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1. Introduction and Preliminaries

In this paper we explore the structure of limit sétsf infinite conformal iterated
function systems whose closure is a continuum (compact connected set). Under
a natural easily verifiable technical condition (always satisfied if the system is fi-
nite), we demonstrate the following dichotomy. Either the Hausdorff dimension
of J exceeds 1 or elsgis a proper compact segment of either a geometric circle or

a straight line it/ > 3 or an analytic interval il = 2 (see Theorem 1.3). From the
viewpoint of conformal dynamics, this result can be thought of as a far-reaching
generalization of results originated in [S] and [B], which are formulated in the
plane case. The proofs contained there use the Riemann mapping theorem and
can be carried out only in the plane. The proof presented in our paper is different
and holds in any dimension. The reader is also encouraged to notice an analogy
between our result and a series of other papers (see e.g. [B; FU; MUL; Ma; P; R;
S; UL; UV, Z1; Z2]), which are aimed toward establishing a similar dichotomy.
However, to our knowledge, all these results—just as those in [B] and [S]—were
formulated in the plane and used the Riemann mapping theorem, except those in
[MU1]. The current result is, however, much stronger than that in [MU1]; in par-
ticular, with our present approach the main result of [MU1] can be strengthened as
described at the end of this section. Another corollary of our result is the follow-
ing: If a continuumc in R? is the self-conformal set generated by finitely many
conformal mappings satisfying the open set condition, if the Hausdorff 1-measure
of C is finite, and if one of the mappings is a similarity, then the continuum is a
line segment. This holds in particular if all the maps are similarities, a result ob-
tained early on by Mattila [Ma].

To start the preliminaries, Idt be a countable index set with at least two ele-
ments and le§ = {¢,: X — X :i € I} be a collection of injective contractions
from X into X for which there exists O< s < 1 such thato(¢;(x), ¢;(y)) <
sp(x, y) for everyi € I and for every pair of points, y € X. Thus, the system
S is uniformly contractive. Any such collectia$ of contractions is called ait-
erated function systefiFS). We are especially interested in the properties of the
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limit set defined by such a system. We define this set as the image of the coding
space under a coding map as follows. Let | J,., ", the space of finite words,
andforteI" (n> 1) letgp, = ¢ opr,0---0¢,,. LetI® = {{r,},} be the

set of all infinite sequences of elementdoff r € I* U I*° and ifn > 1 does not
exceed the length af, then we denote by|, the wordz;z,... 7,. Since the di-
ameters of the compact sets,(X) (v € I*°, n > 1) converge to zero and since
they form a descending family, the set

() #21.(%)
n=0
is a singleton; therefore, denoting its only elementdgy), we define the coding
map
m:I® - X.

The main object in the theory of iterated function systems is the limit set defined

as o
J=x®) = J 1.0
tel® n=1
Observe thaf satisfies the natural invariance equality= |, ¢:(J). Notice
that if  is finite thenJ is compact and this property fails for infinite systems. Let
S(00) be the set of limit points of all sequences: ¢;(X), i € I’, wherel’ ranges
over all infinite subsets af. The following was proved in [MUZ2].

ProposITION 1.1, If lim;c; diam(¢;(X)) = O, thenJ = J U |, ;« ¢ (S(00)).

An iterated function systersi is said to beconformalif X ¢ R? for somed > 1

and the following conditions are satisfied.

(1a) Open set condition (OSG);(Int X) N¢,(Int X) = @ for every pairi, j € I,
i+ j.

(1b) There exists an open connected¥etuch thaty ¢ V ¢ R? and such that
all mapse; (i € I) extend toC* conformal diffeomorphisms o¥ into V.
(Note: ford = 1, this just means that all the maps, i € I, areC* mono-
tone diffeomorphisms; fo# = 2, the wordsconformalmean holomorphic
or antiholomorphic; foe/ > 3, the mapsp;, i € I, are Mdbius transforma-
tions. The proof of this last claim can be found e.g. in [BP], where itis called
Liouville’s theorem.)

(1c) Cone condition: There exist ! > 0 such that, for every € X C RY,
there exists an open cone Ganu, @) C Int(X) with vertexx, where the
symmetry axis is determined by a vectoe R? of length/ and a central
angle of Lebesgue measuteHere Conix, u,a) ={y : 0 < (y — x,u) <
cosx|y — x|l = 1}.

(1d) Bounded distortion property (BDP): There exikts> 1 such that

(W] = Klgr(x)]

for everyt e I* and every pair of points, y € V, where|¢’ (x)| denotes the
norm of the derivative.
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Under these assumptions, it was shown in [MU2] that the hypothesis of Proposition
1.1 holds and we can change the order of the union and intersection operations to

obtain
J=m%) = |J ¢:).

n>1|t|=n

Infact, throughout the whole paper we will need one additional condition, which
(cf. [MUZ2]) can be considered as a strengthening of the BDP.

(1e) There are two constants> 1 anda > 0 such that

|19/ (] = 16| < LllglIly — x|*
for everyi € I and every pair of points, y € V.

We remark that, in the cagk> 3, conditions (1d) and (1€) are always satisfied—
the latter witho = 1.

Let us first collect some geometric consequences of the BDP. For all weards
I* and all convex subsets of V we have

diam(¢.(C)) < |l¢.|| diam(C) 1.1
and
diam(¢.(V)) < D|¢.]l. 1.2)

where the nornj - || is the supremum norm taken ovérand whereD > 1is a
universal constant. Moreover,
diam(@.(J)) = D¢ (1.3)
and
¢(B(x,r) D B(¢p:(x), K $LlIr) 14

for everyx € X, every O< r < dist(X, V), and every word € I*.

Let us state now an important geometrical feature of conformal systems that is
related to the bounded distortion property. A detailed proof of this fact can be ob-
tained by a slight improvement of Lemma 6 in [MU1].

Lemma 1.2. For everyg > O and eveny0 < « < g there exists am > 0 such
that, for everyx € X, everyu e R¢ with ||u| < n, and everyw € I'*, we have

¢ (Con(x, u, a)) C Con(¢,,(x), 2¢, (x)u, B).

Let us now recall from [MUZ2] that a Borel probability measwiés said to be-
conformalif m(J) = 1 and if, for every Borel set C X and everyi € 1,

m(¢i(A)) = /Alfbfl’dm
and
m(¢;(X)Ng;j(X)) =0

for every pairi, j € I, i # j. It was proved in [MU2] that if &-conformal mea-
sure exists then = &, the Hausdorff dimension of the limit sét of S, and that
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this measure is unique. The systehis calledregular if a conformal measure
exists. The main result of our paper is the following.

THEOREM 1.3. If d > 3, S = {¢;}ic; is a conformal IFS,/ is a (compact con-
nected continuum, andlimg (S(c0)) < dimg (J), then either

€) o_IimH(J) > 1 or
(b) J is a proper compact segment of either a geometric circle or a straight line.

In addition, if any one of the maps is a similarity mapping thery is a line
segment.

We note that the technical condition in Theorem 1.3 is necessary. Example 5.2 of
[MU2] shows that the dichotomy of Theorem 1.3 fails in general if giifi(co)) >
dimg (J). We also mention that, once the first part of this theorem is proved, the
“in addition” part follows immediately from the proof of Lemma 2.5.

We would also like to remark that, in the cake- 2, for everyi € I we have that
¢i; is a holomorphic map that is biholomorphically conjugate with the linear map
Y(z) = xii + ¢'(xi;)(z — x;;) on some neighborhooW of x;;. Proceeding then
similarly as in the proof of Theorem 1.3, we could demonstrate the same statement
with the segment of the line or the circle replaced by an analytic arc.

Because the set(oco) is empty in the finite case, from Theorem 1.3 we may
immediately deduce the following.

COROLLARY 1.4. 1Ifd > 2, S = {¢;}ic; is a finite conformal IFS, and is a con-
tinuum, then either

€) QimH(J) > 1 or

(b) J is a proper compact segment of either a geometric circle or a straight line.
In addition, if any one of the maps is a similarity mapping thery is a line
segment.

We note that the methods of this paper can be used to strengthen the theorem [MUL,
p. 88], which concerns conformal repellers, by replacing the words “smooth Jor-
dan curve” by “geometric circle” il > 3 or by “a real-analytic Jordan curve” if
d=2.

2. Proof of Theorem 1.3

The proof of this theorem will consist of several steps. First of all we assume in the
sequel that the assumptions of Theorem 1.3 are satisfied ang(dins= 1. Our

goal is to show that then item (b) is satisfied. Since gi§(co)) < dimy(J) =

1 andJ is a continuum, we conclude using Proposition 1.1 tHat/) > 0. It
therefore follows from [MU2, Thm. 4.16] that the syste$ris regular. Letm

be the corresponding 1-conformal measure. By [MU2, Lemma 4.2] and since
dimy (S(00)) < dimy (J) = 1, the 1-dimensional Hausdorff measdié on J is
absolutely continuous with respecttoandd H*/dm is uniformly bounded away
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from infinity. Hence,/ is a continuum whosg{! measure is finite. The following
fact then follows from [EH] and [W].

Lemma 2.1. J is a locally arcwise connected continuum.

Givenx eR?, § e PR?, andy > 0, we put
Con(x, 0, y) = Con(x, n, y) U Con(x, —n, y),

wheren € R? is a representative ¢f < PR. We recall that a seX has a tangent
in the directiord € PR? at a pointx € Y if, for everyy > 0,

i HYY N (B(x,r)\ Con(x, 6, y)))

r—0 r

=0.

We will consider only tangents of 1-sets (the preceding/sehis definition co-
incides with the definition given in [Fa, p. 31]). Following [MU1], we say that a
setY has astrong tangentn the directiory € PR at a pointx provided that, for
each O< B8 < 1, there is some > 0 such thatr N B(x,r) C Con(x, 6, B). In
[MU1] we proved the following.

THEOREM 2.2. If Y is locally arcwise connected at a pointand if Y has a tan-
genté at x, thenY has strong tanger at x.

We call a pointr € I*° transitiveif w(t) = I*°, wherew(7) is thew-limit set of
7 under the shift transformation: 1*° — 1°°. We denote the set of these points
by 7 and put

Jr = ().

We call theJ; the set of transitive points of and notice that, for every € I°,
the sef{w(o"7) : n > 0} is dense in/ (or in J, if this is the space under consid-
eration).

Lemma 2.3. If J has a strong tangent at a point= 7 (), t € I*°, thenJ has
a strong tangent at every point(w (7)).

Proof. Suppose on the contrary thatloes not have astrong tangent at some point
yen(w(t)). Letd € PR? be the tangent direction of atx and let{n}$> , be an
increasing sequence of positive integers such thatligz (o"*t) = y. Passing
to a subsequence, we may assume that
(¢0,) )
= |(¢g,) 0]

for somez € PR?. SinceJ does not have a strong tangentyatit follows that
there exists O< 8 < 1 such that, for every > 0,

JNB(y,r)\ JNCon(y, & B) #B.
Then
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J N B(r(c"1),r)\ JNCon(m(c" 1), &, B/2) # ¥ (2.1
for all k large enough, where
B (@)
AR

But in view of Lemma 1.2 applied tp_} , we see that

@|ny?
Pol,(B((c"7), 1) \ Con(x (), &, B/2))
¢w\nk(n(0nkf)) ﬂ)

(n(oﬂkr))\

(7oL, 1)\ Con(x.

ln

= B(x, qubwhzk )\ Con(x, 6, B/4)

holds for allr > 0 small enough. In view of (2.1 N zizw‘”k(B(n(a”k T),7r)\
Con(m (o™ 1), &, ,8/2)) # () and so we conclude that, for everyarge enough,
J N (B(x, r||¢w|” )\ Con(x, 6, B/4)) # #. Since I|mk_,oo||¢w‘ | = 0, this im-
plies tha® is not the strong density direction dfatx. This contradiction finishes
the proof. O

COROLLARY 2.4. The continuuny has a strong tangent at every point.

Proof. SinceH(J) < oo, in view of [Fa, Cor. 3.15] we see thdthas a tangent
at H!-a.e. point inJ and hence at a set of points of positiMemeasure. Since
m(J;) = 1 there must exist at least one transitive pairih J having a tangent
of J. By Theorem 2.2 and Lemma 2.1, has a strong tangent at it then fol-
lows from Lemma 2.3 thai has a strong tangent at every point. The proof is
complete. O

Now, the following lemma finishes the proof.

LEMMA 2.5. Suppose thap: R¢ — R4, d > 3, is a conformal diffeomorphism
that has an attracting fixed point (¢ (a) = a, |¢'(a)| < 1). Suppose that a
compact connected s#f has a strong tangent at, that ¢ (M) C M, and that
lim, o ¢"(x) = a forall x e M. ThenM is a segment of g-invariant line or
circle. If ¢ is affine(¢ (oc0) = 00), then the former possibility holds.

Proof. Sincea is an attracting fixed point ap, there exists a radius > 0 so
small thatp~X(R? \ B(a, r)) C R4\ B(a, r), whereR¢ is the Alexandrov com-
pactification ofR¢ achieved by adding the point at infinity. Singé \ B(a, r) is

a topological closed ball, it follows (in view of the Brouwer fixed point theorem)

that there exists a fixed poihtof ¢—tin R4 \ B(a, r). Henceb is also a fixed point
of ¢ andb # a. Then the map

Y =ip1o¢oipy
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(ip,1 equals identity ifb = oo) fixesco, which means that this map is affine, and
w = iy1(a) is an attracting fixed point af. In additiony(M) c M, whereM =
i»1(M), w e M, andM has a strong tangentat Let!/ be the line throughw de-
termined by the strongly tangent direction &f at w. Sincey(w) = w, since

¥ (1) is a straight line throughv, and sincey (M) c M, we conclude thai (/) =

1. Suppose now tha¥ is not contained ii. Considerx € M \ [. Then, for every

n >0,

Y(x) e (M) \ y() C M\ [

since the mag is conformal and affine, we have
ZWW(x) —w, D) =LY (x —w), ¥"()) = L(x —w, ).

Since lim,_. o ¥"(x) = w, we therefore conclude thats not a strongly tangent
line of M atw. This contradiction shows tha# C /. SinceM is also a contin-
uum, it is a segment df We are done. O

Indeed, to conclude the proof of Theorem 1.3 it suffices to pick an arbitrary index
i € I (affine if it exists) and to pup = ¢;, M = J, anda = x;, the only attracting
fixed point of¢; belonging toJ.
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