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Unusual Generating Functions
for Ultraspherical Polynomials

by

Fred Brafman

1. Intrbductlon A generating function equatlon for a
set of polynomials {g X)} is an equation of type

(1) Gt = n‘z;O Ag (),

where the coefficients An do not involve either x or
t but may depend on the index of summation n, para-
meters (if any) of the set {g (x )} , and numerical fac-
tors. In many classical generating functions, the A,
is made up of ratios and products of factorial func-
tions (of), where by definition

(2) (), = (t+1)... (ct+n - 1')'=’ Aplid&)n)
for n =1,2,3,...; @), =1 if & £0.

There has however been some interest paid to the
case where the index of the factorial symbols making
up A, may be either n or [%], the greatest integer
in n/2. [1] ' S

It is also obvious that some attention must be
paid to the form permitted for G(x,t). One of the
most useful forms is that G(x,t) consist of a finite
sum of terms, each term of which is a product of a
finite number of generalized hypergeometric functions,
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Such a restriction will be adhered to in this note.

2. Statement of result. This work will be concerned
with the ultraspherical polynomial set {Pr(f(’d) (x)}
where [2]
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The ultraspherical polynomials are a special case of
the Jacobi polynomials

(5) PP ) =

1 - x
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The following notation will hold throughout:
2,1/2
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where the branch convention is
/O' >1 as t—0 and/a. -1 as t—=0.

The main result to be presented here is

_1 _t2 -oC
(7) /0 l(l t2+lo,a>
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- =0 (1 +) k!
n

It will be noted that for & = 0, there is obtained one of
the classical generating functlon equatlons for Le-
gendre polynom1als P, Pﬁlo 0) (x):

® p =2 P (i

3. Derivation of result (7). Begin by observing the
identity
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The symbols A and B are merely representative of
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numerator and denominator parameters and more (or

none) can be inserted by repeating (or omitting) the
behavior of A and B.

- Next recall [3] the relations

)
(1 +o¢)2n(-1)ln'n! Pfl"l/z’d) (“1 - szj

T (@) (T + o, ’
(1+e),  mt(-1)" x‘-pfll/z"") (1 - 2x%)

(1 +0¢)n (2n +1)!

where Pr(ld’/j) (x) are Jacobi polynomials, defined'by
(5). The identity (9) now becomes
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Suppose now there is no A or B. Then (11)
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becomes :
5 p](:""‘) (x) mt (1 +ot), t"
(12) L T+ k!

- r;) Pl(q“l/?"d‘) (1 - 2x°) (-t9)"

9,0)

+ oxt ;go P}(:/z,a.) (1 - 2x%) (-t5™ .

Let the right side of (12) be denoted by
B (xt) + xth, (xt).

Now consider [4] the ;generating function equation
1-t+p \PB(l+t+p )% -1
(13) ( 2 F) ( 2 . ) r

= ni:_() Piﬁ’d‘) (x) tn .

By adapting (13) to the special requirements of hl(xt)

and h_(xt) separately it is easily shown that ’

2
(14) hl (xt) + xt h2 (xt)
1-t2+[o/u. -o(.‘ -1 -1
\7 P C .
s (e tp)

where C (x,t)

) '~/2 (1 + tw2 +/o/a)

Taking'\/Cz (x,t) , with the branch convention
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adopted above, shows that C(x,t) = /4 Combining
(12) and (14) now gives the result (7).

4. Conclusions and other results. The proof of (7)
above used the generating function (13) for Jacobi poly-
nomials. This is of course not necessary as the
right side of (11) can be summed directly. However,
use of (13) is a convenience and points out other re-
sults. By using other generating functions for Jacobi
polynomials and adopting the necessary parameters A
and B in (11) for each generating function used, other
results follow immediately. The use [5] of generating
functions
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The notation k = [%] of (6) has been used here; in
(17) and (20), a is an arbitrary parameter. The func-
tions f}, f,, f3, have been obtained by the author in
the required form; each consists of a finite sum of
terms each of which is aproduct of a finite number of
hypergeometric functions. However, f;, f,, f3 do
not have the simplicity of the left side of (7) and the
actual functions will not be given here.
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