), thentheassump-

tions of prop. 14 are verified.

1° We have <sj(x"),x'> =<x",s}(x')> for every x'e E' and every
x'" e E". But from prop. 16 it follows that the set of elements sY(x')is
bounded in E' when J runs through all finite subsets of integers; hence
the sums ZneJ <x”,bn><an,x'> = <sJ(x”),x‘> are bounded, and this shows
that the series of general term <x",b,><a,,x'> is absolutely convergent.
The mapping J->sj(x") therefore transforms the filter of sections of the
directed set formed by the finite sets of integers, into a Cauchy filter
base (for o(E",E')) consisting of subsets of a bounded set in E; such a
bounded set being relatively compact in E" for o(E",E'), the uncondition-
al convergence of the series of general term <x'",b,><a,, x'> follows.

2° From 1° it follows that the sum p'(x") of the series of general
term <x'",b, > a, is the limit (for o(E",E')) of the sequence (sp(x")),
which is a Cauchy sequence in E for o(E,E'); therefore, if E is semi-
complete for that topology, p'(x") € E.

16. S. Karlin has shown [13, p. 980, th. 12] that there exist non-
absolute bases in the spaces LP for p> 1 and p # 2; we propose to show
that the same is true for L. Take E =L1, E' = L%, and consider the
biorthogonal system (ap),(b,) where ap is the nth function of the Frank-
lin orthogonal system (see no. 14, example 7) considered as an element of
Ll, and b, the same function considered as an element of (C)cL®. It
follows from example 7 that (a,), (b,) is a completely regular system, and
as A =E, it is a basis for Ll. However it is not an absolute basis in Ll;
for if it were, as E is semi-complete for o(E, E'), the result of prop. 18,
29 would apply, hence, by prop. 14, E would be the dual of B; = (C), which
is absurd.
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