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ON ASYMMETRIC APPROXIMATIONS
by
W. J. LeVeque

1. B. Segre [1] deduced the following theorem from his inve:stiga—
tion of lattice points in certain non-convex domains:

Every irrational number ¢ has infinitely many rational approxima-
tions u/v such that
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where 7> 0 is arbitrary.

C. D. Olds [2] gave a simple arithmetic proof for the case 7 > 1.
N. Negoescu [3] used continued fractions to show that the inequality
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has infinitely many solutions for 7 >0 if a = max ({1 + 47)Z, (7-2 + 47)2),
but as R. M. Robinson [5] pointed out, Segre's and Negoescu's theorems
are equivalent, inasmuch as they are identical when 7 <1, while for 7 > ],
Negoescu's theorem asserts the same property of £ as does Segre's of
-£, if 7 is replaced by 1/7 in (1). . Recently, Negoescu [4] attempted to
prove that of any three consecutive convergents of the continued fraction
expansion of §, one at least satisfies (1) for arbitrary 7 2 0. It is shown
here that this is true of one out of any five consecutive convergents; more
precisely, at least one of the numbers pf?.n-l/an—l’ pZn/an" pZnH/an—l

satisfies (2) with a = (1 +4'r)1’/2, and one of the numbers pZn/an’
Pont1’ Y2041’ Pontz’ Sznsz

pk/q are convergents to £, n is an arbitrary positive integer, and 7 >0
is arbitrary. Moreover, Negoescu's assertion is shown to be sometimes

satisfies (2) with a ---('r2 + 47')1/2. Here the

false.

For the special case 7 =1 (or cy = cz)?, the proof given in §2 sim-
plifies considerably, and leads to a proof of the well-known theorem of
Hurwitz whose perspicuity compares favorably with that given by A. Khint -
chine [6].

2. For (p,q) =1, let I(p/q) denote the closed interval
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where c, > 0, c, > 0. Let p/q and r/s be the two elements of the Farey
sequence F, such that p/q< £ < r/s; thus qr - ps = 1. Then thereis a
gap between I(p/q) and I(r/s) only if
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This inequality is easily reduced to
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or to f(s/q) < 1, where
f(x) = ;:i + clx'
1 2

Similarly, there is a gap between I(p/q) and I{{(p + r)/(q + s)) exactly when

(

s+'q

s
= f1+2) < 1,

) ( q)

and a gap Between I((p + r)/(q + s)) and Kr/s) exactly when

s s/q
= ————— s < . :
{(q + s)‘ f(l +\s/q) ‘ 1 ‘ c, o

Hence ¢ certainly lies in one of the iatcrvals p/q), FI((p + r)/(q + s)) or

I{r/s) if

max (f(%), £(1 —ri—)) > 1

and

s s/q
max (f(-q—), f(m)) > 1,

which is certainly the case if, for all x> 0,
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max (£(x), £(1 +x) > 1 and max (f(x), f(l :x)) > 1.

It is easily verified that g(x) = ;ﬁax (f(x), £(1 + x)) is éonc_ave ﬁp-
ward for positive x, and has its minimum*value at x = x,. " where f(x,)
=f(1 + x;). Putting c,/c, =c, one obtains

1 S ‘
c+ (ci'-l» 4c)1/2 €(x ) (czl + 4c) /2 (cf + 4c1czll/2
- . = - ¥ ]
o 2 o cl, | clc:2
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so that f(x ) =1 only if c, = 4c /(c - 1). -1 = 47, then <, =(1 + 47)2

and ¢, =(1+ 47)1/2/1' and we conclude that. it p/q<¢ < (p + r)/(q + s)
then for arbitrary 7 > 0 either

1 -7 <§_p+r

or < 0.
(1 + 41-)1/2 2 (1 + 4_",)1/2 (q + s,)2 q+s

0<¢ -Bc
(3) o< g =

Similérly. the minimum of

h(x) = max(f(x), f( ),

l+x

for x> 0, occurs at x =x;, where f(x;}) = f(x/(1 + x;)), and

(1 + 4¢)'/2

€1

e (1 +40)?
* = 2

' f(xl) =

so that f(xl) =1 only if ¢ =4cl/(c§ -1). If clZ -1 =4¢, then ¢

2 1
=(1 + t!:t)l/2 and c, =(1+ 4t)1/2/t, and we conclude that, if (p + r)/(q + s)
< £ < r/s, then for arbitrary 7 = 1/t > 0 either

p+r< 4 1
q+s 2

(4) 0 <& - '
(r + 47)1/2 (q + s)Z

or

-7 < 0.

<. L
('r +4'r)1/22— S
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The possibility of equality can easily be excluded in (3) and (4). For
equality can hold-in (3) only if x, = s/q; but it follows from the equation
f(xo) = £(1 + x,) that then c is rat1ona1 and since f(x,) =1 also c; is ra-
tional, .so" c, is rational, and finally £ itself would have to be rat1opa1 for

éither equality in (3) to hold. A similar argument apphes to (4).

Thus we have shown that, whenever ¢ lies in the "left half" of a
Farey interval there corresponds a solution of the inequality

H
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1/2 2 1/2 2
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and whenever £ lies in the:"r1ght half" of a Farey mterval there corre-
sponds a solution of the inequality

- T

1/2 - 2
v

1

> <& .2 < 1/2 2 g )
(7 + 47) v T

('r +4'r)
Negoescu's form of Segre's theorem now follows upon noting that any £,
being irrational, lies in the 'left half" of mfmltely many F‘arey mtervals,
and also in the ''right half'" of infinitely many Farey intervals, and that
solutions corresponding to different intervals .are distinct. (In the case
7 =0, the theorem is irnplie:d by the fact that £ lies in infinitely many
left halves, since p/q + l/qz > (p + r)/(q + s).

In the course of the proof we have obtained the following theorem,
which may have independent interest: if F_ is an arbitrary Farey sequence

and £ lies between the adjacent elements p/q and r/s of F,, then at least
one of the numbers p/q, r/s and (p + r)/(q + s) is a solutlon of the ine-

quality

1

-T

= <€ - =< —,

B v v B v
1/2 2 1/2

where 7 > 0 and 8 = min ((1 +47-)/ , (T +4'r)/ ).

3. We now consider. the case that p/q and r/s are successive con-
vergents of £. Then £ is in the left half of the interval if

- )

(5) P _P2n L _ P2p-1
9  d2p s

for some n, while £ is in the right half if
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(6)

2 |

= RZD. E. = .P_;lli.l
q2n s 92n+1

for some n.

First consider the case (5), and suppose that & ¢ I(p/q) and
£ ¢ I(r/s), where now cy; =(1 +47)1/2/7 and cy =(1 +47)1/2 as in the
derivation of (3). Then I(p/q) and I{({p + r)/(q + s)) overlap, while I(p/q)
and I(r/s) do not:

S S
f(=) <1, £(1+=2)>1.
(q) ( 3

Since f(x) is concave upward, f(k + ‘3‘) > 1 for every positive integer k;
kp +r
kq +s

this however is the condition that I(p/q) and I( ) overlap. Hence if

Pontl _ *20P2n "Pa2n-1 %2

q2n+1 a‘anZn + an—l aZn q+ts

is the next convergent after p/q (so that & then

<
Pont1/ Gons 1
£e I(p2n+1/q2n+1). In a similar fashion, if (6) holds,£¢1(p/q), ¢ 1(r/s)

— (42 1/2 = (2 1/2 5
and < (72 + 47)/ ¢ /7, c, (r“ + 47)/“, then¢e I(p2n+2/q2n+2)-

To see that it is not true that one out of any three convergents to
satisfies (1), for arbitrary 7 > 0, we show that none of the convergents

3
2

of the continued fraction expansion of 81/50 satisfies (1) for 0.54 <7< 0.9,
and deduce by continuity that the same is true, for 0.85 <7 < 0.89, of ir-
rational numbers ¢ sufficiently close to 81/50.

We have

12/25
4 b

and so if (1) is satisfied for ¢ = 81/50, u/v =3/2, it must be that

2
12 1 < (25/12)7 -1

= < < 0. .
55 < ———q73 O°F : 0.836

- 1
(4T|+ 1)
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. Similarly, if (1) is satisfiedfor u/v = 8/5, then since 81/50 - 5= 25 °’
% < _I—W—Z-, or T < 0.75.
(47 + 1)

i ~ . L

‘F’iiﬁally, lf((l) is sa.f.is{fjled‘for u/v =5/3, it must be that

T < 2,81 5 =21

"( 172 3(35_-'3')2—5—0’ ,

4'r+1)‘

which implies that 7 > 0.901.

ot
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