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Dynamics of Polynomial Hamiltonian
Vector Fields inC2k

Romain Dujardin

1. Introduction

The main purpose of this article is to provide a dynamical study of a natural
class of holomorphic vector fields, namely polynomial Hamiltonian (or complex
divergence-free) vector fields inC2. By “dynamical study” we mainly mean here
“real-time study”, in a situation where the complex orbits of the flow are well
understood: these are only level sets of a polynomial inC2. We restrict ourselves
to the polynomial case, which is relevant for many approximation problems (see
Sections 4 and 5); this enables us to use the global geometry of level sets.

We also give a contribution to the study of Hamiltonian vector fields inC2k

(k ≥ 2), again by first studying polynomial fields.
We introduce now some terminology (see Section 6 for the higher-dimensional

case). Letp be an entire function inC2 (with coordinates(z, w)). The holomor-
phic vector field

Xp =
(
∂p

∂w
,−∂p

∂z

)
= ∂p

∂w

∂

∂z
− ∂p
∂z

∂

∂w

is called theHamiltonianvector field associated to (the Hamiltonian)p and the
symplectic formω = dz ∧ dw. This terminology is justified, as in the real case,
by the relationiXpω = dp. For further information, see [F] and [FS1]. One sees
readily that the flow ofXp preserves each level set{p = c}. We also recall from
[F] that the real-time flow of a holomorphic vector field has a holomorphic exten-
sion to a neighborhood inC of its domain in the real axis.

The outline of this paper is as follows. In Sections 2–4 we give a rather com-
plete picture of the dynamics of a generic class of polynomial Hamiltonian vector
fields inC2. Note that, in order to speak of generic properties, one needs to fix the
degree. We hope this can be used as an example for further study.

We also prove that the “quasi-ergodic hypothesis” is satisfied for polynomial
and entire Hamiltonian vector fields. This gives a new proof of a result of [FS3].

In Section 5, we use the preceding work to study exploding orbits of holomor-
phic Hamiltonian vector fields [FG1; FG2]. One says that an orbitexplodesif
it reaches infinity in finite time. The following theorem is due to Fornæss and
Grellier [FG1].
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Theorem1.1 [FG1]. There is a dense familyG ⊂ E (vector space of entire func-
tions inC2) such that, for anyF ∈G, there is a dense set of points with exploding
orbits for the vector fieldXF .

With the help of a Fatou–Bieberbach domain we are able to prove a refinement of
this theorem (we also think our proof is technically much simpler) that replaces
“dense set of points” by “outside a union of real submanifolds”.

In Section 6 we prove a version of this theorem inC2k, again using a Fatou–
Bieberbach domain.

Acknowledgments. I would like to express my warmest thanks to N. Sibony
for his advice and careful observations.

2. Level Sets of Generic Polynomial Hamiltonians

In this section we study the geometry of generic level sets of polynomials (“Hamil-
tonians”) of two variables. LetPd be the affine space of holomorphic polynomials
of degree≤ d in (z, w), provided with the standard basis{ziwj , i + j ≤ d}. The
following easy propositions show that, for a typicalp ∈Pd , Xp has isolated zeros
and the generic level set{p = c} is irreducible and smooth up to the line at infin-
ity. For background on complex algebraic curves, see for example [M].

Proposition 2.1. Letd ≥ 2. There exists a Zariski dense open subset of Hamil-
toniansp ∈ Pd such that the Hamiltonian vector fieldXp associated withp has
isolated(and hence a finite number of) zeros.

Proof. Z(Xp) is the intersection of two algebraic sets:

Z(Xp) =
{
∂p

∂w
= 0

}
∩
{
∂p

∂z
= 0

}
.

A sufficient condition for this algebraic set to be of exact dimension 0 atz0 is

det

(
Grad

(
∂p

∂z

)
(z0),Grad

(
∂p

∂w

)
(z0)

)
6= 0; (1)

that is, the determinant of the Hessian matrix(Hessp)(z0) be nonzero.
Consider

f : Pd × C2→ C3,

(p, z0) 7→
(
∂p

∂z
(z0),

∂p

∂w
(z0),det(Hessp)(z0)

)
.

A Hamiltonianp satisfies condition (1) at all zeros if, for allz0 ∈ C2, (p, z0) /∈
Zf ; that is,p /∈π(Zf), whereπ : Pd × C2→ Pd is the natural map.

Sincep → (∂p/∂z)(z0) andp → det(Hessp)(z0) are homogeneous with
respect to the coefficients ofp, it follows that Zf is a closed algebraic set in
PPd × C2; the main theorem of elimination theory (see e.g.[M]) asserts that
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π(Zf) is a closed algebraic subset ofPPd . It only remains to show thatπ(Zf) 6=
PPd : takep(z,w) = q(z) + w2, with q a degree-d polynomial such thatq ′ has
only simple roots.

Remark. Outside the zero setZ(Xp), any {p = c} is smooth becausep is lo-
cally submersive.

Now we compactifyC2 in P2 (projective 2-space) and consider the closure
p−1(c) = 6 of a level set inP2. Let us first fix some notation: The homoge-
neous coordinates of a point inP2 are denoted by [Z : W : T ], wherez =
Z/T and w = W/T are the affine coordinates inC2; also, p̃(Z,W, T ) =
pd(Z,W ) + Tpd−1(Z,W ) + · · · + T dp0(Z,W ) denotes the homogenization of
p (we supposep of exact degreed ), and

6 ∩ {T = 0} = {p̃ = 0} ∩ {T = 0} = {[Z,W,0], pd(Z,W ) = 0}.
These points at infinity are smooth points ofp−1(c) if the corresponding roots of
pd in P1 are simple (this is a transversality condition).

It is routine to check, as before, that the condition “p has exact degreed and
the roots ofpd in P1 are simple” is valid on a Zariski open subset ofPd .
Proposition 2.2. There exists a Zariski dense open subset ofPd consisting of
irreducible polynomials. For such a polynomialp, p− c is irreducible for all but
finitely manyc ∈C.
Proof. Consider, for any 1≤ k ≤ d, the mapf : Pk × Pd−k → Pd defined by
f(q, r) = qr. This map can obviously be given a projective sense; that is, one has
a factorizationf̃ : PPk × PPd−k → PPd . By the proper mapping theorem, the
image off̃ is an algebraic set inPPd that has, of course, nonempty complement.

On the other hand, ifp is irreducible then the set{c ∈C, p − c is reducible} is
a proper algebraic subset ofC and hence is finite.

3. Real Orbits in a Generic Level Set

We wish to perform a study of the (real) dynamics of the vector fieldXp =
(∂p/∂w,−∂p/∂z) (d = degp ≥ 4) in a single level setp−1(c) that is invariant by
its flow. In this section we fix genericp andc as in the foregoing propositions;
that is,p−1(c) is a smooth compact Riemann surface of genus(d −1)(d −2)/2>
1, soXp extends as a meromorphic vector field on6 = p−1(c) without any zeros
on its affine part. Throughout this article, the term “orbit” means the real orbit of
a pointx0 and is denoted byO(x0) (O

+(x0) is the positive orbit).
We first study the behavior of the vector field near a point at infinity of6.

Proposition 3.1. There exists a holomorphic chart near any point at infinity of
6, whereXp has the formu−(d−3) ∂/∂u.

Without any loss of generality we can assumep̃ [1,0,0] 6= 0 (with notation as in
the preceding section), and then we settle in the affine chart{Z 6= 0}. We now put
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x = W/Z andy = T/Z ({T = 0} becomes{y = 0} in the new chart). One easily
checks that, in this new chart, the vector field expresses as

Xp(x, y) = −
(
xy
∂p

∂w

(
1

y
,
x

y

)
+ y ∂p

∂z

(
1

y
,
x

y

))
∂

∂x
− y2 ∂p

∂w

(
1

y
,
x

y

)
∂

∂y
;

if we let p̂(x, y) = p(1/y, x/y) (= p(z,w) whenever the two expressions make
sense), it becomes

Xp(x, y) = y3

(
∂p̂

∂y
(x, y)

∂

∂x
− ∂p̂
∂x
(x, y)

∂

∂y

)
.

We claim thatXp has poles of orderd − 3 in y at the points at infinity of6.
Indeed we havêp(x, y) = 1/y dpd(1, x)+ · · · + p0(1, x), so

∂p̂

∂y
(x, y) = −d

y d+1
pd(1, x)+ −d +1

y d
pd−1(1, x)+ · · · ;

but the first termpd(1, x) vanishes at any point of6 ∩ {y = 0}.
Proof of Proposition 3.1.We have chosenpd with simple roots in the line at infin-
ity; in coordinates(x, y), this means thatpd(1, x) has only simple roots. Hence,
if x0 is one of these then(∂/∂x)(pd(1, x))(x0) 6= 0. By the implicit function the-
orem,y can thus serve as a local coordinate for6 = {y dp̂(x, y) = cy d} near
(x, y) = (x0,0). By virtue of the previous claim, in an appropriate chart of6

around this point,Xp takes the formX(v) = v−(d−3)f(v)(∂/∂v), f(0) 6= 0.
It remains to reach the normal formu−(d−3)(∂/∂u); that is, we must find a local

holomorphic diffeomorphismψ of (C,0) such that

ψ∗X(v) = (ψ−1(v))−(d−3)f(ψ−1(v))ψ ′(ψ−1(v))
∂

∂v
= v−(d−3) ∂

∂v
.

Let u = ψ−1(v). Then one hasu−(d−3)f(u)ψ ′(u) = ψ(u)−(d−3), that is,

d

du

(
ψ(u)d−2

d − 2

)
= ud−3

f(u)
= ud−3

(
1

f(0)
+ · · ·

)
.

LetG(u) = ud−2/((d−2)f(0))+· · · be a primitive ofud−3/f(u). It suffices then
to takek(u) a branch of the(d − 2)th root of

(d − 2)G(u)

ud−2
=
(

1

f(0)
+ · · ·

)
,

andψ(u) := uk(u) gives the solution.

A brief study of this vector field near 0 gives a picture like Figure 1. There are
2(d−2) separatrices, that is, integral curves that attain the pole 0 in finite forward
or backward time. Those will respectively be called stable and unstable sepa-
ratrices (stable and unstable manifolds of the singularity).

This means in particular that only a finite number of orbits on6 reach infinity
in finite (positive or negative) time.
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Figure 1 Integral curves ofu−4∂/∂u near 0

Remark. Multiplying Xp by aC∞ function with zeros of sufficiently high order
at the poles yields aCk fieldXp with the same trajectories asXp on6. This enables
us to apply Poincaré–Bendixson theory for smooth flows on surfaces, where the
fixed points of the flow are the poles ofXp.

We now recall some basic ideas concerning the dynamics of holomorphic vector
fields on an abstract open Riemann surfaceS [FS1; F; MV]. LetX be a holo-
morphic vector field without zeros onS (S will be the affine part of6). Suppose
the flowX (t, x) of X is defined on an open intervalJ ⊂ R; then it extends as
a holomorphic map on a neighborhood ofJ × {x} in C × S. The inverse of the
local diffeomorphismφ : t 7→ X (t, x) is a “holomorphic flow box chart”, that is,
(φ−1)∗X = ∂/∂t. The flow box chart can be extended as soon ast → X (t, x) is
injective (“long flow box chart”). In this chart, the flow is a horizontal transla-
tion. Observe also that, by holomorphy, the vertical direction and length unit are
preserved under change of flow box charts (the horizontal direction is given by
the vector field); because the vertical Lebesgue measure is invariant under hori-
zontal translations, on each small transversal we have a measure preserved by the
Poincaré map, that is, an invariant transverse measure (see also [MV]).
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The following proposition follows then from Poincaré–Bendixson theory, the
absence of zeros on the affine part of6, and the identity theorem (see [FS1]).

Proposition 3.2. If a positive orbitO+(x) on6 is bounded inC2, then it is
periodic. Each periodic orbit is embedded in a ring domain where the flow is con-
jugate to a rotation. The corresponding maximal ring domain is bounded by a
cycle of separatrices(a “graph” or “polycycle” ).

From the finite number of separatrices on6 we deduce the following corollary.

Corollary 3.3. There are only finitely many annuli on6 where the flow is con-
jugate to a rotation.

These results are part of the theory of quadratic differentials [Str]: if the vector field
X expresses asf(z)(∂/∂z) in the local coordinatez, then the expressionq(z) =
(1/f(z)2)dz2 is well-defined on6. By definition,q is a quadratic differential; its
trajectories are the leaves of the foliation tangent to the field of lines defined by
the condition(1/f(z)2)dz2 > 0. As a foliation, the integral curves ofX are the
trajectories ofq.

The flow ofX preserves the measure

1

|f(z)|2 idz ∧ dz̄
associated toq. In the case ofXp on6, this measure has finite mass since there are
no zeros and6 is compact. It is absolutely continuous with respect to Lebesgue
measure. Note that(1/|f(z)|2)idz∧ dz̄ is only the coordinate-invariant writing of
the Lebesgue measure in flow box charts.

Recall that iff is a measure-preserving transformation of a finite measure space
M then the Poincaré recurrence theorem asserts that, for almost every pointx of
M, O+(x) intersects any set of positive measure infinitely many times.

The following proposition is a consequence of the theory of quadratic differen-
tials, but for the convenience of the reader we include here a proof that uses only
the theory of smooth flows of surfaces (see e.g. [PM; NZ]). Recall that an orbit
is said to bepositively recurrentif it is contained in itsω-limit set. Any periodic
orbit is recurrent and, by Poincaré–Bendixson theory and holomorphy, a nonperi-
odic recurrent orbit on6 must be unbounded (since it must cluster on a singular
point of the vector field).

Proposition 3.4. 1.All orbits of the vector fieldXp, except stable separatrices,
are positively recurrent.

2. Theω-limit set of any nontrivial(i.e. nonperiodic)ω-recurrent trajectory has
nonempty interior.

By reversing time, one obtains similar conclusions forα-limit sets.

Proof of Proposition 3.4.1. We use the finite invariant measure introduced pre-
viously (Lebesgue measure in flow box charts). The union of stable separatrices
is a nullset and, in its complement, all orbits are defined in positive time. The
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Poincaré recurrence theorem then asserts that almost every orbit is positively re-
current (including unstable separatrices that are not saddle connections).

This would be sufficient for our purposes, but we want to show also that all non-
recurrent orbits are separatrices. Supposex0 ∈ 6 is notω-recurrent. LetT be a
small open interval transverse toXp atx0, and let

D = {x ∈ T | O+(x) cutsT }
be the domain of the Poincaré first return map. SinceD is an open subset ofT of
full measure, it follows thatD = ⋃n In is a union of open intervals. Supposex1

is a boundary point of such an interval onT . Then it is a classical result (see e.g.
[PM, pp. 145–146]; we sketch a proof shortly) thatω(x1) is a single saddle point,
that is,x1 is on a stable separatrix. BecauseO+(x1) does not cutT again, there
are only finitely many such points andx0 is one of them.

We now sketch a proof of the fact thatω(x1) is a saddle point (see [PM] for
details). First, through any point of a nontrivial recurrent orbitγ there is a circle
transversal toXp: fix a small transversal, cover the segment ofγ between two
consecutive intersections by two long flow box charts, and then use straight lines
transverse toXp in these charts. Since almost all orbits are nontrivial recurrent,
there is a transverse circle through any point of6.

Now suppose there is a regular pointa in ω(x1), and letC be a transverse circle
througha. If x1 ∈ ∂I as before and ify ∈ I, then the number of timesO+(y)
cutsC between two consecutive intersections withT is a constantN on I, as it
is locally constant andI is connected. ButO+(x1) cutsC infinitely many times
without cuttingT again—a contradiction.

2. LetA be the union of the annuli of periodic orbits. All orbits in6\Ā are
nontrivial (i.e. nonperiodic)ω-recurrent except stable separatrices; this is the first
part of the proposition. Let us show that the union of the unstable separatrices is
dense in6\Ā (in fact we show this for stable separatrices, but it suffices to reverse
time to achieve the desired result). LetU be an open subset of6\A and suppose
that no stable separatrix cutsU. ThenX (t, x) is defined for allt > 0 andx ∈ U,
U =⋃t>0X (t, U) is a hyperbolic open set (recall that genus(6) > 1), U ∩ A =
∅, and the flow is a holomorphic endomorphism ofU .

Let us show that the time-1 mapX1: U → U is not onto. Suppose it is; then the
time-(−1)of the flow is well-defined onU; that is, the vector fieldXp isR-complete
when restricted toU . We now consider the closureG of the 1-parameter group of
automorphisms generated by the flow inU . SinceU is hyperbolic and since orbits
do not tend uniformly to the boundary (by recurrence),G is compact (see [FS1]).
In particular, orbits are compactly contained inU . By Poincaré–Bendixson theory
there is a periodic orbit or a critical point inU, which is a contradiction.

Now the time-1 mapX1 is a contraction for the Kobayashi metric, and it is a
classical result [CG, Lemma 4.2.2] that all orbits tend to a single point ofŪ . Thus
no orbit inU can be nontrivial recurrent, which is a contradiction.

Hence there areq unstable separatricesSi whoseω-limit sets ω(Si) have
nonempty interior and cover6\A. TheSi are recurrent because they cannot be
saddle connections. Letx ∈ ω(Si) be a recurrent point; Maier’s theorem [NZ,
p. 30] asserts that, ifx andy are recurrent andω(y) 3 x, thenω(x) 3 y (you
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should be convinced by drawing a picture, but the proof is not that obvious). In
our case,ω(x) ⊃ Si and we are done.

Remark. We also quote the following result from [Str, p. 166], which we shall
use later: If theω-limit setω(x) has nonempty interior, then∂(ω(x)) is a union
of saddle connections (orbits that are stable and unstable separatrices). Moreover,
except for at most countably manyθ, the vector fieldeiθXp has no saddle connec-
tions and all orbits except possibly separatrices are dense on6.

4. Neighborhood of a Periodic Orbit inC2. Generic Properties

We want first to link the dynamics between nearby level sets in the neighborhood
of a closed orbitO+(x0). We still take genericp of degree≥ 4 as in Section 2,
and we suppose{p = p(x0)} is smooth, irreducible, and does not carry any zero
of Xp.

Proposition 4.1. Let x0 be as before, with periodT0 for the flow ofXp. Then,
either:

(a) there exists a neighborhood ofO+(x0) in C2 where the flow is conjugate to a
rotation with periodT0; or

(b) O+(x0) has a neighborhood where periodic orbits with period nearT0 all lie
in {p = p(x0)}; or

(c) there exists a real1-parameter familyS of values ofc nearp(x0) such that
each periodic orbit nearO+(x0) with periodT nearT0 lies in a {p = c},
c ∈ S.

Proof. Recall from Proposition 3.2 that, ifx0 isT0-periodic, then it has an annular
neighborhoodA in {p = p(x0)} where the flow is conjugate to a rotation. Hence
there is a neighborhoodU of O+(x0) in C2 that is biholomorphic toA×D (unit
disc inC) and where, after a suitable change of coordinates,A lies on thez-axis
and each nearby level set is a graph overA. We assume furthermore thatXp does
not vanish on level sets intersectingU.

The domain of the flow(t, x) 7→ X (t, x) is an open set inC × C2 containing
R × O+(x0). By reducingU if necessary, we can assume thatX (t, x) is well-
defined onV × U, whereV is a neighborhood of [0, T0] in C. Any closed orbit
sufficiently close toO+(x0) with period nearT0 is contained inU. Conversely,
we claim that each closed orbit that remains inU has periodT nearT0. This is a
consequence of the local picture ofU given previously: since any orbit contained
in U lies in annulus overA, a closed orbit cannot windk > 1 times (this argument
is in [FS1]).

Let (with V(T0) a neighborhood ofT0 in C)
ψ : V(T0)× U → C2,

(t, x) 7→ X (t, x)− x.
The foregoing discussion shows that any periodic orbit contained inU is inZ(ψ) =
{ψ = 0}, which is an analytic set. SinceO+(x0) ⊂ Z(ψ), it follows that
dimZ(ψ) ≥ 1.
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If dim Z(ψ) = 1, thenU ∩ {p = p(x0)} is isolated within annuli of periodic
orbits of period nearT0.

If dim Z(ψ) = 2, as

d(t,x)ψ · (τ, ξ) = τXp(X (t, x))+ (d x(t,x)X − id) · ξ
andXp is nonvanishing, one sees readily thatZ(ψ) is smooth(ψ is submersive
nearO+(x0)) and the projection on thex-coordinate is locally onto nearO+(x0).

If Z(ψ) ⊂ {t = T0}, thenO+(x0) has a neighborhood ofT0-periodic orbits. If
not, it means that, forx ∈ U andx = π(T (x), x) with (T (x), x) ∈ Z(ψ) and by
reducingU again, we can suppose thatT(x) is holomorphic and depends only on
p(x), because ifx has aT(x)-periodic orbit(T (x) ∈C) then it is surrounded on
{p = p(x)} by T(x)-periodic orbits. It remains to note that ifT(x) ∈ C\R then
O+(x) spirals outsideU.

Remark. If a point has a complex and nonreal period, its real orbit can still be
closed—that is, have another real period. For example, on the torusC/Z[i], for
anyk ∈Zwe have that any point is(1+ ki)-periodic for the flow of the (complete)
vector field induced by∂/∂u.

We are now in position to prove the main theorem concerning the behavior of
generic polynomial Hamiltonian vector fields.

Theorem 4.2. Let d ≥ 4. There exists a setE of zero measure inPd such that,
for anyp ∈ Pd\E, the set of points with bounded positive orbit forXp is con-
tained in an at most countable union6 of real hypersurfaces inC2. If x ∈C2\6,
then either:

(a) the flow8(t, x) does not exist fort ∈ R+, that is,8(t, x) tends to infinity in
finite positive time(x belongs to the set of separatrices); or

(b) the flow8(t, x) exists fort ∈ R+, in which caseO+(x) is recurrent and the
limit set ofx has nonempty interior in{p = p(x)}.

Moreover, this latter set has full measure inC2\6.
Proof. Propositions 2.1 and 2.2 show that there is a Zariski closed subset (hence
of zero measure)E0 ⊂ Pd such that, forp ∈ Pd\E0, Xp has finitely many zeros
and such thatp is irreducible, of exact degreed, and has only simple roots on
the line at infinity. Hence, for all but finitely manyc ∈C, the results of Section 3
are valid on{p = c}. Forp0 ∈ Pd\E0 we want to show that, for all but at most
countably manyeiθ ∈ S1, we have:

(i) eiθp0 ∈Pd\E0; and
(ii) Xeiθp0

has no open set of bounded(= periodic) orbits.

The first point is obvious, and the second is a theorem of [FS1] whose proof goes
as follows. Let60 be the (finite) set of nongeneric (i.e., reducible or critical) level
lines and let(1n)n≥1 be a neighborhood basis ofC2\60. Let8θ(t, x) be the flow
of eiθXp0 = Xeiθp0

, and set

In = {eiθ ∈ S1 | ∀x ∈1n, ∀t ∈R+, 8θ(t, x)∈B(0, n)};
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if θ0 ∈ In, then8θ0(t, x) is conjugate to a rotation on the open set1̃n saturated of
1n by the flow. Then, for 0< θ < ε, the orbit of points in1n underXei(θ0+θ)p0

spiral outsideB(0, n); that is,θ0 + θ /∈ In. HenceIn and
⋃
n≥1In are at most

countable.
Fubini’s theorem then asserts that there is a setE = E0 ∪ E1 of zero measure

in Pd such that, forp0 ∈ Pd\E, there are no open sets of bounded(= periodic)
orbits. We claim that for such ap0 the conclusions of the theorem are valid.

Letp0 ∈Pd\E as before. LetAn = {periodic points inB̄(0, n)with periodT ∈
[1/n, n]} (we avoid zero because there may be fixed points inB(0, n)). ThenAn
is contained in a finite union of real hypersurfaces. Indeed, sincep0 /∈ E, there
is no open set of periodic orbits and hence (by Proposition 4.1) for all(x, T0) ∈
B̄(0, n)× [1/n, n] there existsV1×V2 ∈Neigh(x, T0) such that either:

(i) no point ofV1 is T -periodic for allT ∈V2; or
(ii) all points ofV1 that areT -periodic(T ∈V2) are contained in a real hypersur-

face, possibly a single level set.

Compactness of̄B(0, n)× [1/n, n] then implies the desired result. We deduce that
bounded orbits are contained in

⋃
n An, which is a countable union of real hyper-

surfaces. The behavior of unbounded orbits on generic level lines was detailed in
Section 3 (see esp. Proposition 3.4).

Remarks. 1. By reversing time, one obtains similar conclusions for negative and
total orbits.

2. The proof shows that, ifN is the dimension ofPd , thenE hasσ -finite
(N −1)-dimensional Hausdorff measure.

3. In the case of degree 3, generic level sets are complex tori andXp has neither
zeros nor poles. ThusXp is induced by a constant vector field, and its dynamics is
well known: orbits are all periodic or all dense. The dynamics in the genus-0 case
is described in [MV].

With the terminology of [FS3], we say that the quasi-ergodic hypothesis is satisfied
if, in generic level sets, there is a dense orbit. We prove here that the quasi-ergodic
hypothesis is valid for polynomial Hamiltonian vector fields inC2.

Theorem 4.3. Letd ≥ 4. Then there exists a dense subsetG of full measure of
Pd with the following property: for anyp∈G, there is a denseGδ subsetCp ⊂ C
such that, forc ∈ Cp, there is a dense orbit on{p = c}.
Remark. It follows from the proof of Corollary 4.4 thatG is aGδ.

Proof of Theorem 4.3.We first exhibit the setG. Letp be a generic degree-d poly-
nomial as in Theorem 4.2, and letE be as in this theorem. Pick a dense sequence
{cn, n ∈ N} in C. We know (see the remark after Proposition 3.4) that for each
p−1(cn), except for a set2n consisting of at most countably manyθ, the vector
field eiθXp has all orbits except separatrices dense onp−1(cn) (this is a matter of
breaking all saddle connections).

Thus we have that, for eachp ∈Pd\E, there exists a countable set2 such that,
for θ /∈2:
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(i) on each level line{p = cn}, n ∈ N, all orbitsXeiθp except separatrices are
dense; and

(ii) eiθp ∈Pd\E (i.e.,eiθp is generic in the sense of Theorem 4.2).

By Fubini’s theorem, the setG ⊂ Pd\E of polynomials with dense orbits on
{p = cn, n∈N} is of full measure.

It remains to show that ifp ∈G then the set

{x ∈C2 | O+(x) is dense inp = p(x)}
is aGδ; this easily implies the same property for valuesc ∈C. First we claim that
there exists a family of (nonconnected) open setsUn “transverse” to the singular
foliation {p−1(c), c ∈C} in the following sense:

(i) for each noncritical valuec ∈C of p and for alln∈N, p−1(c) ∩ Un 6= ∅;
(ii) for each noncriticalc, {p−1(c)∩Un, n∈N} is a neighborhood basis ofp−1(c).

We now sketch the construction of this family. Above each noncritical valuec of
p (there are finitely many critical values by Bezout’s theorem),p is a topological
fibration with fiber isomorphic to a genus-g surface minusd points. Hence, above
a small neighborhoodV of c we easily get a familyUn(V ) satisfying the desired
assumptions. Then it suffices to coverC\{critical values} by a countable number
of suchV.

Next, letU k be the open set ofx such thatO+(x) hitsUk. We know that

U k ⊃ {p = cn, n∈N};
therefore,U k is dense and

⋂
k Uk is the desiredGδ.

LetE = O(C2) be the space of entire functions inC2. The following corollary was
proved for entire Hamiltonian vector fields in [FS3] with quite different methods.
Theorem 4.3 allows us to provide a new proof of this result.

Corollary 4.4. There exists a denseGδ and aG′ of Hamiltonians inE satisfy-
ing the quasi-ergodic hypothesis. In other words, forH ∈G′ there is a denseGδ
subsetCH ⊂ C such that, forc ∈ CH , there is a dense orbit on{p = c}.
Proof. We know by Theorem 4.3 that the quasi-ergodic hypothesis is valid on a
dense subset ofE; we need only check that it is valid on aGδ.

For this, takep ∈Pd satisfying the quasi-ergodic hypothesis and let6 = p−1(c)

with a dense orbit. Cover6 ∩ B̄(0, N ) by a finite number of balls{Uj }1≤j≤q(N )
of radius< 1/m (m andN are positive integers). LetU = U(p, c, ε,m,N ) ⊂ E
be the open set of HamiltoniansH such that:

(i) ‖p −H‖L∞(B̄(0,N)) < ε;
(ii) there exists a neighborhoodV1(c) of c such thatc ′ ∈V1(c) implies

H−1(c ′) ∩ B(0, N ) ⊂
q(N )⋃

1

Uj ;
and

(iii) there exists a neighborhoodV2(c) of c such that, forc ′ ∈ V2(c) and for all
j1, j2, there is an orbit onH−1(c ′) intersectingUj1 andUj2.

It is clear thatU is a neighborhood ofp in E .
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Now the union—of theseU(p, c, ε,m,N ) for p in
⋃
d≥4Pd satisfying the

quasi-ergodic hypothesis andc such that there is a dense orbit onp−1(c)—is an
open dense subsetU(ε,m,N ) of E . The intersectionG′ = ⋂

ε,m,N U(ε,m,N )
provides the desiredGδ (we pick a sequenceεn→ 0).

Indeed, ifH ∈G′, let Vm,N be the set ofc ∈ C such that there is a covering of
H−1(c)∩B(0, N ) by finitely many balls of radius 1/m and an orbit ofXH that in-
tersects all these balls. ThenVm,N is open and dense inC. And if c ∈⋂m,N Vm,N,
then the flow ofXH is topologically transitive onH−1(c).

5. Exploding Orbits

First, we need to recall well-known facts concerning Fatou–Bieberbach (F.B.) do-
mains. An F.B. domain is an open� ⊂ C2, biholomorphic toC2 and such that
�̄ 6= C2. Such domains frequently arise in holomorphic dynamics of automor-
phisms ofC2.

Consider a so-called Hénon mapping

f : C2→ C2,

(z, w) 7→ (aw + q(z), az),
with |a| < 1 and whereq is a polynomial of degree at least 2. Suppose that 0 is an
attracting point; then its immediate basin of attraction� is an F.B. domain, which
is Runge and has the following remarkable property [BS]:� intersects each alge-
braic curve on a nonempty relatively compact set.

This fact can be used to construct vector fields with many exploding orbits (see
[F]); we recall here a basic example. Letφ : C2→ � be the F.B. map, and con-
sider for instance a constant vector fieldV in �: all real orbits are real lines and
so cut∂� in finite time. Thus, all real orbits of(φ−1)∗V (where(·)∗ denotes the
usual push-forward on vector fields) explode.

Let E be the space of entire functions inC2, which is seen as the space of holo-
morphic Hamiltonians.

Theorem 5.1. There is a dense subsetG ⊂ E such that, for everyH ∈ G, the
set of points with nonexploding orbits forXH is contained in an at most countable
union of real hypersurfaces.

Proof. With notation as before, the operatorφ∗ : O(�)→ O(C2) = E, φ∗(g) =
g Bφ, is a continuous (topology of uniform convergence on compact sets) isomor-
phism. LetP be the space of holomorphic polynomials of two variables,P =⋃
d≥1Pd . Since� is Runge,φ∗(P) is a dense subset ofE, and ifP ′ is dense in
P then so isφ∗(P ′) in E . Take as aP ′ the union ford ≥ 4 of the full measure
subsets of Theorem 4.2; of course,P ′ is dense inP. We claim thatG = φ∗(P ′)
satisfies the assertion of the theorem.

First, note that if the eigenvalues of the Hénon mappingf at 0 are nonresonant
(e.g., 0< |λ1| < |λ2| and|λ2|2 < |λ1|) then the F.B. mapφ is limn→∞(d0f )

−nf n
and is of constant Jacobian determinant 1 (this is also true without the nonreso-
nance assumption [RR; Ste]), soφ preserves the symplectic form:φ∗(dz∧dw) =
dz ∧ dw.
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Henceφ preserves Hamiltonian vector fields [AM]; that is,φ∗(XL) = XLBφ−1.

In particular, ifL = p Bφ ∈ φ∗(P ′) thenφ∗(XL) = Xp. This means that the (real)
integral curvesγt of XL are theφ−1 B σt , whereσt are the integral curves ofXp.
Then we are done:γt explodes if and only ifσt reaches∂� in finite time, and be-
cause{p = c} ∩ � is bounded for anyc, this happens ifσt is unbounded and so
the theorem follows from Theorem 4.2.

Remark. We cannot expect to obtain (Baire-) generic properties inE, owing to
Corollary 4.4.

6. Exploding Orbits in C2k

HereE denotes the space of entire functions inC2k. We want to give a proof of
the following theorem.

Theorem 6.1. There exists a dense subsetG ⊂ E such that, ifH ∈G, then the
set of points inC2k with exploding orbits forXH is a denseGδ.

We recall that inC2k (coordinates(z1, . . . , zk, w1, . . . , wk)) provided with the sym-
plectic formω =∑ i dzi ∧ dwi, the holomorphic Hamiltonian vector field asso-
ciated with the HamiltonianH is

XH =
(
∂H

∂w1
, . . . ,

∂H

∂wk
,−∂H
∂z1

, . . . ,− ∂H
∂zk

)
;

hereXH is tangent to the hypersurfaces{H = c}.
The following theorem is due to Fornæss and Sibony [FS2].

Theorem 6.2. There exists a denseGδ subsetG′ ⊂ E such that, ifH ∈G′, then
the set of points inC2k with unbounded orbits forXH is a denseGδ.

It is an easy exercise to see that in this theorem one can replaceE by the space
Pd of holomorphic polynomials of degree≤ d in C2k (d ≥ 3, d fixed). Indeed,
the main argument of the proof is that bounded open sets of bounded orbits are
unstable under small perturbations (replacingXp byXeiθp) of the Hamiltonian.

Proof of Theorem 6.1.

Step 1: A Fatou–Bieberbach domain.The technique of proof is the same as in
Section 5. Letf be the following polynomial automorphism ofC2k:

f : (z1, . . . , zk, w1, . . . , wk) 7→ (aw1+ q(z1), . . . , awk + q(zk), az1, . . . , azk),

with |a| < 1, q a polynomial of degree≥ 2, and 0 as an attracting fixpoint. Note
thatf is a regular automorphism [S] and the basin of attraction of 0 is a Fatou–
Bieberbach domain�. In homogeneous coordinates inP2k, [Z1 : · · · : Zk : W1 :
· · · : Wk : T ], we have

�̄ ∩ {T = 0} = I +(f̄ ) = [0 : · · · : 0 :W1 : · · · : Wk : 0] =: I +

[S]; it is a (k − 1)-dimensional linear subspace of{T = 0} ∼= P2k−1. If for each
d ≥ 3 we find aGδ dense subsetGd ⊂ Pd such that, forp ∈Gd, the generic real
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orbits ofXp cut ∂� in finite (positive and negative) time, then Theorem 6.1 will
be proven (see Section 5).

Step 2: The complex orbits.We study here the leaves of the singular holomor-
phic foliation by curvesF onP2k generated by the vector fieldXp for genericp ∈
Pd . In what follows,Lx denotes the leaf ofF throughx; if x ∈ �, then3x is
the connected component ofLx ∩� containingx andO+(x) is the real-time pos-
itive orbit throughx. We want to show that, nearI +, F has a nice behavior for
genericp.

We compute the expression ofXp after a change of coordinates near{T = 0},
for example, in the chart{W1 6= 0}. One has

z1= Z1/T, . . . , zk = Zk/T and w1= W1/T, . . . , wk = Wk/T ;
set

x1= Z1

W1
, . . . , xk = Zk

Wk

, y2 = W2

W1
, . . . , yk = Wk

W1
, t1= T

W1
.

The generic point is

m = (z1, . . . , zk, w1, . . . , wk) = (x1/t1, . . . , xk/t1,1/t1, y2/t1, . . . , yk/t1),

where the two expressions make sense. The expression ofXp(m) in the new chart
is

k∑
i=1

[
t1
∂p

∂wi
(m)+ xit1 ∂p

∂z1
(m)

]
∂

∂xi
+

k∑
j=2

[
−t1 ∂p

∂zj
(m)+ yj t1 ∂p

∂z1
(m)

]
∂

∂yj

+ t 21
∂p

∂z1
(m)

∂

∂t1
.

To obtain a holomorphic vector field near{t1 = 0}, we need to multiplyXp by
t d−2
1 for genericp (outside a proper algebraic subset ofPd). Then the singulari-

ties ofF in {T = 0} are the solutions of the homogeneous system of generically
independent 2k −1 equations

1

z1

∂pd

∂w1
= · · · = 1

zk

∂pd

∂wk
= 1

w1

∂pd

∂z1
= · · · = 1

wk

∂pd

∂zk
,

wherepd is the highest-degree term ofp.
As a consequence we get that, for (Zariski-) genericp (see Section 2 for

methods):

(i) {T = 0} and{T = 0} ∩ {p̃ = 0} areF-invariant;
(ii) Sing(F ) is 0-dimensional and Sing(F ) ∩ I + = ∅; and

(iii) there are no tangencies betweenF andI +.

For the last property, note thatI + is the(k−1)-dimensional subset of{T = 0} ∼=
P2k−1 parametrized by [0 :· · · : 0 : W1 : · · · : Wk : 0]; moreover, in an affine
chart of{T = 0}, F is generated by a vector fieldX = (X1, . . . , X2k−1) as before.
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Now the set of points whereX is parallel toI + is {X1= · · · = Xk = 0}, which is
again(k −1)-dimensional. These two sets generically do not intersect.

Remark. It is possible to show that the indeterminacy setI +(f̄ ) of the projec-
tivization of a polynomial automorphism ofC2k preservingω has dimension≥
k −1.

Step 3.There exists a neighborhoodV of I + inC2k such that, for Baire-generic
p, there is an openV1 dense inV such that all real orbits ofXp starting atV1∩�
cut ∂� in finite positive and negative time.

Takep Zariski-generic satisfying the conclusions of step 2, and fix a neighbor-
hood ofI + free of singular points. Ifx ∈ I + thenLx is transverse toI +; we
can straightenF in a neighborhoodN of x in P2k. In the straightened chart,I +
is a submanifold nowhere tangent to the foliation,F is parallel to{T = 0}, and
�̄ ∩ {T = 0} = I +. This ensures that ify ∈� is close enough tox then the con-
nected component3y of Ly ∩ � satisfies3y ⊂⊂ N and3y ∩ {T = 0} = ∅;
hence3y is bounded inC2k and biholomorphic to a bounded domain inC.

Because the leaves ofF are straightened inN, we can use the methods of Sec-
tions 3 and 4 here (beware that, in the foliated chart, the vector fieldXp is tangent
to a set of straight lines but not constant). If the positive orbit ofy1∈3y does not
cut ∂� in finite time then it is periodic, since3y is biholomorphic to a bounded
open set inC (remember, there are no critical points inV ). Also, for all but count-
ably manyθ, Xeiθp has no open sets of periodic orbits inV and periodic orbits
remain in a union of real submanifolds of codimension≥ 1.

The complement of this union of submanifolds is not open a priori, and it re-
mains to check that the dense set of points ofV ∩�with orbits leaving� contains
an openV1: just note that the condition “O+(x) leaves�̄” is open. We can do the
same for negative orbits. This proves step 3.

To conclude the proof of Theorem 6.1, take (Baire-generic)p satisfying steps
2 and 3. Letx ∈ C2k; then3x ⊂⊂ C2k. Indeed, ifLx ∩ � had an unbounded
component then it would reach any neighborhood ofI +, which contradicts the
local picture given in step 3: nearI +, the leaves are parallel to the hyperplane at
infinity and the connected components3y are bounded. Hence, ifO+(x) is un-
bounded then it cuts∂� in finite time. So ifp is taken in the Baire-generic family
of Theorem 6.2—which comes down to breaking open sets of periodic orbits by
multiplying by eiθ—then we are done.

Remarks. 1. Following these techniques, one can easily show the same kind of
results for volume-preserving vector fields inCn.

2. As in theC∞ case [AM], it is possible to find an invariant measure on generic
level sets for a polynomial Hamiltonian vector field (at least for genericp). Indeed,
assume{Xp = 0} ∩ {p = 0} = ∅; then, by Hilbert’s Nullstellensatz, there exists
a polynomial holomorphic(2k − 1,0)-form σ such thatσ ∧ dp = (1− Ap)ωk,
whereA is a polynomial. One then easily checks thatσ|p=0 is anXp-invariant
form (this is a local condition) and thatiσ ∧ σ̄ is an invariant volume form on
{p = 0}.
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