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Chisini’s Conjecture for Curves with
Singularities of Type” = y™

SANDRO MANFREDINI & ROBERTO PIGNATELLI

1. Introduction

This paper is devoted to a classical problem that can be summarized as follows:
Let S be a nonsingular compact complex surfacerletS — P2 be a finite mor-
phism having simple branching, and Bbe the branch curve; then (cf. [F2]), “to
what extent doe® determiner: S — P2"?

The problem was first studied by Chisini [Ch], who proved tBateterminess
ands, assuming (i)B to have only nodes and cusps as singularities, (ii) the degree
d of r to be greater than 5, and (iii) a strong hypothesis on the possible degenera-
tions of B. Chisini posed the question of whether the first or the third hypothesis
could be weakened. More recently, Kulikov [Ku] and Nemirovski [Ne] proved
the result ford > 12, assumingB to have only nodes and cusps as singularities.

In this paper we weaken the hypothesis about the singularitiBs wk gener-
alize the theorem of Kulikov and Nemirovski f@ having only singularities of
type{x" = y™}, using the additional hypothesis of smoothness for the ramifica-
tion divisor (automatic in the “nodes and cusps” case). Moreover, we exhibit a
family of counterexamples showing that our additional hypothesis is necessary.

In order to more precisely state the problem and our results, we need to intro-
duce a bit of notation.

DerINITION 1.1, Anormal generic coveis afinite holomorphicmap : S — C?,
which is an analytic cover branched over a cuBs/esuch thatS is a connected
normal surface and the fiber over a smooth poinBa$ supported on deg — 1
distinct points.

Two normal generic coversSy, 1), (S2, m2) with the same branch locug are
called (analytically)equivalentif there exists an isomorphisgh: S; — S, such
thatmry = 700 ¢.

The main interest in generic covers comes from the well-known fact that, by
the Weierstrass preparation theorem, given an analytic susfac€”, a generic
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projectionr: S — C?is (at least locally, in order to ensure deg< oo) a normal
generic cover branched over a curve (see [GuROQ]).

A standard way to study generic covers is as follows. Given a generic cover
7. S — C? with branch curveB, define themonodromy homomorphisp:
71(C?\ B) — Sdegr as the action of this fundamental group on the fiber of a reg-
ular value.

The pair(B, p) gives the “building data” of the cover: one can reconstruct the
cover from(B, p) (cf. [GrRe]). Despite this explicit construction, understanding
the singularity of the cover from the building data is very difficult (except in spe-
cific cases). It is, for example, still an open problem to classify all the possible
“building data” coming from smooth surfaces.

In[MP]we gave a complete classification of the normal generic covers branched
overirreducible curves of type” = y™} interms of what we called “monodromy
graphs”; we will recall briefly this result and the definition of monodromy graphs
in the next section. Let us point out that, according to the Puiseux classification,
this class of singularities is a natural first step for a complete classification.

Ourfirst result (to which the balance of Section 2 is devoted) is a “more friendly”
classification theorem that will be crucial in the following sections. L édt, a, b
be positive integers witliz, k) = 1, and consider the surfac®, 4 4,5 in C* de-
fined by the equationsc* + kw" — (h+k)x* = zw—y? = 0. LetF: Sy 4.0 —

C? be the projection on thex, y)-plane.

TueoreM 1.2. The mapF: S, ., — C2? is a generic cover branched over
x@tk) — bk of degreeh + k.

Conversely, up to exchangingandy, every generic cover : S — C? of de-
greed > 3 branched ovefx” = y™} with (n, m) = 1is equivalent to one of the
previous maps.

In Section 3 we consider the “global” case of projective generic covers.

DerFINITION 1.3, A projective generic coveis a finite morphismr: § — P?
branched over an irreducible curesuch thatS is an irreducible projective sur-
face and the fiber over a smooth point®has cardinality deg — 1.

This is the same as requiring that(B) = 2R + C, with R irreducible and” re-
duced, and that|z: R — Bis1:1over smooth points d. As in the previous
case, for each irreducible projective surface generic projection : S — P2 is
a projective generic cover branched over a (projective plane) durve

We say that a projective generic covesinoothif the surfaceS and the ram-
ification divisor R are nonsingular. Actually, whefiis nonsingular, a “general”
generic projection has a ramification divisBrthat is nonsingular. Let us point
out that, if B has only nodes and cusps as singularities, tRes automatically
smooth.

Again, we will consider projective generic covers up to analytic equivalence:
(81, m1), (S2, m2) with the same branch locu® areequivalentif there exists an
isomorphismp: S; — S, such thatr; = 7, 0 ¢.
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ConNJECTURE 1.4 (Chisini). Let B be the branch locus of a smooth projective
coverr: S — P2 of degreedegr > 5. Thenx is unique up to equivalence.

In other words, ifS is smooth and the degree high enough, then the cBrde-
termines the cover.

In fact, Chisini proved this result using the aforementioned additional hypothe-
ses that the branch cun&has only nodes and cusps as singularities andBhat
has some particular degeneration. In the same paper [Ch], he wondered if these
two last hypotheses could be weakened.

The bound for the degree afis needed according to a counterexample (due to
Chisini and Catanese; see [Ca]) of a sextic curve with nine cusps that is the branch
curve of four nonequivalent smooth projective covers, three of degree 4 and one
of degree 3.

More recently, Kulikov [Ku] developed a new approach proving Chisini’s con-
jecture for curves with only nodes and cusps as singularities, using the additional
hypothesis that the degree ofis greater than a certain function of the degree,
genus, and number of cusps of the branch locus. After that, Nemirovski [Ne],
using the Bogomolov—Miyaoka-Yau inequalities, found a uniform bound of 12 for
the Kulikov function.

Combining these two results yields the following theorem.

THEOREM 1.5 [Ku; Ne]. Letwi: S1 — P?andm,: S, — P? be two smooth pro-
jective covers having the same branch cuBvéAssume thaB has only nodes and
cusps as singularities and thdegr; > 12. Thens; and 7, are equivalent.

In Section 3, we use Theorem 1.2 to improve on the previous results as follows.

THEOREM 1.6. Letm;: S; — P? andmy: S — P? be two smooth projective
covers having the same branch cu®eAssume thaB has onlyr singular points
oftypex" = y™i i=1...,r If

4B3d+g -1
2(8d + g — 1 — X i_y(min(m;, n;) — ged(m;, n;))’
where2d = degB andg = g(B) is its genus, them; and, are equivalent.

degm, >

THEOREM 1.7. Letmi: S1 — P2 andm,: S» — P2 be two smooth projective
covers having the same branch cu®eAssume thaB has only singularities of
typex" = y™ and thatdegr; > 12. Thenw; and r, are equivalent.

Finally, in Section 4, we will construct a family of projective generic covers and
will show that the hypothesis of smoothness fois necessary by finding pairs

of nonequivalent projective generic covers of arbitrarily large degree having the
same branch curve. More precisely, we prove (we defer the definitioﬁsgqfto
Section 4) the following.

ProrosiTioN 1.8. Letr € Nwithz > 1and letB be the projective plane curve
given by the equation

)2[(2t+1) w)4f+l.

8arp1(x, w = fa@n(y,
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Then there are two generic covers: S’ — P? andn”: §” — P2, with §’, §”
smooth and of degredls + 2 and 4t + 1, respectively.
The ramification divisor is singular except in the case of the cavéor r = 1.

AckNOWLEDGMENTS. We would like to thank Prof. Fabrizio Catanese, who was
the first to introduce us to the subject, for several useful and interesting conver-
sations on the topic of the classification of generic covers. We are indebted also
to Prof. Victor S. Kulikov, who suggested some possible applications of our re-
search, and to Prof. Mina Teicher, who partially supported this research by hosting
the first author at Bar llan University (Israel).

2. Equations

Consider the following surfac, ; in C* (S}, ;11 in Section 1):
{ hz* + kw" = (h + k)x,
w =y,

(2.1)

where 1< h < k are coprime integers. The Jacobian matrix is
h+k O hkz*1 hkw"1
0 1 w Z ’
from which we see thas, , is smooth and that we can choasev as local coor-
dinates nea(0, 0, 0, 0) for S, x.
Consider the ma@y, ;. : Sy x — C2, which is the restriction td), . of the pro-
jection of C* on the(x, y)-plane.

ProposiTION 2.2.  Fj, ; iS @ normal generic cover of degréet k branched over
the curvex/+* = yhk,

Proof. We have thaﬂ?,;,g(o, 0) = (0,0, 0, 0), and one can easily check that the
degree off),  ish + k.

The equations of the ramification divis&rin the local coordinateéz, w) of
Sn.« are given by the vanishing of the determinant of the submatrix of the Jacobian

matrix
hkz¥1 hkw' 1
w z

)

that is,z* = w”.

Substituting into the equations §f ; in C#, we obtain that the locus defined by
the equationy* = z"*w"* = x"*+* in the (x, y)-plane contains the branch curve
B. But this locus is irreducible sinag:, k) = 1, so we have found the equation of
the branch curve.

We are left with the “genericness” check. Of course, itis enough (by irreducibil-
ity) to check over a smooth point &, and we take the poind, 1). Let Fhf,}(l, 1

. . . k wh
be the set of points of the ford, 1, z, w) described by the equatlor{l Zhi’jc =

w = 1}. Thenz # 0, w = 1/z, and (multiplying byz”) we have to compute the
solutions of
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hz + k',
nvk) T
that is, the roots of the polynomi#(z) = (hz + k)" % — (h + k)" t¥z".

We must show thaP has exactly: + k — 1 distinct roots. Its first and second
derivatives are

P'(z) = h(h + k)[(hz + k)" 71 — (h 4 k)10 Y,
P"(2) = h(h 4+ k)[h(h + k —D(hz + k)"* 2 — (h — ) (h + k)" 102
But P(z) = P'(z) = 0 implies
(hz + k)(h + k)T = (4 p)hthh,

and since 0 is not a root gf we havehz + k = (h + k)z; thatis,z = 1.
SinceP(1) = P'(1) = 0butP”(1) # 0, we conclude thag = 1is a double root
of P and that all the others are simple roots. O

From the proof of Proposition 2.2 we may also derive the following.

REMARK 2.3. The ramification divisor is cut (onS, ) by the hypersurface
z¥ = w”. The preimage of the branch locsis 2R + C, whereC is the union
of the curves cut by the hypersurfacgs = aw” for o # 1 a root of P(t) =
(ht + k)'F — (b + k) et

Now we introduce the complete class of covers that we need for our classification
theorem.
Consider the pullback of;, , under the base change given by the map

fapi C* > C% fup(x,y) = (x y").
We obtain the surfacsy, ., of equations

{ hz* + kw" = (h + k)x°,

2.4
— (2.4)

and the ma@F, x.a,p: Sh kap — C? given by the two coordinates:, y).
Now we can introduce the main result of this section.

THEOREM 2.5. The maps, « .., are generic covers of degrée+ k, branched
Overxa(h+k) — ybhk.

Conversely, up to exchangingandy, every generic cover : S — C? of de-
greed > 3 branched ovefx” = y™} with (n, m) = 1is equivalent to one of the
previous maps.

The first part of the statement is the following lemma.

LEmMMA 2.6. The mapsFj .., are normal generic covers of degrée+ k,
branched over the curve/"+5 = ybhk,
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Proof. The statement follows from Proposition 2.2 using the base change map
fa,»- The normality ofS), , implies the normality ofS;, « ., by [MP, Thm. 2.2].

O
In order to prove the second part of Theorem 2.5, we use the well-known fact
(already mentioned in Section 1; see [GrRe]) that the pair (branch &irveo-
nodromy homomorphism) determines the cover. We will now introduce precisely
the monodromy homomorphisms and the monodromy graphs that represent them,
in terms of which we gave (in [MP]) a classification theorem for generic covers
branched over irreducible curves of type’ = y™}, a result that we briefly re-
call here.

Let (S, m) be a normal generic cover of degree deg: d. Every elementin the
fundamental group1(C?\ B) of the set of regular values afinduces a permuta-
tion of thed = degrm points of the fiber over the base point and thus a homomor-
phismg: m1(C?\ B) — Sy, called themonodromyof the cover. The “generic”
condition means that, for each geometric loop (i.e., a simple loop around a smooth
point of the curve), its monodromy is a transposition. The homomorphisms with
this property are calledenericmonodromies.

So, in order to classify generic covers S — C? of degree/ with S a normal
surface branched over some cu®gone needs to classify generic monodromies
¢: m1(C?\ B) — S,;. We have done so (in [MP], for curves of type {x" =
y™}), representing the monodromy of a normal generic cover of detjoeznched
on the curvgx" = y™} by a labeled graph, called amonodromy graphWe will
denote by Gy , the set of all (isomorphism classes) of graphs withertices and
n labeled edges.

Note that the monodromies of equivalent generic covers differ by an inner auto-
morphism ofS,;, so we will say that two monodromigs, ¢,: 71(C?\ B) — S,
areequivalentf there exists & € S; such that

o1(y) = opa(y)o "
for all y € m1(C?\ B).
The representation is done as follows. ketr(C?\ B) — S, be a generic
monodromy; ifyy, ..., y, is a set of geometric loops that generates

m(C\B)Nn{y=1

(in particular, they generate;(C? \ B); see e.g. [MP; O] for a more detailed de-
scription of this fundamental group), then we writevertices labeledd, ..., d}.
Now S, acts naturally on the set of our vertices, and then, for alfl, ..., n},
we draw the edge labeledetween the two points exchangeddayy;). Finally,
we must delete the labeling of the vertices (this corresponds to considgetipg
to the equivalence relation introduced previously). Observe that the monodromy
graph does not carry all the information needed to reconstruct the doversn
edges, but we have lost.

For a fixedrl" € Gr,, ,, we say thain is compatiblewith I' if I defines a normal
generic cover branched ovet = y™. Then, a pai(T" € Gr, ,, m), wherem is
compatible withl", determines the cover.
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Finally, note that this construction is not symmetric in the two variables
Hence, simply exchanging andr yields a natural involution that sends compat-
ible pairs(T" € Gry,,, m) to compatible pairgI"’ € Gry ,,, n); we call this opera-
tion “duality”.

We need a last definition, as follows.

DErFINITION 2.7. A polygon withd vertices, valence, and incremenj, where
j andd are relatively prime, is a graph with= ad andd vertices such that, for
all s, ¢, the edges labeledandr have:

two vertices in common if and only if — ¢t = Ad,;

one vertex in common ifand only if— ¢t = Ad + jors —t = Ad — j;

no vertices in common otherwise.

This complicated definition is probably better explained by the example shown in
Figure 1.

6
1

Figure 1 A polygon with 5 vertices, valence 3, and increment 2

Now we are able to introduce the main result of [MP].

THEOREM 2.8. The monodromy graphs for generic coverss — C?2 of degree
d > 3 branched over the curviex” = y™}, with (n, m) = 1, are the following.

(1) “Polygons” with d vertices, valence/d (resp.,m/d), and incremeny, where
(j,d)=1 j<d/2,andj(d — j)|m (resp.,j(d — j)|n). Moreover,d must
dividen (resp.,m).

(2) “Double stars” of type(j, d — j) and valence/j(d — j) (resp.,n/j(d — j)),
where(j,d) =1, j <d/2,andj(d — j)|n (resp.,j(d — j)|m). Moreover,
d must dividen (resp.,n).

Duality takes graphs of typg) to graphs of typ&2), and vice versa.

We skip here the definition of the double stars (cf. [MP]) that we do not need.

Briefly, in Theorem 2.8 we have shown that generic covers branched over an
irreducible curve of typgx" = y™} are classified by pairs (polygon in &y,
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m multiple of j(d — j)), up to exchanging andy. Recall that such pairs describe
generic covers also when the hypothdgism) = 1 fails, but in this case we have
examples of covers that cannot be described in this way (with monodromy graphs
of different type). Given Theorem 2.8, proving the balance of Theorem 2.5 re-
quires only the following.

ProposITION 2.9. The normal generic cover branched ovet = y»” associ-
ated to the polygon withedges, incremet and valence is the covet), ,_j 4 5.

Proof. We have to compute the monodromy graphs of the coFgis, . Let us
start by considering the case= b = 1, that is, the covers, . Recall thatF}, ;
is a normal generic cover branched oBet {x" = y™”}withn = h+k andm =
hk. Notice that the assumptiait, k) = 1 implies(n, m) = 1

By Theorem 2.8, the monodromy graphis, up to exchanging andy, a poly-
gon. In fact, we do not need to exchangeand y; otherwise, we would have
d|m while degFj , = n and(n, m) = 1. Hencel' must be a polygon of valence 1
(d = n) and some incremet. Setk’ =n — h'.

By [MP, Cor. 4.2], the smoothness 8f ; forcesm = h’k’ (the minimal com-
patible integer fol"). But nowh’ + k' = h + k andh’k’ = hk, so{h’,k'} =
{h, k).

Summing up, we have proved that the monodromy graph;,gfis a polygon
with valence 1 and incremeht(or k). Of course, the correspondingis 21k. We
now remark that, for alt, b, F; 1 ., can be obtained by fiber product frof) x
andthe mayf, ,: C2 — C2defined byf, ,(x, y) = (x¢, y?). As shownin [MP],
this fiber product acts on the “building data” of the cover, multiplying the valence
by a and the compatible: by 5. The corresponding monodromy graph is thus a
polygon withd = h + k vertices, valence, and incremenk (or k). Conversely,
the cover associated to a pair (“polygon witledges, valence, and increment
h”, m) is Fh,nfh,a,m/h(nfh), as stated. O

This concludes the proof of Theorem 2.5.
One immediately obtains the following corollary, whose first statement com-
pletes Corollary 4.2 in [MP].

CoroLLARY 2.10. The coverF, ., is smooth ifand only it = b = 1orh =
b = 1. The cover and the ramification divisor are both smooth if and only=i
a=b=1

Proof. The first statement follows from equations (2.4), whence the second can
be easily checked in local coordinates as in Remark 2.3. O

In the next section we will use the following consequence.

CoroLLARY 2.11. Letn andm be coprime integers. Then there exists a nonsin-
gular normal generic coverr: S — C? branched over” = y™ for which the
ramification divisor is nonsingular if and only {fi) |m —n| = 1or (ii) d = 2and
n=1
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In the first case, the cover is unique of degike- max(m, n) and its mono-
dromy graph is the polygon withedges, incremert and valencé. In the second
case, the cover is given by the projection on they)-plane of the surface? =
x —y™.

Proof. Ford > 3, by previous corollary, we have only the covers having as mo-
nodromy graph the polygon wii edges, increment 1, and valence 1. et 2,

the result is given immediately by the remark that, for every c@ifite, y) = 0},
there is exactly one double cover given by projection on(they)-plane of the
surfacez? = f. O

We conclude this section with a direct computation of the monodromy graph as-
sociated tar = Fj « 4,5, although we don’t need it in the rest of the paper; the
uninterested reader can skip directly to the next section. We refer to [MP] for
notation.

In order to see how the minimal standard generators act on the preimage of
(1-¢,1), we examine the inverse image of the pétl$, 1) for 0 < » < 1lin the
(x, y)-plane, whergg*+* = 1. Sincezw = 1, we can substitute faw in the first
equation (2.1) to obtain

hz"™% — (h 4+ k)z"»B +k = 0. (2.12)

We claim that, if\ # 0, 1, thenz”** is real if and only ifh + k is odd andt =
sp~twith s negative. Indeed, if"** is real, theny = s~ for some reak ands
is a zero of the real polynomial function

f(s) = hs"™* — (h + k)as" + k.

Sincef'(s) = h(h + k)s"Y(s* — 1), f will haves = 0 as a critical point ifz >
1 and either one other critical point= /% if k is odd or two other critical points
s = + /X if k is even.

If s* = A then f(s) = k(1— As"), which is strictly positive because eithex
Oor0< A ands < 1 Thus f has only strictly positive critical values and hence
has at most one zesg; if f does have a zero, thént k isodd andy < 0. If A =
1, the same argument shows théat* is real if and only ifs = 1 or + k is odd
ands < 0. Note that, sinc&h, k) = (h, h + k) = (k, h + k) = 1, the equations
¥ = gandz¥ = g1 for B # 1 andg"+* = 1 have a uniqgue common solution:
z = B*, wheresk = —sh = 1 modh + k.

Now, if zg is a root of (2.12) withg = 1 thenz = zo/B8° is also a root of (2.12),
SO we may restrict to the cage= 1. Observe that if. = 0 thenz"t% = —k/h,
whereas if. = 8 = 1then (2.12) has = 1 as a double root, a real negative root
if h 4+ k is odd, and no other real roots.

Set

Bo=(h+ k)" expf—iZ ] and «o = exp{iZ}.

Then each component wrhj,}(x, 1) will start from one of the pointgg 8o (each
component from a different point) for = 0, ..., 42 + k — 1. Call ¢, the com-
ponent othf,}()», 1) that starts fromuxgy*Bo. Thenc; is contained in the region
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- < (h+k)argz) <0, ¢, is contained in the region & (h + k) arg(z) <
7, and they both have = 1 as ending point. Alsa;, 13-, = ¢, for3 <r <
(h 4+ k + 3)/2 are complex conjugated paths af)dmust be contained in one
of the two regiong2r — 47 < (h +k)argz) < (2r — )7 or 2r — ) <
(h+k)ary(z) < (2r—4)r (see Figure 2). Note thatif+-k is odd therey,4-1)/21+2

is contained in the negative real half-line.

30 \
& aoﬂ/(-)/ ~

Figure 2 Configuration of the pathEhj,%(A, lincaseh +k =5

Number the pointsy, ..., 544 IN Fhf,f(l— ¢, 1) by the pathe, to which they be-
long. Itis clear that; andz; are neat = 1 and that the action of; exchanges;
andz,. In order to see which is the action pf, 1, follow the motion of the points
over the pati{(1— &)(1— 1), 1) and the pattit(1— ), 1) for 0 < r < 1. Recall
that the paths ovelr(1 — ¢)a{, 1) are obtained from the patles by multiplying
by ozgsh = «ap; thus, the action of1,, exchanges, andzs.

By the same argument, the actiomaf,.,;, will exchangez, ;1 andz, . », where
indices are taken to be cyclical (méd+ k); that is, the monodromy graph as-
sociated taF, ; is the polygon withh + k edges, incremerit, and valence 1 (cf.
Definition 2.7).

3. Chisini's Conjecture

In this section we will obtain results similar to those in [Ku] and [Ne] for curves
with singularities of typec” = y™.

Let B c P? be an irreducible curve with singularities of type” = y™} only.
Throughout this section, for every such curve we write

SingB) = {p1, ..., pr},
where locally (neap;) B is equivalent toc*"i = y%™i foralli =1,...,r and
with (n;,m;) =1, we setn; < m; (UnleSS/li =m; =1).

ProrosiTioN 3.1. SupposeB is the branch curve of a smooth projective generic
cover(cf. Definition 1.3 7 : S — P2, and letR be the ramification locus of.
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Then, when restricted to the preimage of a small neighborhog#, of is given
bydegr —n;s; connected componerts, ..., U, and Vi, ..., Viegr—(n+1s SUCh
that (i) when restricted to one of thg;, = gives a generic cover of degreg+ 1
branched over one of the local irreducible components d& (different compo-
nents for different), and (ii) when restricted to eachy, = is an isomorphism.
Moreover, ifn; > 2thenm; = n; +1and, locally,x restricted toU; is equivalent
to the coverFy ,, 11 foreachj =1,...,s;.

Proof. Because we assumatito be nonsingular, it is locally irreducible; thus,

for eachp € R there exists a neighborhodd > p such thatt(R N U) is irre-
ducible and hence|y is a smooth normal generic cover branched over an irre-
ducible curve. Since the image of an irreducible curve is still an irreducible curve,
the cover splits locally as disjoint union of covers, each branched over one of the
(local) irreducible components &.

In order to prove the first part of the statement, we still must compute the de-
grees of the cover restricted to the “relevant” components, which may be done
directly via Corollary 2.11. In case, > 2, the assumptions of smoothness of the
surface and of the ramification divis& mean that Corollary 2.11 forces; =
n; +1 = the (local) degree of the cover. The local equation for these covers comes
from Proposition 2.9. O

REMARK 3.2. By the degrees computed in the previous proposition, we have
degr > maxs;(n; + 1)}.

We now introduce some notation. Let S — P2 be a smooth projective generic
cover, B the branch curveB* the dual curve ta, R the ramification locus, and

C = 7*(B) — 2R. We setE = n*(Op2(D) (so thatKkg = —3E + R), N =
degr, d ;= (degB)/2, § .= degB* andg := g(B) = g(B*) = g(R). With a
standard abuse of notation, we will not distinguish a divisor from the associated
line bundle.

In order to prove the main theorem of this section, we follow now the arguments
of Kulikov in our more general case. Although some of the proof of Kulikov works
without correction, we have decided (for the convenience of the reader) to repeat
also those proofs, with the exception of Proposition 3.8. We start with some nu-
merical relations.

LeEMMA 3.3.
(1) deN;
(2) E? = N;
() (E, R) = 2d;
(4) §=4d + 2g —2— Z;:l S,‘(I’li — 1)
Proof. By the Hurwitz formula we have
2—2g(E)=2N — degB.
Thus degp is even and so (1) is proved; (2) and (3) are trivial.
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Using a generic projection onto a line yields

e(B) = 2de(PY) — 6 — Y "(s;in; — D).
Thus =

2-2g=e(R)=e(B)+ > (s —D=4d -5 si(n; =1,
i=1 i=1

sinceR is the normalization o and is obtained by separating locally the irre-
ducible components a8. This completes the proof. O

LEMMA 3.4.
R>=3d+g—-1

Proof. By genus formula,
2¢ —2=(Ks+ R,R) = (—3E + 2R, R) = —6d + 2R?. O
Since$ > 0, by Lemma 3.4 and Lemma 3.3(4) we have the following.

COROLLARY 3.5.
D sin—1) <2g—2+4d <2R*=23d +g - D).
i=1
By Hodge’s index theorerE 2 is positive by definition), we have
E2 (E,R)
(E,R) R?
This yields the following corollary.

=N@d+g—1—4d*><0.

COROLLARY 3.6.
442

N<——.
“3d+g-1
We can now compute the invariants$fs follows.

LEMMA 3.7.
KZ=9N —-9d+g—1,

e(S)=3N+6—4d =3N+2g—-2- ) si(n; = 1),
i=1
3¢—3-9d - ;si(ni =1
12 '

Proof. SinceKs = —3E + R, we havek? = 9N — 124 + R?. Using a generic
pencil of lines inP? and its preimage i, we obtain

x(Os) = N +
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e(S) =2e(E)— N + 6,
e(E)=—(Ks+ E,E)=2N — 2d.
From Noether’s formula it follows that

12¢(Os) = Ki+e(S) =12N +3g —3-9d — Y "si(n; — 1)
i=1
and we are done. O

Note that) "!_, s;(n; — 1) must be divisible by 3.

Assume that there exist two nonequivalent smooth projective generic covers
(81, m1) and (S, ) with the same branch curvB. Write N; = degr; and
nf(B) = 2R; + C; fori = 1, 2. Let X be the normalization of the fiber product
S1 xp2 Sp. Denote byg;: X — §; andnyz: X — IP? the corresponding natural
morphisms, as summarized in the following diagram:

Xi>sl

X
82 1
Sy —2>p2,
We have deg; = N, and deg,; = Ny, so that degry » = N1N».
The following result is proved in [Ku, Sec. 2, Prop. 2]. Although Kulikov as-

sumes at the very beginning thathas only nodes and cusps as singularities, the
proof does not require this hypothesis.

ProrosiTioN 3.8. If (S1, 1) and (S, w2) are not equivalent, theX is irre-
ducible.

LetY be the set of pointg € X such that (ajr1,2(p) C SingB and (b)r;, andrns,
restricted (respectively) to neighborhoodgefp) andg.( p),are normal generic
covers with different branch loci.

LeEmma 3.9. SingX C Y.

Proof. If g1(p) ¢ R1 0or g2(p) ¢ Ro, thenp is clearly smooth.

At a point p such thatp; = g1(p) € Ry andp, = g2(p) € Rz, we can choose
small neighborhood¥;(p;) C S; andU(my,2(p)) C P2 such thatz;(V;) = U
and bothr4|y, andm;|y, are equivalent (up to possibly different base changes) to
one of the following:

(i) if n; =1 ormy 2(p) is a smooth point oB,
Sfau: C2 — C? defined by (x, y) — (x2, y):
(ii) if n; > 2, the projection on théx, y)-plane of the surface i 4,

{ nw +z"% = (n; +1x,
w = y.
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Suppose that the branch loci®f|y, andx;|y, are the same. We then have, in the
first case, tha¥; xy V-, has equations if© 4,

x2=x2,
{ y1=DY2,

and the normalization oV, x; V5 is the disjoint union of two smooth surfaces
(x1=x2, y1= yzandx; = —xp, y1 = y2) inC*%

In the second cas®, = V; x Vs is the surface irC8,

nwi+zy" = njwa + 25 = (n; + Dx,
{ W1 = 22w2 = Y,

which has two irreducible components: namely,
w1 = w2,
1= 22,
nawy+zy = (n; + D,
Qw1 =Yy,
which is isomorphic td/; via g;; and

‘7+ ==

-2 ni—

nwi=z2(z5  +zy ‘zat-o-+z2z) T4z ),

Vo =1 nmwi+zy =mwy+ 25 = (n; + D,
QW1 = 22W2 =Y,
which is expressed by, (resp.,g2) as a normal generic cover of degr¥e — 1
(resp.,N1 — 1) branched ove€; (resp.,C»).
Both V, andV_ are smooth and intersect #7*(R;) N g, (R2). The normal-
ization will be the disjoint union of these two smooth components. O

Now suppose € Y and letV; (resp.,V2) be the neighborhood ¢fi(p) (resp.,
g2(p)) as in the definition of’; the branch loci ofr1|y, andn|y, are different.

ProrosiTioN 3.10. X has only rational double points as singularities.
More precisely, for every poir® €Y, if p; = w1 2(P), thenP is a point ofX
of typeA,,,_1, and these are all the singular points &t

For instance, il;; = m; = 1 (the case of nodes), we gép—that is, a smooth
point.

Proof. By Lemma 3.9711 2(P) = p; for somei.
If n; = 1, we can assume the two branch loci to{lbe= 0} and{x + y™ = 0},
which yields
{ x =22,

3 =x+ym;

that is,z3 = z7 + y™i, which is clearly a singularity of typd,,, 1 (if m; = 1
implies X is smooth atP). On the other hand, if; # 1thenm; = n; + 1 and
Vi xy Vo is the surface ilC?,
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mj

{ z1" —mixza = —(m; — Dy,
7y —mijaxzy = —(m; — Dy,

with ™ = 1 buta™ # 1, which is isomorphic to the surface @,

m;

29 —mMixz1= ZZ“ — m;axzo,

which has a double point at the origin.
The Hessian matrixm; > 3) at the origin is
0 —-m; —m;a

—m; 0 0

—m;o 0 0
and has rank 2, hencééhas inp a singularity of typeA, for somek > 2. In order
to computek, setz := m;(z1 — az»). Then, in the coordinate systefn, z, z1),
our equation can be written a§' = z(x + f(z, z1)), with f(0, 0) = O; setting
thenx = x + f, we find that near the origin the tripl&, z, z1) is still a coordinate

system in terms of whiclv; x; V, has equation;” = xz, that is, the standard
expression for the singularity,,, _1. O

Note that, if P is singular forX, theng;’ YR N 85 YR N (Vi xyVa) =

In general, ifD; and D, are two divisors in a normal surface, then we de-
fine (D1, D7) (“the greatest common divisor”) as the greatest divisor contained
in both. By the local equations for the ramification divisor given in Remark 2.3,
we notice that the “singular” points in Proposition 3.10 are isolated points for
81 (R1) N g7"(R2).

REMARK 3.11. IR = (g7 (R1), g5 (R2)), thenR does not intersect Sing and,
by the local considerations in the proof of Lemma R% smooth ang;|z: R —
R; is a (unramified) double cover.

Let F: X — X be the resolution of singularities of, and letg; = g; o F and
f12 = w20 F. We defineR := F*(R), C1 := F*((g7*(R1), g,-(C2))), and
Ca = F*((81'(C1), 85 (R2))).

ProrosiTION 3.12.

1) (ﬁ, Cp) =Y i_ysi(n — 1

(2) 132 =2Bd+g—-1 —>i_ysi(n; —D;

(3) Cf=(NV2—2)Bd+g -1 — 3 _ysi(n =1
4) C2 (NM—2)Bd+g—D — ) _ysi(n; —1).

Proof. By Remark 3.11R does not intersect the singular pomtstf hence we
can compute the intersections@f andR in X. By definition,C; andR intersect
only at points of the preimage @&, N C,, in particular over some singular point
of B.

But we have already noticed that the only poipt€ R such thatry 2(p) €
SingB are those points such that neargi(p) andr, neargz(p) are branched
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over the same curve, as considered in the proof of Lemma 3.9p leeiX be
such a point. Because »(p) is a singular point oB, there exists an such that
71,2(p) = pi.
If n; = 1thenz, andr; are locally double covers, €8 does not contaip and
p does not contribute to the intersection number. Otherwisé&/;létesp.,V,) be
a small neighborhood gf;1(p) (resp.,g2(p)) as in Lemma 3.9. Then, singg| z
(and alsogz|g) is an unramified double cover, there are exactly two points over
p: contained both ik and in the normalization of the fiber productWfandVs,
say P;, andP;_. These two points belong to the two componeritsandV_, re-
spectively (see the proof of Lemma 3.9), but sikdGedoes not intersedt, , we
may suppose thai = P,_ e V_.
Rewriting the equations fov_ yields
_z2(2) = 2y)
ST T
wo = wy 4+ L2
n
nwi+ 29"
n; + 1

’

y = Z1ws.

We remark that all the members of these equations are polynomials, and we can
takezy, z2 as holomorphic coordinates fot .
Now, R N V_is cut byw; = z;" andw, = z3'; that s,

Zn,' Zil,'
1~ %2 n;
L = N7y,
21— 22
Zn, _ Zni
2 — g 4zt 2 nizy.
i1— 22

This implieszy’ = z5'; that is,z; = Azp with A% = 1. Butif A # 1 then the
left members in our equations vanish and we obtaia- z, = 0 (which is not a
curve). From this it follows that; = z, clearly solves our equations, so it is the
local equation we were looking for.

A branch of F(C,) N V_ is given (cf. Remark 2.3) by the equationg; = z;"

. ; 1 ;
andw; = zj', wherea = (’;ﬁ)n " for « # 1; that is,

n;

n;
21 X2 i p

L= = —z,
71— 22 (o4
7' =z
. . 1 - ,2 .
7 — 2y + = =nzy.
21— 22

This yields
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n a(mi+1) (ni +a>"" .
1 = iy = 2

1

n; +a n; +1
so thatzy = A5 0z5 with A =1
Moreover, if we set = ',’11‘; (so thatrit! = (n; + 1)t — n;), thenx must
satisfy (by the first equation)
A" )2 1= ”7
Hence "
th—1= )" —1= (At — 1)7‘
or
lni+1 = (An; + Dt —n;;
that is,

(ni + Dt = (An; + 1.
Thusi = 1, and F(Cz) N V_ is the union of they; — 1 curveszy = "0z,
Therefore, every componentfif intersectsk transversally, and we conclude that
(R, Cj) =Y i_ysi(n; — 1.
Let Ez = F*nf,(Op2(1)) = F*g/(E;). Itis immediate to verify that

E)g( = N1N>,
(Eg. R) = 4d,
(Eg, C1) = 2d(N1— 2),
(Ez, C2) = 2d(N; — 2).
Since the canonical divisor of is F*Ky (X has only rational double points as
singularities), we have
K; = —3Eg+§+61+62
and o 3
(Kgy+R,R)=e(R)=4g— 4
hence .
R*=6d+2g—2- si(n; —1).
i=1
BecauseF *¢%(R1) = R + Cy, we have
NyR? = (R+ C1, R + Cy),
from which we obtain

i=1

=(N;=2)Bd+g—1D =Y si(n; — 1. O
i=1
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We can now finally prove the next theorem.

THeoreM 3.13. Let B be the branch locus of a smooth projective generic cover
7. S — P2havingr singular points of type”i* = y™is withn; < m;, (n;, m;) =
1 Then, if
4B3d+g -1
2(3d +g-— l) — Z;zlsi(ni — l) ’

where2d = degB andg = g(B) is its genus, them is unique.

degr >

In Section 1 we wrote the statement using a different notation that we found better
there.

Proof. By Corollary 3.5,R2 > 0, so by the Hodge index theorem we have
I’éz (élv I’é) 2 a
CoR) 2 |~ 2Nem2@d+g-1°~NaBd-+g-1) ;»m-n <0
the same equation holds if we repla(éﬁby C, andN, by N;. Consequently, we

obtain
4B8d +g-1

N < r
2@d+g—-1 - Zi:l si(n; = 1)
forj =12 O

Following an idea of Nemirovski [Ne], we may prove the following.

THEOREM 3.14. In the hypothesis of Theorem 3.13,dégr > 12 thenx is
unique.

Proof. If S is not an irrational ruled surface of genus greater than or equal to 2,
then it satisfies the Bogomolov—Miyaoka—Yau inequality

KZ < 3e(S).
By Lemma 3.7,
KZ=9N —9d+g—1,
E(S) =3N + Zg —-2- Zsi(ni — 1),
i=1
hence

: 5
D silni—1) <3d + 5(g D).
i=1

With this inequality, we can estimate the quantity
43d +g -1 <12d+4(g—1)=4 8(g—1
2Bd+g -1 — Y i_ysi(ni—1) ~ 3d+ (g -1 9 +g-1
If S is an irrational ruled surface then it satisfies
KZ < 2e(S);

<12
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the same argument as before can now be used to show that

: —3N+9d+3(g-1 3
S sin -1 = 2+ (6-1 _ ~@d+g -1,
i=1

Thus we derive the stronger estimate
43d+g—-1
23d +g =1 = Y _ysi(ni =1

As a last remark, note that one can rewrite (with the obvious changes) all the re-
sults in [Ku, Thms. 3-12].

< 8. O

4. A Family and a Counterexample

In this section we will describe an interesting family of projective generic covers
branched over a curvB with singularities of typer” = y” that will produce a
counterexample to Chisini’s conjecture if we drop the hypothesis that the ramifi-
cation divisor is smooth.

Let B c P2 be a plane curve of equati@ix, w) = f(y, w), whereg and f
are homogeneous polynomials of degie®f the form

r

gx,w) =[x — esw)™,

i=1
foow) =] - Bw™:
j=1

hereas, ..., o, andgy, ..., B, are mutually distinct. In a neighborhodd ; of the
point P; ; = (a;, B;, 1), the curveB is analytically equivalent ta” = y™.

Our (open) assumption is that the singular point8 afe contained in the union
of linesg(x, w) = 0 or (if you prefer) in the set of th&;;. By a classical result
(see [De; F1)), ifB is a nodal curve theny(IP? \ B) is abelian; sinces,; has no
center ifd > 3, it follows that, if 1(P2 \ B) is abelian, then there is no projective
generic cover of degre# > 3 whose branch locus iB. Thus we will suppose
that not alln; < 2 and not alln; < 2.

Note thatp = (0, 1, 0) does not belong tB; therefore, in computing:(P2\ B),
we can use the projection from onto thex-axis. More preciselyB intersects
transversally the line at infinitw = 0 in thed smooth pointg1, £, 0) with £¢ =
1; then the line at infinity is not tangent ®. This allows us to compute the fun-
damental group of the complement Bfoy computing the fundamental group of
the complement of the affine curdin the chartw # 0, as we will do in Propo-
sition 4.6.

Setg(x) = g(x, 1) and f(y) = f(y,1), sothatB = {g(x) = f(y)}. In order
to compute the fundamental group of the complemenBpfve can (by a de-
formation argument as in [O]) make the following assumptions without loss of
generality:
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(1) «;, BjeRforalli, j;

2 ar<az<---<a,andfy < B2 < -+ < By

(3) if y1, ..., ys_1are the roots of’ such thatf(y;) # 0, then the critical values
for f, f1= f(y1), ..., fy—1= f(ys_1) are mutually distinct;

(4) for a suitablesg > 0, |g(x)| < min;| f;| for all x € (ay — g0, ., + £9).

Let us point out (in order to justify assumption (3)) that the rootg oére those

B; for whichm; > 2 (with multiplicity m; — 1) and those roots of a polynomial of

degrees — 1 that has, by assumption (1);- 1 distinct real root, ..., y,_1 such

thatB; < vi < Bi+1.

The critical points of the projection from onto thex-axis are given by the in-
tersection ofB with the union of horizontal line§f’(y) = 0}. Then the critical
values are (some of) the (corresponding to point®; ;) and thed(s — 1) dis-
tinct pointss; , forh =1,....,dandj =1, ..., s —1 whereg(s; ») = f; (smooth
points with vertical tangent). By assumption (4), is contained in the inter-
val [as, a,].

Chooses > 0 small enough so that, for all (resp., for alli) and for every
such that O< |t — B;| < e (resp., O< |t — ;| < &), we have thatf (¢) (resp.,
g Y1) is given bym; (resp. ;) distinct points. We denote by 1, ..., bj.m; (resp.,
aii, ..., a;n) the points inf ~X(¢) (resp.,g(¢)) ordered by their argument.

We fix now a free basis fall = w1({y = 0} \ {@;, 8; «}, a1,1) in terms of which
we will describe the braid monodromy of the projection. Cetzo) C C be the
circle of centerzg and radiuss. We define byc; the closed path supported on
the connected component gf'(C,(0)) neara;, with starting point the unique
real point bigger thar; and with counterclockwise orientation; we defineddy
the “subpath” contained in the positive half-plane (imaginary part greater than
0) and byc; the “subpath” in the negative half-plane. lgti = 1,...,r — 1
be the (positively oriented) path contained in the real line conneetingk and
¢i+1 N R but not containing any of the; (see Figure 3). Lek be the small
path supported oy connectingz; 1 with the base point of; (in the clockwise
direction).

Figure3 ni=n,=4,n,=1n3=3

Consider the pathg;, ..., p, based ai; ; defined by

_ _ _ _ -1
pi = (0li(c3) ™ Lima(e ) i) ei(wlae}) ™ - Lol ) Him1)

wherep; = wcio™L. These are paths around the(see Figure 4). To complete
the free basis of1, we need some paths around #he.



Chisini’s Conjecture for Curves with Singularities of Typge= y™ 307

A AN

Figure 4

Consider the (real) critical values fgrand f; defined previously. Leb; be a
loop aroundf; that is based at and that is contained in the union of the paths
C:(f;) and the real line constructed by the following algorithm: Follow the real
line in the direction off; until you meet the firsC. (f;); if j # i, follow C.(f;)
clockwise until you meet again the real line, then follow the real line again until a
new C.(f;) is encountered and then repeat the algorithm;=f j, follow coun-
terclockwise the whol€, ( f;) and come back te from the way you arrived (and
end the algorithm). Here are two examples (see Figure 5), where we have defined
C;m andC; in the natural way as we did for the:

w1 =TC.(fOT T =[e, fa— elC(f) M fa+ e, fr—el,
w3 =T'Co(f)T' T = C7(0) e, fo+lC, (f2) U fo—e, f3+el

NN Y Y

w3 w1

Figure 5

For every fixed paif, i, we can uniquely lifw; to a (closed) patlzij;i,h, based at
a;i p, such thagz(Aj;i,h) = f(w)); thisis, in fact, a loop around song;. Fipally
we defineA;.; , € I to be the path based in ; obtained via conjugating;.; ,
with a path connecting; 1 anda; ; that is obtained by following the orientation
of each real interval and the reverse orientation of each circle. The patl
A;.; , Clearly give a free basis fdi.

Now we can compute(C2\ B) (andz1(P?\ B)). We can take, as generators
of 71(C?\ B) (and ofr1(P? \ B)), a geometric basig; ; (for j = 1,...,s and
k=1 ....,mj of ;y({x = a11} \ B) = Fyinsuch away that; 1, ..., ij ., are
(conjugated to) the “standard generatorsiefUy ; \ B) (cf. [MP]), as shown in
Figure 6.

(ﬂ% - mp o Hei - s
. ((111 by i) (a b ((111 bsi) ( b \
123 1,1,01,2 12 TS api, 0s,2 . )
> s/
M1 Hs,1
VA ;
) W,
(a1,1781) (a1,17b1,1) (alyl,ﬂs) (al,lybs,l)

Figure 6
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We recall now the following definition and theorem from [O].

DEFINITION 4.1 [O].

Gon =81 -r 8m | 8781 8)&in(g1---8) T VE=1,...,m),

where the indices in the relators are taken to be cyclical mod

THEOREM 4.2 [O].
7y(C2\ (2" = y"}) = G-

ProrosiTION 4.3. If B = {f(x) = g(y)} then
nl((cz \ B) = Gm,n,

wheren = (ny, ..., n,) andm = (my, ..., my) are the greatest common divisors.

Proof. Every path inIl induces a braid (acting op~*(ay1)) that is itsbraid
monodromywe compute the relations im(C? \ B) by the braid monodromy of
the generators ofI, following the method introduced in [Mo]. In order to ex-
press the braid monodromy of a path, we use the standard generators of the braid
group ond strands given by the positive half-twists (1 <i < d — 1), exchang-
ing theith and the(i 4+ 1)th strands counterclockwise (the reader unfamiliar with
the braid group can find precise definitions and more in, e.g., [Bi]).

In order to compute the braid monodromy of the generators we chode,for
we consider the points; , lying on a line following the lexicographical order in
their indices; that isq; , > ayp ifandonlyifi > i’, orh > k' if i =i’ The
braid monodromy op; is

n en
GG,

WhEeres; = omg4..mj—1° " * Omo+-+m;_1+1 (mo = 0). It gives us the relations

-1
Mjk = T/‘:lnlﬂj,k-%nl]};],nl

for all j, k, whereT;.1; = pjipj2---uj, and the second index of the; ; is
taken to be cyclical (mogk;).

Since (by condition (4)) lifting the path gives the identity braid for ali, it
follows that the braid monodromy @f is similar—that is,

Gl Gh
01 o,

s 0

inducing in1(C2 \ B) (and in1(P?\ B)) the relations
Wik = Tj1n; j ktn; TJ_lln

foralli, j, k. Itis easy to see (cf. [MP, Prof.1]) that these relations are equiva-
lent to

-1
ik = Tpontjien T},

forall j, k, wheren = (ny, ..., n,).
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Figure 7

The monodromy of\ ;.1 1 is retrieved from the braig («w;) and gives the pos-
itive half-twist shown in Figure 7. That s,
T710m0+~~+ij (44)
with
T = (0171o+»--+171_;+1' e 0—m0+---+m[(/~+1)/2])(&j);

this gives the relation

150 = (11 L Dy a/ 2D B4 Dy 2102 LT 4L Dy 0/2)
This relation is best understood in terms of the “minimal standard generators”
(cf. [MP])
Vik = (Mj1--- //«j,k—l)ﬂ;lk(ﬂj,l' DTS
this relation becomes the simpler

Vil = Vj+1 [mjy1/2]4+1-

The braid monodromies of the othar.; , are a conjugate of (4.4) by a multiple
of 6;0;,1 and give the relations

Vik = Yj+Llmj+1/2l+k
forall j, k.
These are cancellation relations because we can expresg gaatterms of
the 111 ; moreover, they yield the relations

ik = K1ktm;

forall j, k. Therefore, ifm := (ma, ..., my), thenthe pathg., = a1, ..., w =
u1m generatery(C? \ B), and between them we have only the relations

Kk = Tl,nﬂk-!—nT]::-,
whereTy ,, = u1-- - u, with cyclical indices mod. O

REMARK 4.5. By Theorem 4.271(U; ; \ B) = Gy m; and uy, ..., w,, are
(conjugated to) the standard generators for this group. In particular, the map
m(Ui; \ B) — 71(C? \ B) induced by the inclusion coincides with the map
(fninmym)« iNtroduced immediately after Remark 2.3.

This implies that, ifB is the branch curve of a normal generic cover with mono-
dromyu: G, — Sa, then the graph representing the local monodromg; gt
is the pullback by( fy,,/x,m;/m) Of the graph representing the global monodrqmy
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PrOPOSITION 4.6.
]P’2 B =~ Gm,n ,
MEND = O i
wheren = (ny, ..., n,) andm = (mq, ..., my).

Proof. To computer;(P? \ B), we use the standard remark that the kernel of the
surjective map )
11(C?\ B) —» my(P?\ B) - 0

is infinite cyclic and is generated by a lodparound the line at infinity. In our
case this loop is

L= (ua1- pam)(21 - U2my) - (Us1* " Hsm,)
or, in terms of the generators,

L= (I’Ll' te Min)ml/m e (Ml' v Mm)mx/m = (Ml' o Mm)d/m- ]

Assume now tha is irreducible, thatis(n, m) = 1. In this case, the monodromy
of the cover lifts to a generic (geometric loops map to transpositions) homomor-
phismu: G, ,, — Sy for which M(TI%”) = 1 By the classification of generic
homomorphisms in Theorem 2.8, the monodromy graph is (exchangingm,
if necessary) a polygon.

We know that in this case there existk, a, b such thats = a(h + k) andm =
bkh with (h, k) = 1. Now we can introduce our family: we define

g(x,w)=(x—w)(x —2w) - (x —lw),

fiyw) =y —w)(y—2w)--(y —lw),

and, givem, k coprime, we consider the generic cover of dedreek branched
over

gk (x, W) = fi(y, w)'

with monodromy graph a polygon with edges, valence 1, and incremént

Here all the singularities have the same fofet* = y+%) and so, by Re-
mark 4.5, all the local monodromy graphs must coincide with the global one. In
order to ensure the existence of the cover we need only check that the monodromy
of (u1--- wapr)"™® is trivial, which was clear at the start because it belongs to the
center of the (local) fundamental group (in fact, the order of the monodromy of
U1 ek IS exactlyhk).

Moreover, by Corollary 2.10, having all the singular poiats= » = 1 means
that the surface we defined is smooth, whence the cover is smooth if and only if
h = 1; in this case one can easily check that the cover is given by the projection
on the plane = 0 from the point(0, 0, 1, 0) of the surface

2 — (k+ Dz fi(x, w) + kgra(y, w) = 0.

We can finally state the counterexample we were looking for, as follows.



Chisini’s Conjecture for Curves with Singularities of Typge= y™ 311

ProrosiTiON 4.7. Let B be the projective plane curve of degi@@given by the
equation B

gs(x, w)° = foly, w)°.
Then there are two generic covers,: S’ — P2 andrn”: S” — P?, where

(1) S’ andS” are smooth

(2) degr’ = 6;

(3) degr” =5;

(4) the ramification divisor ofr’ is smooth

(5) the ramification divisor ofr” has(exactly 30 ordinary cusps as singularities.

Proof. The covert’ (resp.,z”) is the cover of the family we just constructed for

h =landk =5 (resp.s = 2 andk = 3). We check quickly the five properties:

(1) holds for every surface in our family. Properties (2) and (3) follow because the
degree is the number of vertices of the graph (ket k). Finally, (4) and (5) fol-

low directly from Remark 2.3. O

This is a counterexample to Chisini’s conjecture if we drop the assumption that the
ramification divisor is nonsingular. This family does not produce counterexam-
ples in higher degrees; in fact, the pédt 6) is the only one that can be expressed
as sum and product of two coprime integers in two different ways.

Indeed, suppose we hake-k = h'k’ andhk = h'+k’' with (h, k) = (W', k') =
land (sayy < k, h' < k’, andh + k < hk. Fromh' + k' > W'k’ we have that
h=1landk’ = hk — 1 Butnowk(h —1) =h+1=h —1+ 2 and it must be
that(h — 1)|2; henceh = 2 andk = 3, which givesk’ = 5.

In order to find counterexamples to a Chisini—Kulikov—Nemirovski-type result
in arbitrarily large degrees, we must consider a slightly different family, as follows.

ProrosiTiON 4.8. Letr € N withr > 2 and let B be the projective plane curve
given by the equation

(x’ w)2[(2t+1) — w)4f+l.

8441 Farisn (Y,

Then there are two generic covers,: ' — P? andz”: S” — P2, with ', §”
smooth, of degree& + 2 and4t + 1 (respectively, and each a singular ramifi-
cation divisor.

In fact, the case = 1is exactly the case of Proposition 4.7, so the statement still
holds except for the singularities of the ramification divisor.

Proof. The cover of degreerd+1is the cover in our family fok = 2¢, k = 2t +1
The cover of degreerdt+ 2 is simply the cover constructed in the same way as we
did for our family, starting from the monodromy graph given by the polygon with
4t 4 2 vertices, valence and increment 1.

The smoothness comes from Corollary 2.10 by observing that (locally) we have
h = b = 1 The other verifications are exactly as in the previous case and so we
leave them to the reader. O
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