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On theLp Boundedness of
Marcinkiewicz Integrals

Yong Ding, Dashan Fan, & Yibiao Pan

1. Introduction and Results

Let n ≥ 2 and letSn−1 be the unit sphere inRn equipped with the normalized
Lebesgue measuredσ. Let b(·)∈L∞(R+) and let� be a homogeneous function
of degree zero onRn (which is then naturally identified with a function onSn−1)

satisfying�∈L1(S n−1) and ∫
S n−1

�(y) dσ(y) = 0. (1.1)

For a suitable mapping8 : Rn → Rd , we define the Marcinkiewicz integral
operatorµ8,�,b onRd by

µ8,�,b(f )(x) =
(∫ ∞

0
|F8,t(x)|2 dt

t 3

)1/2

, (1.2)

where

F8,t(x) =
∫
|y|≤t

�(y)

|y|n−1
b(|y|)f(x −8(y)) dy. (1.3)

If n = d, 8(y) = (y1, y2, . . . , yn), andb ≡ 1, then we shall simply denote the
operatorµ8,�,b byµ�.

The main purpose of this paper is to study theLp boundedness of the operators
µ8,�,b. The operatorµ� was introduced by Stein [S1]. He proved that if� satis-
fies a Lipα (0< α ≤ 1) condition onSn−1, thenµ� is of type(p, p) for 1< p ≤
2 and of weak type(1,1). Subsequently Benedek, Calderón, and Panzone [BCP]
showed that if� is continuously differentiable onS n−1 thenµ� is of type(p, p)
for 1< p < ∞. In a more recent paper [DFP] we obtained theLp boundedness
of µ� under the substantially weaker assumption that� ∈ H1(S n−1). In fact, it
was proved in [DFP] that the operatorµ1,�,b is bounded onLp(Rn) provided that
� ∈H1(S n−1) andb(·) ∈ L∞(R+). Here1 represents the identity mapping from
Rn to itself andH1(S n−1) denotes the Hardy space on the unit sphere that contains
L log+L(S n−1) as a proper subspace (see Section 3 for its definition).

In this paper we shall establish theLp boundedness ofµ8,�,b for several classes
of mapping8 with rough kernels�,mirroring recent developments in the theory
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of singular integrals. A sample of our results is the following statement concern-
ing polynomial mappings.

Theorem 1. LetP = (P1, . . . , Pd), wherePj is a real-valued polynomial onRn
for 1≤ j ≤ d. Suppose thatb(r)∈L∞(R+) and that�∈H1(S n−1) and satisfies
(1.1). Then, for1< p <∞, there exists a constantCp > 0 such that

‖µP,�,b(f )‖Lp(Rd ) ≤ Cp‖f ‖Lp(Rd ) (1.4)

for everyf ∈ Lp(Rd). The constantCp may depend onn, d, and deg(Pj ) (1 ≤
j ≤ d), but it is independent of the coefficients ofPj .

Similar results forC∞ mappings of finite type and homogeneous mappings will
be described in Section 4. The proof of Theorem 1, to be presented in Sections
2–3, can be easily adapted to treat other classes of mappings. Finally, we include
in Section 5 a brief discussion on the Marcinkiewicz integral operators related to
area integrals and the Littlewood–Paleyg∗λ functions.

2. Main Lemma

For a family of measuresτ = {τk,t | k ∈N, t ∈R} onRd , we define the operators
1τ andτ ∗k by

1τ(f )(x) =
∞∑
k=1

(∫
R
|(τk,t ∗ f )(x)|2 dt

)1/2

(2.1)

and
τ ∗k(f )(x) = sup

t∈R
(|τk,t | ∗ |f |)(x) (2.2)

for k ∈N.
Lemma 2.1. Letm ∈ N andL : Rd → Rm be a linear transformation. Suppose
that there are constantsC0, Cp (1< p <∞), α, β > 0, andγ 6= 0 such that the
following hold fork ∈N, t ∈R, ξ ∈Rd , andp ∈ (1,∞):

‖τk,t‖ ≤ C02−k; (2.3)

|τ̂k,t(ξ)| ≤ C02−k min{(2(t−k)γ |Lξ|)α, (2(t−k)γ |Lξ|)−β}; (2.4)

‖τ ∗k(f )‖Lp(Rd ) ≤ Cp2−k‖f ‖Lp(Rd ). (2.5)

Then, for1< p <∞, there exists a constantAp > 0 such that

‖1τ(f )‖Lp(Rd ) ≤ Ap‖f ‖Lp(Rd ) (2.6)

for all f ∈ Lp(Rd). The constantAp may depend onC0, Cp, α, β, γ, n, d, and
m, but it is independent of the linear transformationL.

Proof. Clearly we may assume that|γ |α, |γ |β < 1. We shall begin with the spe-
cial case in whichm ≤ d andLξ = πdm(ξ) = (ξ1, . . . , ξm) for ξ = (ξ1, . . . , ξd) ∈
Rd . Choose aC∞ functionψ : R→ [0,1] such that supp(ψ) ⊂ [1/4,4] and
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0

ψ(r)

r
dr = 2.

Define the Schwartz functions9,9t : Rm→ C by

9̂(ξ1, . . . , ξm) = ψ(ξ2
1 + · · · + ξ2

m)

and9t(z) = t−m9(z/t) for t > 0 andz ∈Rm. If we let δd−m represent the Dirac
delta onRd−m, then

f(x) =
∫ ∞

0
(9t ⊗δd−m)∗f(x) dt

t
= (γ ln 2)

∫
R
(92γs ⊗δd−m)∗f(x) ds. (2.7)

Define theg-functiong(f ) by

g(f )(x) =
(∫

R
|(92γs ⊗ δd−m) ∗ f(x)|2 ds

)1/2

. (2.8)

A fact that will be used a little later is theLp boundedness of the operatorf →
g(f ), which follows from ∫

Rm
9t(z) dz = ψ(0) = 0

and the Littlewood–Paley theory. By (2.7) and the Minkowski inequality,

1τ(f )(x) = (|γ | ln 2)
∞∑
k=1

(∫
R

∣∣∣∣∫
R
(92γ (s+t) ⊗ δd−m) ∗ τk,t ∗ f(x) ds

∣∣∣∣2 dt)1/2

≤ (|γ | ln 2)
∞∑
k=1

∫
R

(∫
R
|(92γ (s+t) ⊗ δd−m) ∗ τk,t ∗ f(x)|2 dt

)1/2

ds

= (|γ | ln 2)
∫
R
Hs(f )(x) ds, (2.9)

where

Hs(f )(x) =
∞∑
k=1

(∫
R
|(92γ (s+t) ⊗ δd−m) ∗ τk,t ∗ f(x)|2 dt

)1/2

:=
∞∑
k=1

Hs,k(f )(x). (2.10)

Thus theLp boundedness of1τ would follow if we can prove that, for1< p <∞,
‖Hs(f )‖Lp(Rd ) ≤ Cp2−θ(p)|s|‖f ‖Lp(Rd ) (2.11)

holds for someCp, θ(p) > 0.
We shall first verify (2.11) forp = 2, which can be done by a simple applica-

tion of Plancherel’s theorem. We shall consider the caseγ > 0 only, because the
caseγ < 0 can be dealt with in similar fashion. By (2.10),

‖Hs,k(f )‖2L2(Rd ) =
∫
R

∫
Rd
|f̂ (ξ)|2|ψ(|2γ (s+t)ξ ′|2)τ̂k,t(ξ)|2 dξ dt,
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whereξ = (ξ1, . . . , ξd) andξ ′ = (ξ1, . . . , ξm). Whens ≥ 0, by (2.4) we have∫
R
|ψ(|2γ (s+t)ξ ′|2)τ̂k,t(ξ)|2 dt

≤ C2
0 2−2k

∫
(2γs+1|ξ ′|)−1≤2γ t≤2(2γs |ξ ′|)−1

(2γ (t−k)|ξ ′|)2α dt

≤ C2−2[γαs+(1+γα)k] . (2.12)

Similarly for s < 0, also by using (2.4), we have∫
R
|ψ(|2γ (s+t)ξ ′|2)τ̂k,t(ξ)|2 dt ≤ C22[γβs−(1−γβ)k] . (2.13)

Thus, there exists aθ > 0 such that

‖Hs,k(f )‖L2(Rd ) ≤ C2−θ(|s|+k)‖f ‖L2(Rd ), (2.14)

which implies that (2.11) holds forp = 2. Next we shall prove that, for everyp0 ∈
(1,∞),

‖Hs(f )‖Lp0(Rd ) ≤ C‖f ‖Lp0(Rd ). (2.15)

First let us consider the case 1< p0 < 2. LetGu(x) = (92γu ⊗ δd−m) ∗ f(x).
Then, fork ∈N, by (2.3) we have∥∥∥∥∫

R
|τk,t ∗Gs+t(·)| dt

∥∥∥∥
L1(Rd )

≤ C2−k
∥∥∥∥∫

R
|Gt(·)| dt

∥∥∥∥
L1(Rd )

,

whereC is independent ofs. On the other hand, by (2.5),∥∥∥sup
t∈R
|τk,t ∗Gs+t(·)|

∥∥∥
Lq(Rd )

≤
∥∥∥τ ∗k(sup

t∈R
|Gt(·)|

)∥∥∥
Lq(Rd )

≤ C2−k
∥∥∥sup
t∈R
|Gt(·)|

∥∥∥
Lq(Rd )

for 1 < q < ∞, whereC again is independent ofs. The estimates we have
given here show that the linear mappingT : Gt(x)→ τk,t ∗Gs+t(x) is bounded
on L1(L1(R),Rd) andLq(L∞(R),Rd), respectively. Thus, ifq satisfies 1/q =
2/p0 − 1, then we conclude by using interpolation that the mappingT is also
bounded onLp0(L2(R),Rd). More precisely,∥∥∥∥(∫

R
|τk,t ∗Gs+t(·)|2 dt

)1/2∥∥∥∥
Lp0(Rd )

≤ Cp02−k
∥∥∥∥(∫

R
|Gt(·)|2 dt

)1/2∥∥∥∥
Lp0(Rd )

.

From this and theLp0 boundedness of theg-function, we have

‖Hs,k(f )‖Lp0(Rd ) ≤ C2−k‖f ‖Lp0(Rd ) for 1< p0 < 2 andk ∈N.
As for the case 2< p0 < ∞, it will be performed by imitating an argument in
[DR]. Let k ∈ N andq = (p0/2)′. There exists aw = wk ∈ Lq(Rd) such that
‖w‖q = 1 and
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‖Hs,k(f )‖Lp0(Rd )

=
(∫

Rd

∫
R
|(92γ (s+t) ⊗ δd−m) ∗ τk,t ∗ f(x)|2 dt w(x) dx

)1/2

≤
[(

sup
t

‖τk,t‖
) ∫

R

∫
Rd

∫
Rd
|(92γ (s+t) ⊗ δd−m) ∗ f(x − y)|2w(x)

dx dτk,t(y) dt

]1/2

≤ C
(

2−k
∫
R

∫
Rd
|(92γ (s+t) ⊗ δd−m) ∗ f(u)|2τ ∗k(w̃)(−u) du dt

)1/2

(with w̃(x) = w(−x))
≤ C[2−k‖g(f )‖2

Lp0(Rd )‖τ ∗k(w̃)‖Lq(Rd )]1/2 ≤ C2−k‖f ‖Lp0(Rd ),

where we used the boundedness of theg-function and assumption (2.5) again.
Summing overk ∈N, we obtain (2.15). By (2.14), (2.15), and applying the Riesz–
Thorin interpolation theorem for sublinear operators [CZ], we obtain (2.11) for
1< p <∞. This concludes the proof of (2.6) in the special caseL = πdm.

The general case can be resolved by using a technique developed in[FP2].
Suppose thatτ = {τk,t | k ∈ N, t ∈ R} satisfies (2.3)–(2.5) with a given linear
transformationL : Rd → RN. Letm = rank(L) ≤ d. Then there are nonsingular
linear transformationsGm : Rm→ Rm andGd : Rd → Rd such that

|GmπdmGdξ| ≤ |Lξ| ≤ N |GmπdmGdξ|. (2.16)

Defineνk,t by ∫
Rd
f(x) dνk,t(x) =

∫
Rd
f(Utx) dτk,t(x), (2.17)

whereU = G−1
d B (G−1

m ⊗ idRd−m). Then, by (2.3)–(2.5) and (2.16),ν = {νk,t |
k ∈N, t ∈R} satisfies (2.3)–(2.5) withL replaced byπdm. Thus

‖1ν(f )‖Lp(Rd ) ≤ Ap‖f ‖Lp(Rd ) (2.18)

holds for 1< p < ∞. Finally, (2.6) follows from (2.18) after making a trivial
change of variables. Lemma 2.1 is proved.

3. Proof of Theorem 1

Recall that

H1(S n−1) = {f ∈S ′(S n−1) : ‖P +f ‖L1(S n−1) <∞}
and‖f ‖H1(S n−1) = ‖P +f ‖L1(S n−1), where

P +f(z) = sup
0≤r<1

∣∣∣∣∫
S n−1

(1− r 2)f(y)

|rz− y|n dσ(y)

∣∣∣∣.
A useful property ofH1(S n−1) is its atomic decomposition. A functiona(·) on
S n−1 is a (regular)H1 atom if it satisfies the following:
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supp(a) ⊂ Sn−1∩ {y ∈Rn : |y − ζ| < ρ}
for someζ ∈ Sn−1 andρ ∈ (0,2]; (3.1)∫

S n−1
a(y) dσ(y) = 0; (3.2)

‖a‖∞ ≤ ρ−(n−1). (3.3)

Lemma 3.1 [Co; CTW]. If � ∈ H1(S n−1) and satisfies(3.1)–(3.3),then there
exist{cj } ⊂ C andH1 atoms{aj } such that

� =
∑
j

cj aj

and‖�‖H1(S n−1) ≈
∑

j |cj |.
Proof of Theorem 1.In light of Lemma 3.1, it suffices to prove that

‖µP,�,b(f )‖Lp(Rd ) ≤ Cp‖f ‖Lp(Rd )
holds when� is aH1 atom satisfying (3.1)–(3.3).

Define the family of measuresσ = {σk,t | k ∈N, t ∈R} onRd by∫
Rd
f(x) dσk,t(x) =

√
ln 2

2t

∫
2t−k≤|y|≤2t−k+1

f(P(y)) �(y)|y|n−1
b(|y|) dy. (3.4)

Then
µP,�,b(f ) ≤ 1σ(f ). (3.5)

By the arguments in[FP2,Sec. 7; see esp. (7.36)], there are families of measures

τ (1) = {τ (1)k,t | k ∈N, t ∈R}, . . . , τ (M) = {τ (M)k,t | k ∈N, t ∈R},
each of which satisfies (2.3)–(2.5), such that

σk,t =
M∑
j=1

τ
(j)

k,t (3.6)

for k ∈ N andt ∈ R. It then follows from Lemma 2.1 and Minkowski inequality
that

‖µP,�,b(f )‖Lp(Rd ) ≤
M∑
j=1

‖1τ (j)(f )‖Lp(Rd ) ≤ Cp‖f ‖Lp(Rd )

for f ∈Lp(Rd) and 1< p <∞.

4. Additional Results on Marcinkiewicz Integrals

Mappings of Finite Type

Let B(0, r) denote the ball centered at the origin inRn with radiusr. For a suit-
able function� and a mapping8 : B(0, r)→ Rd , we define the Marcinkiewicz
integral operatorµ8,� by
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µ8,�(f )(x) =
(∫ r

0

∣∣∣∣∫|y|≤t f (x −8(y)) �(y)|y|n−1
dy

∣∣∣∣2 dtt 3
)1/2

. (4.1)

(If 8 is a mapping fromRn intoRd , thenr = ∞.)
A C∞ mapping8 : B(0,1)→ Rd is said to be offinite typeat the origin if, for

each unit vectorη ∈Rd , there is a multi-indexα (with |α| ≥ 1) such that

∂ αy [8(y) · η] |y=0 6= 0. (4.2)

We have the following result concerning the Marcinkiewicz integrals associated
to mappings of finite type.

Theorem 2. Let8 : B(0,1)→ Rd be aC∞ mapping that is of finite type at the
origin. If �∈Lq(S n−1) for someq > 1 and satisfies(1.1), thenµ8,� is bounded
onLp(Rd) for 1< p <∞.
A proof of Theorem 2 can be obtained by imitating that of Theorem 1. The only
difference is that, instead of using the arguments in[FP2,Sec. 7], one uses the
arguments in [FGP1] in conjunction with Lemma 2.1.

Homogeneous Mappings

For0 = (γ1, . . . , γd)∈Rd andt > 0, let 0t denote the dilation onRd given by

0t(x1, . . . , xd) = (tγ1x1, . . . , t
γdxd). (4.3)

A mapping8 : Rn→ Rd is said to be homogeneous of degree0 if

8(ty) = 0t(8(y)) (4.4)
holds fory ∈Rn\{0} andt > 0.

By employing the methods in [FGP2; Ch] and Lemma 2.1, we obtain the
following.

Theorem 3. Let 8 : Rn → Rd be homogeneous of degree0 = (γ1, . . . , γd),

with γj 6= 0 for 1 ≤ j ≤ d. If 8|S n−1 is real-analytic and if� ∈ H1(S n−1) and
satisfies(1.1),thenµ8,� is bounded onLp(Rd) for 1< p <∞.

Surface of Revolution

Next we consider the Marcinkiewicz integrals associated to surfaces of revolution.
Let φ be a real-valued function on [0,∞), and let

8(y) = (y, φ(|y|)) (4.5)

for y ∈Rn. LetMφ denote the following maximal operator onR2:

(Mφ)g(u, v) = sup
k∈Z

2−k
∫ 2k+1

2k
|g(u− t, v − φ(t))| dt.

Theorem 4. Let8 : Rn→ Rn+1 be given as in(4.5). If �∈H1(S n−1) satisfies
(1.1),thenµ8,� is bounded onL2(Rn+1). If, in addition,φ is convex and increas-
ing and ifMφ is bounded onLp(R2) for 1< p <∞, thenµ8,� is bounded on
Lp(Rn+1) for 1< p <∞.
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Proof. By Plancherel’s theorem, theL2 boundedness ofµ8,� is equivalent to

J(ξ, η) =
∫ ∞

0
|mt(ξ, η)|2 dt

t 3
≤ C, (4.6)

uniformly in ξ ∈Rn andη ∈R, where

mt(ξ, η) =
∫
|y|≤t

e−i(ξ ·y+ηφ(|y|))
�(y)

|y|n−1
dy. (4.7)

If we let

I�(ξ) =
∫
S n−1

eiξ ·y�(y) dσ(y), (4.8)

then it follows from [FP1, Thm. A] that

sup
ξ∈Rn

(∫ ∞
0
|I�(sξ)|2 ds

s

)1/2

≤ C‖�‖H1 <∞. (4.9)

Thus, by (4.6)–(4.9), Hölder’s inequality, and Fubini’s theorem,

sup
(ξ,η)∈Rn+1

J(ξ, η) ≤ sup
ξ∈Rn

∫ ∞
0

∫ t

0
|I�(sξ)|2 1

t 2
ds dt ≤ C‖�‖2

H1,

which proves the first part of Theorem 4. The second part follows from the argu-
ments in [LPY] and Lemma 2.1.

5. Area Integrals andg∗λ Functions

We shall end the paper with a theorem on the Marcinkiewicz integral operators re-
lated to the area integral and the Littlewood–Paleyg∗λ function. We shall consider
polynomial mappings only, but it is clear that similar results can be obtained for
other classes of mappings.

Let P be a polynomial mapping fromRn into Rd , and letFP,t be given as in
(1.3). We define the operatorsµ̃P = µ̃P,�,b andµ∗P,λ = µ∗P,�,b,λ by

µ̃P(f )(x) =
(∫

0(x)

|FP,t(u)|2 1

t d+3
du dt

)1/2

, (5.1)

where0(x) = {(u, t)∈Rd+1
+ : |x − u| < t}, and

µ∗P,λ(f )(x) =
(∫∫

Rd+1
+

(
t

t + |x − u|
)dλ
|FP,t(u)|2 1

t d+3
du dt

)1/2

(5.2)

for λ > 1.
Our results can be stated as follows.

Theorem 5. Suppose thatb(r)∈L∞(R+) and that�∈H1(S n−1) and satisfies
(1.1). Then, for2 ≤ p <∞, there exists a constantCp > 0 such that

‖µ∗P,λ(f )‖Lp(Rd ) ≤ Cp‖f ‖Lp(Rd ) (5.3)

and



On theLp Boundedness of Marcinkiewicz Integrals 25

‖µ̃P(f )‖Lp(Rd ) ≤ Cp‖f ‖Lp(Rd ) (5.4)

for everyf ∈ Lp(Rd). The constantCp may depend onn, d, and deg(Pj ) (1 ≤
j ≤ d), but it is independent of the coefficients ofPj .

The proof of Theorem 5 is based on the following lemma.

Lemma 5.1. Let λ > 1. Then, for any nonegative functiong, we have∫
Rd
(µ∗P,λ(f )(x))

2g(x) dx ≤ Cλ
∫
Rd
(µP,�,b(f )(x))2(Mg)(x) dx, (5.5)

whereM denotes the usual Hardy–Littlewood maximal operator onRd .

Proof. By definition, we have∫
Rd
(µ∗P,λ(f )(x))

2g(x) dx

=
∫
Rd

∫∫
Rd+1
+

(
t

t + |x − u|
)dλ
|FP,t(u)|2 1

t d+3
du dt g(x) dx

≤
∫
Rd

∫ ∞
0
|FP,t(u)|2

[
sup
t>0

∫
Rd

(
t

t + |x − u|
)dλ
g(x)

1

t d
dx

]
1

t 3
dt du

≤ Cλ
∫
Rd
(µP,�,b(f )(u))2(Mg)(u) du

for λ > 1. Lemma 5.1 is proved.

Proof of Theorem 5.Whenp = 2, one can obtain (5.3) by simply takingg ≡ 1
in (5.5) and then invoking Theorem 1. For 2< p <∞, we letq = (p/2)′. Then,
by Lemma 5.1, Theorem 1, and Hölder’s inequality,

‖µ∗P,λ(f )‖2Lp(Rd ) = sup
‖g‖q=1

∣∣∣∣∫
Rd
(µ∗P,λ(f )(x))

2g(x) dx

∣∣∣∣
≤ Cλ sup

‖g‖q=1

∫
Rd
(µP,�,b(f )(x))2Mg(x) dx

≤ Cλ
(

sup
‖g‖q=1

‖Mg‖q
)
‖µP,�,b(f )‖2Lp(Rd ) ≤ Cλ,p‖f ‖2Lp(Rd ).

Thus (5.3) holds for 2≤ p <∞. Inequality (5.4) follows from (5.3) and the ob-
servation that̃µP(f )(x) ≤ Cλ[µ∗P,λ(f )(x)]. Theorem 5 is proved.
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