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Families of Affine Planes:
The Existence of a Cylinder

Shulim Kaliman & Mikhail Zaidenberg

Introduction

Dolgachev and Weisfeiler [9, (3.8.5)] formulated the following.

Conjecture. Letf : X→ S be a flat affine morphism of smooth schemes with
every fiber isomorphic(over the residue field) to an affine space. Thenf is locally
trivial in the Zariski topology.

In the characteristic-0 case, this conjecture is known to be true (under much weaker
assumptions) for morphisms of relative dimension 1 ([24; 23, Thm. 2]; see also
[30, Thm. 2] and [5; 6; 10]). Another proof based on the Rosenlicht–Chevalley–
Grothendieck theory of special algebraic groups [2; 37] was indicated by Danilov;
see [9]. The known partial positive results in higher relative dimensions (see e.g.
[30; 38] and [4, (3.9)–(3.10)]) deal only with families over a 1-dimensional base
with 2-dimensional fibers, under an extra assumption that the generic fiber is the
affine plane as well. In this paper we show that the latter assumption holds over any
base. To simplify consideration, we restrict it to smooth, quasi-projective varieties
defined overC (actually, Theorem 0.1 remains true over any algebraically closed
field of characteristic 0).

We say that a familyf : X → S of quasi-projective varietiescontains a cylin-
der if, for some Zariski open subsetS0 of S, there is a commutative diagram

f −1(S0)
ϕ //

f ��======= S0 × Ck

pr1
¡¡�������

S0

whereϕ is an isomorphism. (In general, by acylinder overU we mean a Carte-
sian productU × Ck wherek > 0.)

Our main result is the following theorem.

Theorem 0.1. A smooth familyf : X→ S with general fibers isomorphic toC2

contains a cylinderS0 × C2.
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See [14; 29; 31; 39] for statements of this type concerning affine surfaces with log-
arithmic Kodaira dimension−∞. We do not know if the theorem remains true in
higher relative dimensions.

A theorem of Sathaye ([38], which fixed a preliminary incomplete version in
[22]; cf. also [4, (3.9)–(3.10)]), together with Theorem 0.1, proves the following.

Corollary 0.2. The Dolgachev–Weisfeiler conjecture is, indeed, true for fam-
ilies of affine planes over smooth curves.

Recall that, for an affine domainR (overC) and a prime idealp of R, the resi-
due field ofR at p isK(p) := Rp/(pRp), whereRp is the localization ofR at p.
Note that sometimes the assumption of the Dolgachev–Weisfeiler conjecture is
addressed in a more restrictive form, not only for closed points ofS but for all its
points. Namely, one supposes the existence of isomorphisms

A⊗R K(p) ' K(p)[n] ∀p∈SpecR.

The next corollary shows that, at least forn = 2, this additional assumption is
fulfilled automatically.

Corollary 0.3. LetA be an affine domain overR. If

A⊗R K(p) ' K(p)[2] (1)

for any maximal idealp ofR, then this is so for every prime idealp∈SpecR.

Proof. DenoteS := SpecR andX := SpecA, and letf : X → S be the mor-
phism induced by the inclusionR ↪→ A. Note first that ifp = 0 is the zero ideal
and soK(p) is the fraction field ofR (i.e., for the generic point ofS), then con-
dition (1) is nothing but the existence of a cylinder off. For a prime idealp ∈
SpecR, denoteSp = V(p) = SpecRp andXp = SpecAp ⊂ X, whereRp :=
R/p andAp := A ⊗R Rp. If M ⊃ p is a maximal ideal ofR thenMp := MRp

is a maximal ideal ofRp, and any such ideal arises in that way. Our assumption
implies thatAp ⊗Rp K(Mp) ' K(Mp)

[2], that is, the fibers ofXp → Sp over the
closed pointsMp ∈ Sp are isomorphic to the affine plane. In view of this observa-
tion, the existence of a cylinder offp := f |Xp

: Xp → Sp provided by Theorem
0.1 simply means that (1) is fulfilled for the algebraAp overRp with the zero ideal
p′ = 0 of the algebraRp. In turn, the latter means that (1) is fulfilled forp.

On the other hand, Theorem 0.1 provides one of the principal ingredients in the
proof of the following statement (see [21, LemmaIII]).

Theorem [21]. A polynomialp onC3 with general fibers isomorphic toC2 is
a variable of the polynomial algebraC [3] (that is,C [3] ' C[p][2]). In particular,
all its fibers are isomorphic toC2.

Up to Theorem 0.1, this result was observed in [28, Prop. 4.3] and [38, Cor. on
p. 60] for polynomials with only smooth (or at least factorial [30]) fibers; now we
see that this condition is superfluous.
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Let us give a brief outline of the proof. It uses the following simple observation
(Lemma 3.2): Letf̄ : V → S be aP n-family over a quasi-projective base, and let
D ⊆ V be an irreducible smooth divisor that meets every fiberVs := f̄ −1(s) '
P n (s ∈ S) transversally along a hyperplane; then the family(V,D) over S is
locally trivial in the Zariski topology. Thus, to prove Theorem 0.1 it suffices to
complete a givenC2-family f : X→ S obtaining aP2-family f̄ : V → S with an
irreducible divisorD = V \X as before. We start with an arbitrary relative com-
pletionf̄ : V → S with an SNC (simple normal crossing) divisorD = V \X, and
then we contract successively the superfluous irreducible componentsE of D in
order to obtain a minimal relative SNC completion. Owing to a relative version of
the Castelnuovo–Enriques–Kodaira contraction theorem (Theorem 3.2),E can be
smoothly contracted if, for everys ∈ S, the irreducible components(Cs,i )i=1, ...,n

of Es := E ∩Vs are disjoint(−1)-curves in the surfaceVs. That is,(Cs,i )i=1, ...,n

must correspond to a set of(−1)-vertices of the weighted dual graph0(Ds) (where
Ds := D ∩Vs) that contains no pair of neighbors.

Combinatorially,0 does not change whens varies in an appropriate Zariski
open subsetU ⊆ S. For a fixeds ∈ U there is a natural monodromy represen-
tation π1(U) → Aut0(Ds) that acts transitively on the set(Cs,i )i=1, ...,n, leav-
ing it invariant. We show (Proposition 2.2) that the dual graph0 of an arbitrary
nonminimal SNC completion ofC2 possesses an orbit of Aut0 that consists of
(−1)-vertices and has no pair of neighbors. Thus, we can minimize0 by then
contracting it (via equivariant contractions) to a minimal linear chain known as a
Ramanujam–Morrow graph. By Theorem 3.2, this minimization can be realized
geometrically.

The advantage of a Ramanujam–Morrow graph0 is that (with one simple ex-
ception) the group Aut0 is trivial; henceforth, for any irreducible componentE of
D, the curveEs = E ∩Vs is irreducible as well. Moreover,0 can be transformed
to a single-vertex graph via a sequence of blow-ups and blow-downs. Since the
monodromy action is trivial, these blow-ups and blow-downs can be done simul-
taneously overU, thus yielding the desired single-component SNC completion as
in Lemma 3.2, which completes the proof.

We are grateful to M. Brion, L. Bonavero, I. Dolgachev, H. Flenner, Sh. Ishii,
V. Lin, D. Markushevich, and P. Russell for their advice and references.

1. A Contraction Theorem

The main result of this section (Theorem 1.3) is a relative version of the classi-
cal Castelnuovo–Enriques–Kodaira contraction theorem. In the analytic setting it
follows from the Moishezon–Nakano–Fujiki theorem (see [1; 13; 26; 32; 34] and
especially [12, Rem. 3]), whereas in the projective setting it follows from the theo-
rem on contraction of extremal rays as given in [25, Thm. 3-2-1] (cf. also [3; 7; 20;
27]). Actually, the particular version that we need is much simpler, so we provide
a proof along the lines of the Castelnuovo–Enriques–Kodaira original approach
[26, Apx.; 17, Sec. 4.1, p. 154].
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As usual, the structure sheaf of an algebraic varietyX is denoted byOX. If L is
a line bundle onX and ifY is a subvariety ofX, thenOY (L) denotes the sheaf of
germs of section ofL overY.We begin with the following lemma (cf. [15, Sec. 7.6;
35, Thm. 4.7]).

Lemma 1.1. Let ρ : E → S be a smooth proper morphism of smooth quasi-
projective varieties with fibersEs := ρ−1(s) (s ∈ S). For a line bundleL onE
we denoteL := OE(L) andLs := OEs(L). Suppose that

(o) H q(Es,Ls) = 0 for all s ∈ S and allq ≥ 1.

Then, for any Zariski open affine subsetS0 ⊂ S andES0 := ρ−1(S0), we have:

(a) H q(ES0,L) = 0 for all q ≥ 1, and
(b) for every points ∈ S0, the restriction homomorphism

H 0(ES0,L)→ H 0(Es,Ls)
is surjective; furthermore,

(c) the sheafρ∗L is locally free and generated by a vector bundle(say,ξ(L))
overS with fibersξ(L)s = H 0(Es,Ls), s ∈ S.

Proof. (a) Note that by [19, Prop.III.9.2.c], L is a flatOS-module. In virtue of
the assumption (o), for everys ∈ S and everyq ≥ 1 the natural homomorphism

Rqρ∗L⊗OS k(s)→ Hq(Es,Ls) = 0

is an isomorphism, and the coherent sheafRqρ∗L is locally free [15, Thm. 4; 19,
Thm. III.12.11.a, Ex. II.5.8.c; 8, Prop. II.3.7]; herek(s) ' C denotes the residue
field of a closed points ∈ S. Thus we have

Rqρ∗L = 0 ∀q ≥ 1.

The Leray spectral sequence gives now isomorphisms

Hq(E,L) ' Hq(S, ρ∗L) ∀q ≥ 1 (2)

[35, (5.16)]. For a Zariski open affine subsetS0 ⊂ S, by Serre’s vanishing theo-
rem [19, Thm.III.3.7] we have

H q(S0, ρ∗L) = 0 ∀q ≥ 1,

which together with (2) implies (a).
(b) SinceR1ρ∗L = 0, it follows that for every points ∈ S0 the homomorphism

ρ∗L⊗OS0
k(s)→ H 0(Es,Ls) (3)

is surjective, whence it is an isomorphism [19, Thm.III.12.11]. On the other hand,
sinceS0 is affine we have an isomorphism

(ρ∗L)|S0 ' H 0(ES0,L)∼, (4)

whereM∼ denotes theOS0-module generated by anH 0(S0,OS0 )-moduleM [19,
Prop.III.8.5]. Now (3) and (4) yield (b).

(c) By (o) we haveh(s) := dimH 0(Es,Ls) = χ(Es,Ls), where the Euler
characteristic is locally constant onS [15, Thm. 5; 8, Prop. II.3.8]. Now the
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isomorphism in (2) and [19, Ex. II.5.8.c] imply thatρ∗L is a locally free sheaf with
ρ∗L ' OS(ξ(L)), whereξ(L)s = H 0(Es,Ls), s ∈ S. The proof is completed.

Corollary 1.2. The statements of Lemma 1.1 remain true if one replaces the
assumption(o) by any one of the following two.

(o′) For everys ∈ S, the line bundleL|Es −KEs on the fiberEs is ample, where
KEs is the canonical bundle onEs.

(o′′) For everys ∈ S and for each irreducible componentC of the fiberEs, C '
P n (n ≥ 1) andL|C ' O(l ) with l ≥ 0.

Indeed, by the Kodaira–Nakano vanishing theorem, any one of the conditions (o′)
and (o′′) implies (o)[17, Sec. 1.2, p. 154].

Theorem 1.3. Let π : V → S be a smooth proper morphism of smooth quasi-
projective varieties, and letE ⊂ V be an irreducible smooth divisor( proper over
S) that meets every fiberVs = π−1(s) (s ∈ S) transversally. LetEs := Vs ∩E =⋃m
i=1Cs,i be the decomposition into irreducible components(ordered arbitrarily

for everys ∈ S).
(a) Assume that, for everys ∈ S and eachi = 1, . . . , m, Cs,i ' P n (n ≥ 1) with

the conormal bundleJCs,i /J
2
Cs,i
' OP n(1), whereJCs,i is the ideal sheaf of

Cs,i in Vs. (In other words, by Kodaira’s contraction theorem [26] we assume
that each irreducible componentCs,i can be contracted in the fiberVs into a
smooth point.)Then there is a commutative diagram

V
ϕ //

π
��222222 W

π ′
��������

S

whereW is a smooth quasi-projective variety,π ′ is a smooth morphism, and
ϕ is anS-contraction of the divisorE onV onto a smooth subvarietyA ⊂ W
étale overS.

(b) Let E ′ be another smooth divisor onV ( proper overS) that meets every
fiber Vs (s ∈ S) and the divisorE transversally, and letE ′s := E ′ ∩ Vs =⋃m′
j=1C

′
s,j be the decomposition into irreducible components. Assume that,

for everys ∈ S and for every pairi, j such thatCs,i ∩C ′s,j 6= ∅, this intersec-
tion becomes a hyperplane under an isomorphismCs,i ' P n as in (a). Then
ϕ(E ′) is a divisor onW ( proper overS) whose singularities are at worst
transversal intersections(alongA) of several smooth branches.

Proof. (a) We may assume in the sequel that the baseS is connected. Fix a very
ample line bundleH onV. For an arbitrary points0 ∈ S, lettingL = mH with m
sufficiently big, we may assume that the line bundleL|Vs0

−KVs0
on the fiberVs0

overs0 is ample; hence, by the Kodaira vanishing theorem (see[17, Sec. 1.2]), we
haveHq(Vs0,Ls0 ) = 0 for all q ≥ 1 (hereLs := OVs (L)). SinceL is a flatOS-
module, by the semi-continuity theorem [19, Thm.III.12.8] it follows that
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Hq(Vs,Ls) = 0 ∀q ≥ 1 (5)

for every points in a neighborhoodS0 of the points0. Thus, form0 large enough
andL = L0 := m0H, (5) holds for every points ∈ S.

Since the divisorE is irreducible, the monodromy of the smooth familyπ|E :
E → S acts transitively on the set of irreducible components{Cs,i}mi=1 of the
fiberEs (s ∈ S). Hence all these components (regarded as cycles ofV ) are alge-
braically (and then also numerically) equivalent. Thusk := deg(L0|Cs,i ) does not
depend ons, i. Consider the (Cartier) divisorsLj := L0+ jE = m0H + jE onV
(j ∈Z). Under our assumptions(Cs,i ' P n and [Cs,i ]|Cs,i ' OP n(−1)), for every
s ∈ S and eachi = 1, . . . , m we haveLj |Cs,i ' OP n(l ) with l := k − j, so

H q(Es, (Lj )s) = 0 ∀q ≥ 1, ∀j = 0, . . . , k. (6)

Now the same argument as in the proof of the Castelnuovo–Enriques–Kodaira the-
orem [26, Apx.; 17, p. 477] shows that:

(i) for everyj = 0, . . . , k and for everys ∈ S, the restriction map

H 0(Vs, (Lj )s)→ H 0(Es, (Lj )s)
is surjective;

(ii) the linear system|Lk|Vs | of divisors onVs is base point free; and
(iii) the associated morphismϕs : Vs → Ph−1 = P(H 0(Vs, (Lk)s)∗) (with h :=

h0(Vs, (Lk)s)) yields a contraction of the irreducible componentsCs,i (i =
1, . . . , m) of the divisorEs ⊂ Vs intom distinct smooth points.

For the convenience of readers we sketch this argument. For eachj = 1, . . . , k,
consider the short exact sequence of sheaves

0→ OVs (Lj−1)→ OVs (Lj )→ OEs(Lj )→ 0

and the corresponding long exact cohomology sequence

0→ H 0(Vs, (Lj−1)s)→ H 0(Vs, (Lj )s)
→ H 0(Es, (Lj )s)→ H1(Vs, (Lj−1)s)→ · · · . (7)

It follows from (6) and (7) that, for everyq ≥ 1, the natural homomorphisms

H q(Vs, (L0)s)→ Hq(Vs, (L1)s)→ · · · → Hq(Vs, (Lk)s)
are surjective, and so by (5) all these groups vanish; in particular,

H q(Vs, (Lk−1)s) = Hq(Vs, (Lk)s) = 0 ∀q ≥ 1, ∀s ∈ S. (8)

Now (7) implies (i).
Since the line bundleLk|Vs\Es ' L0|Vs\Es is very ample, the restrictionϕs |Vs\Es

gives an embedding. Furthermore, the restrictionLk|Es is a trivial bundle and so
(ii) and (iii) easily follow.

By Lemma1.1(c), (8) implies that the dimensionh := h0(Vs, (Lk)s) is constant
onS and thatξ(Lk) =

(⋃
s∈S H 0(Vs, (Lk)s)→ S

)
is a rank-h vector bundle on

S. Thus,
ϕ : V → P(ξ(Lk)∗), ϕ|Vs = ϕs,
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is clearly a proper morphism onto a closed subvarietyW := ϕ(V ) of (the total
space of) the projective bundleP(ξ(Lk)∗); actually it consists of contracting the
divisorE ⊂ V onto a smooth subvarietyA ⊂ W étale (andm-sheeted) overS
under the projectionπ ′ := pr|W, where pr :P(ξ(Lk)∗)→ S is the standard pro-
jection. By [19, Prop. II.7.10(b)], P(ξ(Lk)∗) is a quasi-projective variety, whence
so isW.

The morphismϕ : V \E→ W \A ↪→ Ph−1 is an embedding (indeed, so is the
morphism given by the line bundleLk|V \E ' L0|V \E). HenceW \A is a smooth
variety. To show that the varietyW itself is smooth, we proceed locally using
local trivializations of the vector bundleξ(Lk). Fix a points ∈ S together with an
affine neighborhoodS0 of s in S and an indexi0 ∈ {1, . . . , m}. Since by (i) the
restriction mapH 0(Vs, (Lk−1)s) → H 0(Es, (Lk−1)s) is surjective, we can find
n+1 sectionsξs,0, . . . , ξs,n ∈H 0(Vs, (Lk−1)s) that are linearly independent when
restricted to sections ofLk−1|Cs,i0 ' OPn(1). Fix also a sectionη0 of the line bun-
dle [E ] over V that vanishes onE, another oneηs,1 ∈ H 0(Vs, (Lk)s) that does
not vanish onCs,i0, and a basisσs,j (j = 1, . . . , h) of H 0(Vs, (Lk)s). Shrinking
the neighborhoodS0 (if necessary) we may assume thatσs,j = σj |Vs , whereσj ∈
H 0(VS0,Lk) (j = 1, . . . , h) (see Lemma1.1(b))and, for any points ′ ∈ S0, the
restrictionsσj |Vs ′ ∈H 0(Vs ′ , (Lk)s ′) (j = 1, . . . , h) still form a basis. Decompos-
ing the sectionsηs,1, (η0|Vs ) · ξs,l ∈H 0(Vs, (Lk)s) (l = 0, . . . , n) by the basisσs,j
(j = 1, . . . , h),we may extend them to sections, say,η1, ξ0, . . . , ξn ∈H 0(VS0,Lk)
decomposed by the systemσj ∈H 0(VS0,Lk) (j = 1, . . . , h) with the same coef-
ficients. Then the ratios

z ′0 := ξ0

η1
, . . . , z ′n := ξn

η1
(9)

can be pushed down to regular functions (say)z0, . . . , zn in a neighborhood of the
point cs,i0 := ϕ(Cs,i0 ) ∈ A in W that give a local coordinate system on the fiber
Ws with center at the pointcs,i0 (cf. [26, Apx.; 17, p. 477]). Clearly, they still give
a local coordinate system on the fiberWs ′ around the pointcs ′,i0 := ϕ(Cs ′,i0 ) ∈A
close enough tocs,i0. Thus if(x1, . . . , xr) (with r := dimC S) is a local coordinate
system at the points ∈ S, then(x1, . . . , xr , z0, . . . , zn) define a local coordinate
system onW with center at the pointcs,i0; the projectionπ ′ in these local coordi-
nates is given as

(x1, . . . , xr , z0, . . . , zn) 7→ (x1, . . . , xr).

This proves (a).
(b) LetM be an algebraic vector bundle on an algebraic varietyZ, and letL,L′

be two transversal vector subbundles ofM, so thatM/(L ∩ L′) ' L/(L ∩ L′)⊕
L′/(L ∩ L′). Then we haveM/L ' L′/(L ∩ L′). LettingM := TV |E∩E ′ , L :=
TE|E∩E ′ , andL′ = TE ′|E∩E ′ , and using our previous observation, we obtain an
isomorphism of the normal bundles

N(E∩E ′ )/E ′ ' NE/V . (10)

By assumption, for everys ∈ S and for every pair(i, j) with Cs,i ∩ C ′s,j 6= ∅, we
have(Cs,i , Cs,i ∩C ′s,j ) ' (P n,P n−1) andNCs,i/Vs ' OP n(−1), so it follows from
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(10) thatN(Cs,i∩C ′s,j )/E ′s ' OP n−1(−1). This allows us to apply the arguments of (a)

(which are valid also forn = 0), replacing the pair(V,E) by the pair(E ′, E∩E ′).
Hence the restrictionϕ|E ′ is anS0-contraction of the divisorE∩E ′ onE ′. The im-
ageϕ(E ′) is a divisor inW proper overS0 that has only smooth branches (in fact,
for n ≥ 2 the image itself is smooth because then, assuming thatE ′ is smooth, for
anyi ∈ {1, . . . , m} we haveCs,i ∩ C ′s,j 6= ∅ for at most one value ofj). Since for
everys ∈ S the fiberE ′s := E ′ ∩Vs is a smooth divisor inVs andϕs = ϕ|Vs : Vs →
Ws is the blowing up with the (finite) smooth centerAs := A ∩ Ws, it follows
that the intersection of local branches of the (reduced) divisorϕ(E ′s ) ⊂ Ws at any
point ofAs is transversal. Therefore, the branches of the divisorϕ(E ′) ⊂ W that
contain the centerA also transversally meet each other as well as every fiberWs

(s ∈ S0). Now the proof is completed.

2. Combinatorial Constructions

2.1. Terminology and Notation. Let π : V → S be a family of quasi-
projective varieties.Shrinking the basemeans passing to a new familyπ|π−1(U):
π−1(U)→ U, whereU is a Zariski open subset ofS; usually we keep the same
notation before and after shrinking the base.

By a smooth family of quasi-projective varietieswe mean a smooth surjective
morphismf : X→ S of smooth quasi-projective varieties; hereafter the baseS is
presumed to be irreducible. Note that any quasi-projective family with a smooth
total space can be made smooth by shrinking the base.

We say that a familyf̄ : V → S is a relative completionof f : X → S if f̄ is
a proper morphism,X ⊂ V is a Zariski open dense subset, andf = f̄ |X. It is of
simple normal crossing(or simply SNC)typeif D := V \ X is a simple normal
crossing divisor onV. If the family f̄ : V → S is smooth and if each fiberVs :=
f̄ −1(s), s ∈ S, meets the divisorD transversally along an SNC divisorDs :=
D ∩Vs ⊂ Vs, then we say that(V,D) is arelative SNC completionof X. Clearly,
any smooth relative completion with an SNC divisorD can be reduced to a rela-
tive SNC completion by shrinking the base.

Let f : X → S be a smooth family with all fibers isomorphic toC2, and let
f̄ : V → S be its relative SNC completion. Then, for every points ∈ S, the
“boundary divisor”Ds is arational tree(on the smooth rational projective surface
Vs). The latter means that each irreducible componentCs,i of Ds is a smooth ra-
tional curve, and theweighted dual graph(say,0s) of Ds is a tree (see e.g. [40,
Sec. 2]).

Letv ∈0s be anat most linear(−1)-vertexof 0s (i.e., the valence ofv is at most
2 and the weight ofv is −1). The Castelnuovo contraction of the corresponding
irreducible(−1)-component ofDs leads again to an SNC completion(V ′s , D ′s ) of
Xs ' C2. The dual graph0 ′s of D ′s is obtained from0s by theblowing downv.
The inverse operation on graphs is called ablowing up.This blowing up (blowing
down) is calledinner if v is a linear vertex of0s andouter if v is terminal. The
graph0s is calledminimal if no contraction is possible; in this case, it is linear
[36]. All minimal linear graphs corresponding to minimal SNC completions ofC2

are described in [33] and [36]; we call them theRamanujam–Morrow graphs.
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Assume thatf̄ : (V,D) → S as described previously is a proper and smooth
SNC family, and fix a base points0 ∈ S. There exists a smooth horizontal con-
nection onV that is tangent along the boundary SNC divisorD (indeed, it can be
patched from local smooth connections tangent alongD using a smooth partition
of unity onV ). This provides us with ageometric monodromy representation

µ : π1(S, s0)→ Diff (Vs0,Ds0 ).

We denote by the same letterµ the inducedcombinatorial monodromy represen-
tationπ1(S, s0)→ Aut0s0.

For a vertexv ∈ 0s0, let O(v) be itsµ-orbit. Clearly, two verticesv, v ′ ∈ 0s0
belong to the same orbit if and only if, for a certain irreducible componentE =
E(v) of the boundary divisorD ⊂ V, the corresponding irreducible components
C(v) andC(v ′) of the curveDs0 ⊂ Vs0 are contained inEs0 := E ∩Vs0 (note that
this fact is stable under shrinking the base). The next important lemma follows
easily from Theorem 1.3.

Lemma 2.1. In the notation just described, letv be the most linear(−1)-vertex
of the graph0s0. Assume that the orbitO(v) ⊂ 0s0 of v does not contain a pair of
neighbors in0s0. Then( possibly after shrinking the base) there is a relative blow-
ing down of the irreducible componentE(v) of the divisorD that gives again a
relative SNC completion of the familyf : X→ S.

2.2. Equivariant Contractions. From now on we consider a smooth SNC
completion ofC2 by an SNC divisor (say,D0) with a weighted dual graph0.
Denote byO(v) the orbit of a vertexv of 0 under the action on0 of the full auto-
morphism group Aut0. If v is an at most linear(−1)-vertex such that its orbit
O(v) does not contain a pair of neighbors in0, then all the vertices inO(v) can be
simultaneously contracted; we call this anequivariant contraction(or anequivari-
ant blowing down). The main result of this section is the following proposition.

Proposition 2.2. A graph0 as described previously can be contracted to a
Ramanujam–Morrow graph by means of equivariant contractions.

The proof is accomplished via Lemmas 2.3 and 2.4.

Lemma 2.3. Let v1 andv2 be at most linear(−1)-vertices of0 that are neigh-
bors and belong to the same orbit(i.e.,v2 ∈O(v1)). Draw 0 as follows:

−1 −1
01

��°��ª� ��°��ª� 02
v1 v2

Then the following statements hold.

(a) α(0i) = 0j for any α ∈ Aut0 with α(vi) = vj, i, j ∈ {1,2}. Moreover,
O(v1) = {v1, v2}, and there is only one pair{v1, v2} satisfying the assump-
tions of the lemma.

(b) If w ∈01 is an at most linear(−1)-vertex of0, then the orbitO(w) does not
contain a pair of neighbors in0.
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Proof. (a) Denote by Brl(vi) (resp., Brr (vi)) the left-hand (resp., right-hand)
branch of0 at vi; thus Brl(v1) = 01 and Brr (v2) = 02. Since card Brl(v2) =
card Brl(v1) + 1, for any α ∈ Aut0 with α(v1) = v2 we haveα(Brl(v1)) =
Brr (v2), whenceα(01) = 02, α(v2) = v1, andα(02) = 01.

In particular, card01 = card02. Therefore, ifβ ∈Aut0 is such thatβ(v1) =
v1 thenβ(01) = 01, whenceβ(v2) = v2 andβ(02) = 02. This proves the first
statement of (a).

Let (v ′1, v ′2) be another pair of at most linear(−1)-neighbors of0 that belong to
the same orbit. As we have seen, both the edges [v1, v2] and [v ′1, v ′2] of 0 divide
0 into two parts of equal cardinality, which is only possible if [v1, v2] = [v ′1, v ′2].
Thus the pair(v1, v2) is unique. It follows thatO(v1) = {v1, v2}, which proves
(a). It also follows thatO(w) ∩O(v1) = ∅, which proves (b).

Lemma 2.4. Suppose that the graph0 is not minimal. Then0 has an at most lin-
ear (−1)-vertexw such that the orbitO(w) does not contain a pair of neighbors.

Proof. Let (v1, v2) be a pair of at most linear(−1)-neighbors of0 that belong to
the same orbit. Clearly,0 6= {v1, v2} and so0 contains a fragment

−1 −1 −2 −2 a
01

��°��ª� ��°��ª� ��°��ª� · · · ��°��ª� ��°��ª� 0 ′2
v1 v2 v3 vr v

jjjjjTTTTT

where eithera 6= −2 orv is a branch vertex of0. Contracting the chain(v2, v3, . . . ,

vr), we obtain the graph

r − 2 a +1
01

��°��ª� ��°��ª� 0 ′2
v1 v

jjjjjTTTTT

where the vertexv cannot be further contracted. Assume that0 does not contain
at most linear(−1)-vertices other thanv1 andv2. Then, after this contraction, the
resulting graph is minimal (i.e., a Ramanujam–Morrow graph). We show that this
is impossible. Indeed, otherwise0 would be a linear graph admitting an automor-
phismα ∈Aut0 that interchangesv1 andv2 (resp.,01 and02). After the contrac-
tion as before, the image of0 would contain one of the following fragments:

a −2 r − 2 a +1
· · · ��°��ª� · · · ��°��ª� ��°��ª� ��°��ª� · · ·

α(v) α(v3) v1 v
(r ≥ 3),

a 0 a +1
· · · ��°��ª� ��°��ª� ��°��ª� · · ·

α(v) v1 v
(r = 2).

But a Ramanujam–Morrow graph can have only one positively weighted vertex,
and a neighbor of this vertex has zero weight. Hencea = −1 in the first frag-
ment just displayed, which contradicts the minimality assumption. Furthermore,
the only fragments of a Ramanujam–Morrow graph of length 3 including a zero
vertex in the middle are of the form

n 0 −n−1
· · · ��°��ª� ��°��ª� ��°��ª� · · ·
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wheren > 0 [11, Sec. 3.5; 33; 36]. Thus, neither fragment is possible. By virtue
of Lemma 2.3, this concludes the proof.

Proposition 2.2 and Lemma 2.1 yield the following.

Corollary 2.5. As before, letf : X→ S be a smooth family of quasi-projective
varieties with all fibers isomorphic toC2, and letf̄ : V → S be its relative SNC
completion. Then the boundary divisorD = V \ X ( possibly after shrinking the
base) can be contracted providing a new relative SNC completionf̄ min : V min→
S, where for eachs ∈ S the dual graph0min

s of the boundary divisorDmin
s :=

V min
s \Xs is a Ramanujam–Morrow graph.

We shall need the following lemma from [11].

Lemma 2.6 [11, Lemma 3.7]. Let 0 be a Ramanujam–Morrow graph. Then0
can be transformed, by a sequence of inner blowing ups and blowing downs, into
one of the following graphs:

1��°��ª� 0 n��°��ª� ��°��ª� (n 6= −1)
0 k − 1 −1��°��ª� ��°��ª� ��°��ª� (k ≥ 1). (* )

3. Proof of Theorem 0.1

The next proposition is the key point in the proof of Theorem 0.1.

Proposition 3.1. Let the assumptions of Corollary 2.5 be fulfilled. Then the
familyf : X→ S ( possibly after shrinking the base) admits a relative SNC com-
pletionf̃ : Ṽ → S such that, for everys ∈ S, the boundary divisor̃Ds := Ṽs \Xs
is irreducible(and so is isomorphic toP1).

Proof. Let a relative SNC completion(V min,Dmin) be as in Corollary 2.5. Note
that, for any Ramanujam–Morrow graph0 except the following,

0 0��°��ª� ��°��ª�
we have Aut0 = {id}. Let us deal with this exceptional case first. The edge of this
graph (invariant under automorphisms) corresponds to a section (say,6) of Dmin

overS (here6 is just the set of double points of the divisorDmin). We can blow
upV min along6 and then (possibly after shrinking the base) blow down (accord-
ing to Lemma 2.1) the proper transform(s) of (the irreducible components of )D to
arrive at a new relative SNC completion with only irreducible boundary divisors
in fibers, as required.

In all other cases, the absence of nontrivial automorphisms implies that:

1. each irreducible componentEi of the boundary divisorDmin meets every fiber
V min
s along an irreducible curveCs,i; and

2. the intersection (if non-empty) of two such components6ij := Ei ∩ Ej (i 6=
j) is a (smooth) section.
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These two properties are stable under blowing up with center at a section that is
the intersection of two components of the boundary divisor, as well as under blow-
ing down of a component of the boundary divisor that corresponds to an at most
linear(−1)-vertex (it is defined correctly overS by virtue of Lemma 2.1).

The preceding observation and Lemma 2.6 imply that a relative SNC completion
(V min,Dmin) can be transformed (possibly after shrinking the base) into another
one with the dual graph0s0 as in (* ). If we finally arrive at a relative SNC com-
pletion with the dual graph0 = 0s0 as in the third case of (* ) and then blow down
the(−1)-curve in every fiber, we obtain a relative SNC completion with the dual
graph as in the second case of (* ). In particular, we may assume that the singular
locus6 of the boundary divisorD is a section.

If n = 0 then we deal with the exceptional case, which is already settled.
If n > 0 then we can proceed as before, performing first an inner relative blow-

ing up with center at6 and then an outer relative blowing down. After a sequence
of n such “elementary transformations” we obtain a relative SNC completion with
n = 0 and so can finish the proof as before.

Finally, consider the case wheren ≤ −2. In this case we have Aut0 = {id},
so the combinatorial monodromy of the familȳf : D → S is trivial. Hence the
divisorD consists of two smooth irreducible components (say,C0 andC1) with
C2
s,0 = 0 andC2

s,1= n ≤ −2 for everys ∈ S.
Suppose that there exists a section6′ of f̄ |C0 : C0 → S disjoint with6 :=

C0 ∩ C1. The kinds of elementary transformations appropriate in our case are
blowing up with center at6′ and then blowing down the proper transform ofC0

(by Theorem 1.3, this is possible after shrinking the base). Performingn such ele-
mentary transformations (which requires, at each step, the existence of a section
as before), we arrive again at a relative SNC completion of the second type with
n = 0, and so we are done. Thus it only remains to prove the following statement.

Claim. After shrinking the base appropriately, one can find a section6′ of
f̄ |C0 : C0→ S disjoint with6 := C0 ∩ C1.

Proof. Letting in Lemma 1.1E = C0 andL = [C1]|E (so thatL|Es = L|Cs,0 '
OP1(1) for everys ∈ S) and shrinking the baseS to make it affine, by Corollary
1.2(b) we conclude that, for every points ∈ S, the restriction map

H 0(E,L)→ H 0(Es,Ls) ' H 0(P1,OP1(1))

is surjective. Thus for any pointss0 ∈ S andz0 ∈ Cs0,0 \ Cs0,1 there exists a sec-
tion σ ∈H 0(E,L) with σ ∗(0) · Cs0,0 = z0. The divisor6′ := σ ∗(0) onE = C0

(linearly equivalent to6) passes through the pointz0 and meets every fiberEs =
Cs,0 (s ∈ S) transversally at one point. Clearly,Z := f̄ (6 ∩6′) 63 s0 is a Zariski
closed proper subset of the baseS. The restrictions of the sections6 and6′ onto
the Zariski open subsetS0 := S \Z of S are disjoint, as required. This proves the
claim.

Now the proof of Proposition 3.1 is completed.
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Given Corollary 2.5 and Proposition 3.1, the proof of Theorem 0.1 is reduced to
the following simple lemma. It is well known that any smooth family with fibers
isomorphic to a projective space is locally trivial in the étale topology (and so is a
smooth Severi–Brauer variety) [18, Thm. I.8.2]. It is locally trivial in the Zariski
topology if and only if this family (or, equivalently, its dual) admits local sections;
Lemma 3.2 provides a proof along the lines in [18, II, Sec. 0].

Lemma 3.2. Let f̄ : V → S be a proper smooth family over a quasi-projective
base with all fibers isomorphic toP n, and letD be an irreducible smooth divi-
sor onV that meets every fiberVs (s ∈ S) transversally, withDs ' P n−1 and
NDs/Vs ' OP n(1). Then the family(V,D) is locally trivial in the Zariski topology.

Proof. Fix an arbitrary points0 ∈ S. Shrinking the baseS to an affine neighbor-
hood of the points0 and letting (in Lemma1.1)E = V andL = [D], by Corollary
1.2 we will have that the restriction map

H 0(E,L)→ H 0(Es0,Ls0 ) ' H 0(P n,OP n(1))
is surjective. Fix sectionsσ0, . . . , σn ∈H 0(E,L) such that their restrictions to the
fiberEs0 are linearly independent andσ ∗0(0) = D. Shrinking the base further, we
may suppose that, for every fiberEs (s ∈ S), the restrictionsσ0|Es , . . . , σn|Es are
linearly independent as well. Then the morphism

ϕ : V → S × P n, z 7−→ (
f̄ (z), (σ0(z) : . . . : σn(z))

)
,

yields a desired trivialization overS.

Added in proof:After this paper appeared as an MPI-preprint, we were kindly in-
formed by P. Russell that he had found a different proof of our main result.
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