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1. Introduction

Triangular Hopf algebras were introduced by Drinfeld [Dr]. They are the Hopf
algebras whose representations form a symmetric tensor category. In that sense,
they are the class of Hopf algebras closest to group algebras. The structure of trian-
gular Hopf algebras is far from trivial and yet is more tractable than that of general
Hopf algebras, owing to their proximity to groups and Lie algebras. This makes
triangular Hopf algebras an excellent testing ground for general Hopf algebraic
ideas, methods, and conjectures.

A general classification of triangular Hopf algebras is not known yet. However,
there are two classes that are relatively well understood. One of them is semisim-
ple triangular Hopf algebras overC, for which a complete classification is given in
[EG1; EG2]. The key theorem about such Hopf algebras states that each of them is
obtained by twisting a group algebra of a finite group (see [EG1, Thm. 2.1]). The
proof of this theorem is based on Deligne’s theorem on Tannakian categories [D1].

Another important class of Hopf algebras is that ofpointedones. These are Hopf
algebras whose simple co-modules are all1-dimensional. Theorem 5.1 in [G] gives
a classification of minimal triangular pointed Hopf algebras (we note that the addi-
tional assumption made in [G, Thm. 5.1] is, by our Theorem 6.1, superfluous).

Recall that a finite-dimensional algebra is calledbasicif all of its simple mod-
ules are1-dimensional (i.e., if its dual is a pointed co-algebra). The same Theorem
5.1 of [G] gives a classification of minimal triangular basic Hopf algebras, since
the dual of a minimal triangular Hopf algebra is again minimal triangular.

Basic and semisimple Hopf algebras share a common property—namely, the
Jacobson radical Rad(H ) of such a Hopf algebraH is a Hopf ideal and there-
fore the quotientH/Rad(H ) (the semisimple part) is itself a Hopf algebra. The
representation-theoretic formulation of this property is: The tensor product of two
simpleH -modules is semisimple. A remarkable classical theorem of Chevalley
[C, p. 88] states that, overC, this property holds for the group algebra of any (not
necessarily finite) group. So let us call this property ofH theChevalley property.

The Chevalley property certainly fails for many finite-dimensional Hopf alge-
bras—for example, for Lusztig’s [L] finite-dimensional quantum groups Uq(g)′
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at roots of unity (also known as Frobenius–Lusztig kernels). However, we found
that this property holds for all examples we know of finite-dimensionaltriangular
Hopf algebras in characteristic 0. We felt, therefore, that it is natural to classify
all finite-dimensional triangular Hopf algebras with the Chevalley property. This
is what we do in this paper.

We start by classifying triangular Hopf algebras withR-matrix of rank≤ 2.
We show that such a Hopf algebra is a suitable modification of a co-commutative
Hopf superalgebra (i.e. the group algebra of a supergroup). On the other hand, by
a theorem of Kostant [Ko], a finite supergroup is a semidirect product of a finite
group with an odd vector space on which this group acts.

Next we prove our main result: Any finite-dimensional triangular Hopf alge-
bra with the Chevalley property is obtained by twisting a triangular Hopf alge-
bra withR-matrix of rank≤ 2. We also prove the converse result that any such
Hopf algebra does have the Chevalley property. As a corollary, we prove that any
finite-dimensional triangular Hopf algebra whose co-radical is a Hopf subalgebra
(e.g. pointed) is obtained by twisting a triangular Hopf algebra withR-matrix of
rank≤ 2.

The paper is organized as follows. In Section 2 we give the definitions of Hopf
superalgebras and twists for them. We also discuss co-commutative Hopf super-
algebras and describe their classification (Kostant’s theorem [Ko]).

In Section 3 we establish a correspondence between usual Hopf algebras and
Hopf superalgebras, and we show how this correspondence extends to twists and
to triangular Hopf algebras. In Section 4 we discuss the Chevalley property, and
in Section 5 we prove our main result and discuss its consequences and some open
questions.

In Section 6, using the main theorem, we show that a finite-dimensional co-
triangular pointed Hopf algebra is generated by its grouplike and skewprimitive
elements. Thus we confirm the conjecture that this is the case for any finite-
dimensional pointed Hopf algebra overC [AS2] in the co-triangular case. This
allows us to strengthen the main result of [G].

In Section 7 we prove that the categorical dimensions of objects in any abelian
symmetric rigid category with finitely many irreducible objects are integers. In
particular, this is the case for the representation category of a triangular Hopf
algebra. This gives supporting evidence for a positive answer to the question we
ask in Section 5: Is any finite-dimensional triangular Hopf algebra a twist of a
modified supergroup algebra?

In the appendix we use the lifting method [AS1; AS2] to give other proofs of
Theorem 5.2.1 and Corollary 6.3 as well as a generalization of Lemma 5.3.4.

We note that, similarly to the case of semisimple Hopf algebras, the proof of
our main result is based on Deligne’s theorem [D1]. In fact, we use Theorem 2.1
of [EG1] to prove the main result of this paper.
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2. Hopf Superalgebras

2.1. Supervector Spaces

The ground field in this paper will always be the fieldC of complex numbers.
We start by recalling the definition of the category of supervector spaces. A

Hopf algebraic way to define this category is as follows.
Let u be the generator of the groupZ2 of two elements, and set

Ru := 1
2(1⊗1+1⊗ u+ u⊗1− u⊗ u)∈C[Z2] ⊗ C[Z2]. (1)

Then(C[Z2], Ru) is a minimal triangular Hopf algebra.

Definition 2.1.1. Thecategory of supervector spaces overC is the symmetric
tensor category Rep(C[Z2], Ru) of representations of the triangular Hopf algebra
(C[Z2], Ru). This category will be denoted by SuperVect.

ForV ∈SuperVect andv ∈V,we say thatv is even ifuv = v and odd ifuv = −v.
The set of even vectors inV is denoted byV0 and the set of odd vectors byV1, so
V = V0 ⊕V1. We define the parity of a vectorv to bep(v) = 0 if v is even and
p(v) = 1 if v is odd (ifv is neither odd nor even thenp(v) is not defined).

Thus, as an ordinary tensor category, SuperVect is equivalent to the category of
representations ofZ2, but the commutativity constraint is different from that of
Rep(Z2) and equalsβ := RuP, whereP is the permutation of components. In
other words, we have

β(v ⊗ w) = (−1)p(v)p(w)w ⊗ v, (2)

where bothv andw are either even or odd.

2.2. Hopf Superalgebras

Recall that, in any symmetric tensor category, one can define an algebra (co-
algebra, bi-algebra, Hopf algebra, triangular Hopf algebra, etc.) to be an object
of this category equipped with the usual structure maps (morphisms in this cate-
gory), subject to the same axioms as in the usual case. In particular, any of these
algebraic structures in the category SuperVect is usually identified by the prefix
“super”. For example, we have the following definition.

Definition 2.2.1. A Hopf superalgebra is a Hopf algebra in SuperVect.

More specifically, a Hopf superalgebraH is an ordinaryZ2-graded associative uni-
tal algebra with multiplicationm, equipped with a co-associative map1 : H →
H ⊗H (a morphism in SuperVect) that is multiplicative in the super-sense, and
with a co-unit and antipode satisfying the standard axioms. Here “multiplicativity
in the super-sense” means that1 satisfies the relation

1(ab) =
∑

(−1)p(a2)p(b1)a1b1⊗ a2b2 (3)
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for all a, b ∈H (where1(a) = ∑ a1⊗ a2 and1(b) = ∑ b1⊗ b2). This is be-
cause the tensor product of two algebrasA,B in SuperVect is defined to beA⊗B
as a vector space, with multiplication

(a ⊗ b)(a ′ ⊗ b ′) := (−1)p(a
′ )p(b)aa ′ ⊗ bb ′. (4)

Remark 2.2.2. Hopf superalgebras appear in [Ko] under the name of “graded
Hopf algebras”.

Similarly, a (quasi)triangular Hopf superalgebra(H,R) is a Hopf superalgebra
with anR-matrix (an even elementR ∈H⊗H) satisfying the usual axioms. As
in the even case, an important role is played by the Drinfeld elementu of (H,R):

u := m B β B (Id⊗ S)(R). (5)

For instance,(H,R) is triangular if and only ifu is a grouplike element ofH.
As in the even case, the tensorands of theR-matrix of a (quasi)triangular Hopf

superalgebraH generate a finite-dimensional sub-Hopf superalgebraHm, called
theminimal part ofH (the proof does not differ essentially from the proof of the
analogous fact for Hopf algebras). A (quasi)triangular Hopf superalgebra is said
to be minimal if it coincides with its minimal part. The dimension of the minimal
part in the triangular case is therank of theR-matrix.

2.3. Co-commutative Hopf Superalgebras

Definition 2.3.1. We will say that a Hopf superalgebraH iscommutative(resp.,
co-commutative) if m = m B β (resp.,1 = β B1).
Example 2.3.2 [Ko]. LetG be a group andg a Lie superalgebra with an action
ofGby automorphisms of Lie superalgebras. LetH := C[G]nU(g),where U(g)
denotes the universal enveloping algebra ofg. ThenH is a co-commutative Hopf
superalgebra with1(x) = x⊗1+1⊗x (x ∈ g) and1(g) = g⊗g (g ∈G). In this
Hopf superalgebra, we haveS(g) = g−1, S(x) = −x, and in particularS2 = Id.

The Hopf superalgebraH is finite-dimensional if and only ifG is finite, and
g is finite-dimensional and purely odd (and hence commutative). ThenH =
C[G] n 3V, whereV = g is an odd vector space with aG-action. In this case,
H∗ is a commutative Hopf superalgebra.

Remark 2.3.3. We note that, as in the even case, it is convenient to think about
H andH∗ in geometric terms. Consider, for instance, the finite-dimensional case.
In this case, it is useful to think of the “affine algebraic supergroup”G̃ := GnV.
Then one can regardH as the group algebraC[G̃] of this supergroup andH∗ as its
function algebraF(G̃). Having this in mind, we will call the algebraH a super-
group algebra.

It turns out that, as in the even case, any co-commutative Hopf superalgebra is of
the type described in Example 2.3.2. Namely, we have the following theorem.

Theorem 2.3.4 [Ko, Thm. 3.3]. Let H be a co-commutative Hopf superalge-
bra overC. ThenH = C[G(H)] n U(P(H)), whereU(P(H)) is the universal
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enveloping algebra of the Lie superalgebra of primitive elements ofH and where
G(H) is the group of grouplike elements ofH.
In the finite-dimensional case we obtain a corollary.

Corollary 2.3.5. LetH be a finite-dimensional co-commutative Hopf super-
algebra overC. ThenH = C[G(H)] n 3V, whereV is the space of primitive
elements ofH (regarded as an odd vector space) andG(H) is the finite group of
grouplikes ofH. In other words,H is a supergroup algebra.

We shall use this corollary and so (although it follows at once from Theorem 2.3.4)
we will give its proof in Section 5 for the sake of completeness.

2.4. Twists

A twist for a Hopf algebra in any symmetric tensor category is defined in the same
way as in the usual case (see [Dr]). However, for the reader’s convenience, we
will repeat this definition (for Hopf superalgebras).

LetH be a Hopf superalgebra. The multiplication, unit, co-multiplication, co-
unit, and antipode inH will be denoted bym, 1, 1, ε, andS, respectively.

Definition 2.4.1. A twist forH is an invertible even elementJ ∈H ⊗H that
satisfies

(1⊗ Id)(J )(J ⊗1) = (Id⊗1)(J )(1⊗ J ),
(ε ⊗ Id)(J ) = (Id⊗ ε)(J ) = 1,

(6)

where Id is the identity map ofH.
Given a twistJ forH, one can define a new Hopf superalgebra structure

(HJ, m,1,1J, ε, SJ )
on the algebra(H, m,1) as follows. The co-product is determined by

1J(a) = J −11(a)J for any a ∈H, (7)

and the antipode is determined by

SJ(a) = Q−1S(a)Q for any a ∈H, (8)

whereQ := m B (S ⊗ Id)(J ).
If H is (quasi)triangular with the universalR-matrixR, then so isHJ with the

universalR-matrixRJ := J −1
21 RJ.

3. Triangular Hopf Algebras with Drinfeld Element
of Order ≤ 2

3.1. The Correspondence between Hopf Algebras
and Superalgebras

We can now prove our first results, which will be essential in the next section.
We start with a correspondence theorem between Hopf algebras and Hopf super-
algebras.
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Theorem 3.1.1. There is a one-to-one correspondence between

1. isomorphism classes of pairs(H, u),whereH is an ordinary Hopf algebra and
u is a grouplike element inH such thatu2 = 1, and

2. isomorphism classes of pairs(H, g), whereH is a Hopf superalgebra andg
is a grouplike element inH such thatg2 = 1 andgxg−1 = (−1)p(x)x (i.e.,g
acts onx by its parity),

such that the tensor categories of representations ofH andH are equivalent.

Proof. Let (H, u) be an ordinary Hopf algebra with co-multiplication1, co-unit
ε, antipodeS, and a grouplike elementu such thatu2 = 1. Let H = H re-
garded as a superalgebra, where theZ2-grading is given by the adjoint action of
u. Forh ∈H define10,11 by writing1(h) = 10(h) +11(h), where10(h) ∈
H ⊗ H0 and11(h) ∈ H ⊗ H1. Define a map1̃ : H → H ⊗ H by 1̃(h) :=
10(h) − (−1)p(h)(u ⊗ 1)11(h). Define S̃(h) := up(h)S(h), h ∈ H. Then it is
straightforward to verify that(H, 1̃, ε, S̃ ) is a Hopf superalgebra.

The elementu remains grouplike in the new Hopf superalgebra and acts by par-
ity, so we can setg := u.

Conversely, suppose that(H, g) is a pair whereH is a Hopf superalgebra with
co-multiplication1̃, co-unitε, antipodeS̃, and a grouplike elementg (with g2 =
1) acting by parity. Forh∈H define1̃0, 1̃1 by writing 1̃(h) = 1̃0(h)+ 1̃1(h),

where1̃0(h) ∈H ⊗H0 and1̃1(h) ∈H ⊗H1. LetH = H as algebras, and de-
fine a map1 : H → H ⊗H by1(h) := 1̃0(h)− (−1)p(h)(g ⊗1)1̃1(h). Define
S(h) := gp(h)S̃(h), h ∈ H. Then it is straightforward to verify that(H,1, ε, S)
is an ordinary Hopf algebra, and we can setu := g.

It is obvious that the two assignments just constructed are inverse to each other.
The equivalence of tensor categories is straightforward to verify. The theorem is
proved.

Theorem 3.1.1 implies the following. LetH be any Hopf superalgebra and let
C[Z2] nH be the semidirect product, where the generatorg of Z2 acts onH by
gxg−1= (−1)p(x)x. Then we can define an ordinary Hopf algebraH̄,which is the
one corresponding to(C[Z2]nH, g) under the correspondence of Theorem 3.1.1.

The constructions of this section have the following explanation in terms of
Radford’s bi-product construction [R2]. Namely,H is a Hopf algebra in the
Yetter–Drinfeld category ofC[Z2], so Radford’s bi-product construction yields a
Hopf algebra structure onC[Z2] ⊗H; it is straightforward to see that this Hopf
algebra is exactlyH̄. Moreover, it is clear that, for any pair(H, u) as in Theorem
3.1.1,gu is central inH̄ andH = H̄/(gu−1).

Let us give an interesting corollary of Theorem 3.1.1, eventhough we will not
use it.

Corollary 3.1.2. Let H be a finite-dimensional Hopf superalgebra overC.
Then:

1. H is semisimple if and only if it is co-semisimple;
2. if H is semisimple thenS 4 = Id; and
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3. if H is semisimple andS2 = Id, thenH is purely even, that is, it is a usual
semisimple Hopf algebra.

Proof. 1. If H is semisimple then so is̄H, hence so is(H̄)∗. But it is easy to
show that(H̄)∗ is isomorphic as an algebra toC[Z2] n H∗ (unlike the dual of
C[Z2] nH, which is isomorphic toC[Z2] ⊗H∗). Therefore, this crossed prod-
uct algebra is semisimple. It is well known (and easy to show) that this implies
the semisimplicity ofH∗.

2. The Hopf algebrāH is semisimple, so we haveS2 = Id in it. Thus, inH we
haveS2 = Ad(g) and soS 4 = Ad(g2) = Id.

3. SinceS2 = Ad(g), g must be central. Thus,H is purely even.

Remark 3.1.3. The example of supergroup algebras shows that, for finite-dimen-
sional Hopf superalgebras (unlike usual Hopf algebras),S2 = Id does not imply
semisimplicity or co-semisimplicity. In fact, Corollary 3.1.2(3) shows that, in a
sense, the situation is exactly the opposite.

3.2. Correspondence of Twists

Let us say that a twistJ for a Hopf algebraH with an involutive grouplike element
g is evenif it is invariant under Ad(g).

Proposition 3.2.1. Let (H, g) be a pair as in Theorem 3.1.1, and letH be the as-
sociated ordinary Hopf algebra. LetJ ∈H⊗H be an even element. WriteJ =
J0+J1, whereJ0 ∈H0⊗H0 andJ1∈H1⊗H1. DefineJ := J0− (g ⊗1)J1.

ThenJ is an even twist forH if and only if J is a twist forH. Moreover,HJ
corresponds toHJ under the correspondence in Theorem 3.1.1. Thus, there is a
one-to-one correspondence between even twists forH and twists forH that is
given byJ → J.
Proof. Straightforward.

3.3. The Correspondence between Triangular Hopf Algebras
and Superalgebras

Let us now return to our main subject, which is triangular Hopf algebras and super-
algebras. For triangular Hopf algebras whose Drinfeld elementu is involutive, we
will make the natural choice of the elementu in Theorem 3.1.1—namely, we de-
fine it to be the Drinfeld element ofH.

Theorem 3.3.1. The correspondence of Theorem 3.1.1 extends to a one-to-one
correspondence between

1. isomorphism classes of ordinary triangular Hopf algebrasH with Drinfeld ele-
mentu such thatu2 = 1 and

2. isomorphism classes of pairs(H, g), whereH is a triangular Hopf superalge-
bra with Drinfeld element1andg is an element ofG(H) such thatg2 = 1and
gxg−1 = (−1)p(x)x.
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Proof. Let (H,R) be a triangular Hopf algebra withu2 = 1. Since(S⊗ S)(R) =
R and S2 = Ad(u) [Dr], u ⊗ u andR commute. Hence we can writeR =
R0+R1,whereR0 ∈H0⊗H0 andR1∈H1⊗H1. LetR := (R0+ (1⊗u)R1)Ru.

ThenR is even. Indeed, sinceR0 = 1/2(R + (u ⊗ 1)R(u ⊗ 1)) andR1 =
1/2(R − (u⊗1)R(u⊗1)), it follows thatu⊗ u andR commute.

It is now straightforward to show that(H,R) is triangular with Drinfeld ele-
ment 1. Let us show, for instance, thatR is unitary. We use the notationa ∗ b and
X21 for multiplication and opposition in the tensor square of a superalgebra, and
we use the notationab andXop for usual algebras. Then

R ∗R21= (R0 + (1⊗ u)R1)Ru ∗ (Rop
0 − (u⊗1)Rop

1 )Ru.

SinceRuR0 = R0Ru andRuR1= −(u⊗ u)R1Ru, it follows that the RHS equals

(R0 + (1⊗ u)R1) ∗ (Rop
0 + (1⊗ u)Rop

1 )

= R0R
op
0 + R1R

op
1 + (1⊗ u)(R1R

op
0 + R0R

op
1 ).

ButR0R
op
0 + R1R

op
1 = 1 and(1⊗ u)(R1R

op
0 + R0R

op
1 ) = 0, sinceRRop = 1, so

we are done.
Conversely, suppose that(H, g) is a pair, whereH is a triangular Hopf superal-

gebra withR-matrixR and Drinfeld element 1. LetR = R0+R1,whereR0 has
even components andR1 has odd components. LetR := (R0 + (1⊗ g)R1)Rg.

Then it is straightforward to show that(H,R) is triangular with Drinfeld element
u = g. The theorem is proved.

Corollary 3.3.2. If (H,R) is a triangular Hopf superalgebra with Drinfeld
element1, then the Hopf algebrāH is also triangular with theR-matrix

R̄ := (R0 + (1⊗ g)R1)Rg, (9)

whereg is the grouplike element adjoined toH to obtainH̄. Moreover,H is min-
imal if and only if H̄ is minimal.

Proof. Clear.

The following corollary, combined with Kostant’s theorem, gives a classification
of triangular Hopf algebras withR-matrix of rank≤ 2 (i.e., of the formRu as in
(1), whereu is grouplike of order≤ 2).

Corollary 3.3.3. The correspondence of Theorem 3.3.1 restricts to a one-to-
one correspondence between

1. isomorphism classes of ordinary triangular Hopf algebras withR-matrix of
rank≤ 2 and

2. isomorphism classes of pairs(H, g),whereH is a co-commutative Hopf super-
algebra andg is an element ofG(H) such thatg2 = 1andgxg−1 = (−1)p(x)x.

Proof. Let (H,R) be an ordinary triangular Hopf algebra withR-matrix of rank≤
2. In particular, the Drinfeld elementu of H satisfiesu2 = 1 andR = Ru. Hence
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by Theorem 3.3.1,(H, 1̃,R) is a triangular Hopf superalgebra. Moreover, it is
co-commutative becauseR = RuRu = 1.

Conversely, for any(H, g), by Theorem 3.3.1 the pair(H,Rg) is an ordinary
triangular Hopf algebra, and clearly the rank ofRg is≤ 2.

Corollaries 2.3.5 and 3.3.3 imply that finite-dimensional triangular Hopf algebras
with R-matrix of rank≤ 2 correspond to supergroup algebras. In view of this, we
make the following definition.

Definition 3.3.4. A finite-dimensional triangular Hopf algebra withR-matrix
of rank≤ 2 is called amodified supergroup algebra.

3.4. Construction of Twists for Supergroup Algebras

Proposition 3.4.1. LetH = C[G]n3V be a supergroup algebra. Letr ∈ S2V.

ThenJ := er/2 is a twist forH. Moreover,((3V )J,J −1
21 J ) is minimal triangu-

lar if and only if r is nondegenerate.

Proof. Straightforward.

Example 3.4.2. LetG be the group of order 2 with generatorg. LetV := C be
the nontrivial 1-dimensional representation ofG, and write3V = sp{1, x}. Then
the associated ordinary triangular Hopf algebra to(H, g) := (C[G] n 3V, g) is
Sweedler’s [S] 4-dimensional Hopf algebraH with the triangular structureRg.
Namely, the algebraH is generated by a grouplike elementg and a 1 :g skew
primitive elementx (i.e.,1(x) = x ⊗1+ g ⊗ x) satisfying the relationsg2 = 1,
x 2 = 0, andgx = −xg. It is known [R2] that the set of triangular structures on
H is parameterized byC; namely,R is a triangular structure onH if and only if

R = Rλ := Rg − λ
2
(x ⊗ x − gx ⊗ x + x ⊗ gx + gx ⊗ gx), λ∈C.

Clearly,(H,Rλ) is minimal if and only ifλ 6= 0.
Let r ∈ S2V be defined byr := λx⊗ x, λ∈C. SetJλ := er/2 = 1+ 1

2λx⊗ x;
it is a twist forH. Hence,Jλ := 1− 1

2λgx ⊗ x is a twist forH. It is easy to check
thatRλ = (Jλ)−1

21RgJλ. Thus,(H,Rλ) = (H,R0)
Jλ .

Remark 3.4.3. In fact, Radford’s classification of triangular structures onH can
be easily deduced from Lemma 5.3.4 (see Section 5).

4. The Chevalley Property

Recall that in the introduction we made the following definition.

Definition 4.1. A Hopf algebraH overC is said to have theChevalley property
if the tensor product of any two simpleH -modules is semisimple. More generally,
let us say that a tensor category has the Chevalley property if the tensor product
of two simple objects is semisimple.
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Let us give some equivalent formulations of the Chevalley property.

Proposition 4.2. LetH be a finite-dimensional Hopf algebra overC and let
A := H ∗. The following conditions are equivalent.

1. H has the Chevalley property.
2. The category of(right) A-co-modules has the Chevalley property.
3. Corad(A) is a Hopf subalgebra ofA.
4. Rad(H ) is a Hopf ideal and thusH/Rad(H ) is a Hopf algebra.
5. S2 = Id onH/Rad(H ) or (equivalently) on Corad(A).

Proof. (1. ⇔ 2.) Clear, since the categories of leftH -modules and rightA-co-
modules are equivalent.
(2. ⇒ 3.) Recall the definition of a matrix coefficient of a co-moduleV over

A. If ρ : V → V ⊗ A is the co-action(v ∈V, α ∈V ∗), then

φVv,α := (α ⊗ Id)ρ(v)∈A.
It is well known that:

(a) The co-radical ofA is the linear span of the matrix coefficients of all simple
A-co-modules.

(b) The product inA of two matrix coefficients is a matrix coefficient of the ten-
sor product. Specifically,

φVv,αφ
W
w,β = φV⊗Wv⊗w,α⊗β.

It follows at once from (a) and (b) that Corad(A) is a subalgebra ofA. Since the
co-radical is stable under the antipode, the claim follows.
(3. ⇔ 4.) To say that Rad(H ) is a Hopf ideal is equivalent to saying that

Corad(H ∗) is a Hopf algebra, since Corad(H ∗) = (H/RadH )∗.
(4.⇒ 1.) If V,W are simpleH -modules then they factor throughH/Rad(H ).

ButH/Rad(H ) is a Hopf algebra, soV ⊗W also factors throughH/Rad(H ) and
hence is semisimple.
(3.⇒ 5.) Clear, since a co-semisimple Hopf algebra is involutory.
(5. ⇒ 3.) Consider the subalgebraB of A generated by Corad(A). This is

a Hopf algebra, andS2 = Id on it. Thus,B is co-semisimple and henceB =
Corad(A) is a Hopf subalgebra ofA.

Remark 4.3. The assumption that the base field has characteristic 0 is needed
only in the proof of(5.⇔ 3.)

5. Classification of Triangular Hopf Algebras
with the Chevalley Property

5.1. The Main Theorem

Our main result is the following theorem.

Theorem 5.1.1. LetH be a finite-dimensional triangular Hopf algebra overC.
Then the following are equivalent.
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1. H is a twist of a finite-dimensional triangular Hopf algebra withR-matrix of
rank≤ 2 (i.e., of a modified supergroup algebra).

2. H has the Chevalley property.

The proof of this theorem is contained in Sections 5.2 and 5.3.

5.2. Local Finite-Dimensional Hopf Superalgebras Are Exterior Algebras

Theorem 5.2.1. LetH be a local finite-dimensional Hopf superalgebra(not nec-
essarily supercommutative). ThenH = 3V ∗ for a finite-dimensional vector space
V. In other words,H is the function algebra of an odd vector spaceV.

Remark 5.2.2. Note that, in the commutative case, Theorem 5.2.1 is a special
case of Proposition 3.2 of [Ko].

Proof of Theorem 5.2.1.It is sufficient to show thatH∗ = 3V for some vector
spaceV, since(3V )∗ = 3V ∗ as Hopf superalgebras. For this, it is sufficient to
show thatH∗ is generated by primitive elements, since the sub-Hopf superalge-
bra inH∗ generated by a basis of the space of primitive elements ofH∗ is clearly
a freeanti-commutative algebra on its generators.

Let I be the kernel of the co-unit inH. ThenI = Rad(H) sinceH is local. So
in particular there exists a positive integerN such that, for anyx1, . . . , xN ∈ H,
one has

(x1− ε(x1)1) · · · (xN − ε(xN)1) = 0.

Let δk : H∗ → (H∗)⊗k be the map dual to the mapH⊗k → H defined by

x1⊗ · · · ⊗ xk 7→ (x1− ε(x1)1) · · · (xk − ε(xk)1)
(this map was introduced by Drinfeld in [Dr]). We see that we have a filtration of
H∗ : H∗ = ⋃H∗k, whereH∗k is the kernel ofδk (theN th term of this filtration is
H∗). In other words,H∗k is the orthogonal complement ofI k.

Let V ⊆ H∗ be the space of primitive elements, and letB := 3V ⊆ H∗ be the
corresponding Hopf supersubalgebra generated by them. We will prove by induc-
tion in k thatH∗k is contained inB, which will complete the proof.

The base of induction is obvious (asδ1(x) = x−ε(x),henceH∗1 = C). Suppose
the statement is known fork = n, and leta ∈H∗n+1. Then it is straightforward to
verify thatj := 1(a) − a ⊗ 1− 1⊗ a ∈H∗n ⊗H∗n. Hence, by the induction as-
sumption,j ∈ B ⊗ B. Thus,j is a symmetric (in the super-sense) 2-cocycle for
the co-Hochschild complex ofB. But it is well known that a symmetric (in the
super-sense) co-Hochschild 2-cocycle for the exterior algebra is a co-boundary.
Thus, there existsb ∈B with j = 1(b)− b ⊗1−1⊗ b. Hencea − b is a primi-
tive element and thusa ∈B. We are done.

Remark 5.2.3. In the appendix we give another proof of Theorem 5.2.1 using
the lifting method of [AS2].

Theorem 5.2.1 will be used in Section 5.3, but it also allows one to give the fol-
lowing proof of Corollary 2.3.5.
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Proof of Corollary 2.3.5.Let I be the ideal inH∗ generated by all the odd ele-
ments. It is easy to see that this is a Hopf ideal. Consider the Hopf algebraE :=
H∗/I (the even part). This is anordinary commutative Hopf algebra, soE =
F(G) for a suitable finite groupG. Moreover, it is clear that every element ofI is
nilpotent, soI = Rad(H∗). Thus, irreducibleH∗-modules are 1-dimensional and
are parameterized byg ∈G. Let us call themLg. Also, we see thatG = G(H).

LetPg be the projective cover of the irreducible moduleLg. ThenH∗ =⊕g Pg,

where thePg are indecomposable two-sided ideals (the ideals are two-sided be-
cause the algebra is commutative in the super-sense). In particular,Pg are local
algebras with 1-dimensional semisimple quotient. Also, we have a natural projec-
tion of algebrasH∗ → Pg for all g; in particular,H∗ → P1.

Note thatH acts onH∗ on the left and right. In particular, so does the groupG.

Lemma. The following hold:

1. g1Pgg2 = Pg1gg2;
2. 1(Pg) ⊂⊕g1,g2:g1g2=g Pg1⊗ Pg2.

Proof. Straightforward.

Corollary. The idealI :=⊕g 6=1Pg is a Hopf ideal, and thusP1 = H∗/I is
a Hopf superalgebra.

Thus,P ∗1 ⊂ H is a sub-Hopf superalgebra with an action ofG, and we have a fac-
torizationH = C[G] n P ∗1 . The Hopf superalgebraP1 is local, soP ∗1 = 3V by
Theorem 5.2.1. This concludes the proof of Corollary 2.3.5.

Remark 5.2.4. Here is the same proof, described in a more intuitive geometric
language. Consider̃G := Spec(H∗); this is an affine supergroup scheme. Let
G ⊆ G̃ be the even part of̃G. ThenG is a finite group scheme, so by a standard
theorem it is a finite group. LetV be the connected component of the identity
in G̃. Then the function algebraO(V ) on V is a local finite-dimensional Hopf
superalgebra. It follows by Theorem 5.2.1 thatO(V ) = 3V ∗ for some finite-
dimensional vector spaceV.

Thus, we have a split exact sequence of algebraic supergroups

1→ V → G̃→ G→ 1

(it is split becauseG is a subgroup of̃G that is complementary toV ). HenceG̃ =
GnV, as desired.

5.3. Proof of the Main Theorem

We start by giving a super-analog of Theorem 3.1 in [G].

Lemma 5.3.1. LetH be a minimal triangular pointed Hopf superalgebra. Then
Rad(H) is a Hopf ideal, andH/Rad(H) is minimal triangular.

Proof. The proof is a tautological generalization of the proof of Theorem 3.1 in
[G] to the super case.
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First of all, it is clear that Rad(H) is a Hopf ideal, since its orthogonal comple-
ment (the co-radical ofH∗) is a sub-Hopf superalgebra (sinceH∗ is isomorphic
toHcop as a co-algebra and hence is pointed). Thus, it remains to show that the tri-
angular structure onH descends to a minimal triangular structure onH/Rad(H).
For this, it suffices to prove that the composition of the Hopf superalgebra maps

Corad(H∗cop) ↪→ H∗cop→ H→ H/Rad(H)
(where the middle map is given by theR-matrix) is an isomorphism. But this fol-
lows from the fact that, for any surjective co-algebra mapη : C1→ C2, the image
of the co-radical ofC1 contains the co-radical ofC2 [M, Cor. 5.3.5]. One need
only apply this statement to the mapH∗cop→ H/Rad(H).
Lemma 5.3.2. LetH be a minimal triangular pointed Hopf superalgebra such
that theR-matrix R of H is unipotent(i.e.,R − 1⊗ 1 is 0 in H/Rad(H) ⊗
H/Rad(H)). ThenH = 3V as a Hopf superalgebra andR = er ,wherer ∈ S2V

is a nondegenerate symmetric(in the usual sense) bilinear form onV ∗.

Proof. By Lemma 5.3.1, Rad(H) is a Hopf ideal, andH/Rad(H) is minimal
triangular. But theR-matrix ofH/Rad(H) must be 1⊗ 1, soH/Rad(H) is 1-
dimensional. HenceH is local and so, by Theorem 5.2.1,H = 3V. If R is a
triangular structure onH then it comes from an isomorphism3V ∗ → 3V of Hopf
superalgebras that is induced by a linear isomorphismr : V ∗ → V. ThusR = er ,
wherer is regarded as an element ofV ⊗V. SinceRR21= 1, we haver + r 21=
0 (wherer 21= −r op is the opposite ofr in the super-sense), sor ∈ S2V.

Remark 5.3.3. The classification of pointed finite-dimensional Hopf algebras
with co-radical of dimension 2 is known [CD; N]. In the appendix we use the lift-
ing method [AS1; AS2] to give an alternative proof. We shall need the following
more precise version of this result in the triangular case.

Lemma 5.3.4. LetH be a minimal triangular pointed Hopf algebra whose co-
radical is C[Z2] = sp{1, u}, whereu is the Drinfeld element ofH. ThenH =
(3V )J with the triangular structure of Corollary 3.3.2, whereJ = er/2 for
r ∈ S2V a nondegenerate element. In particular,H is a twist of a modified super-
group algebra.

Proof. LetH be the associated triangular Hopf superalgebra toH as described in
Theorem 3.3.1. Then theR-matrix ofH is unipotent because it turns into 1⊗ 1
after killing the radical.

LetHm be the minimal part ofH. By Lemma 5.3.2,Hm = 3V andR = er ,
r ∈ S2V. Hence, ifJ := er/2 thenHJ −1

hasR-matrix equal to 1⊗1. Thus,HJ −1

is co-commutative and so, by Corollary 2.3.5, it equalsC[Z2] n 3V. Therefore,
H = C[Z2] n (3V )J, and the result follows from Proposition 3.2.1.

We shall need the following lemma.

Lemma 5.3.5. LetB ⊆ Abe finite-dimensional associative unital algebras. Then
any simpleB-module is a constituent(in the Jordan–Holder series) of some sim-
pleA-module.
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Proof. SinceA when considered as aB-module containsB as aB-module, it
follows that any simpleB-module is a constituent ofA.

DecomposeA (in the Grothendieck group ofA) into simpleA-modules:A =∑
Vi. Further decomposing asB-modules, we obtainVi =∑Wij and henceA =∑
i

∑
j Wij . Now, by the Jordan–Holder theorem, sinceA (as aB-module) con-

tains all simpleB-modules, any simpleB-moduleX is in {Wij }. Thus,X is a
constituent of someVi, as desired.

Proposition 5.3.6. Any minimal triangular Hopf algebraH with the Chevalley
property is a twist of a triangular Hopf algebra withR-matrix of rank≤ 2.

Proof. By Proposition 4.2, the co-radicalH0 of H is a Hopf subalgebra, since
H ' H ∗cop is minimal triangular. Consider the Hopf algebra mapϕ : H0 →
H ∗cop/Rad(H ∗cop) given by the composition of the maps

H0 ↪→ H ' H ∗cop→ H ∗cop/Rad(H ∗cop),

where the second map is given by theR-matrix. We claim thatφ is an isomorphism.
Indeed,H0 andH ∗cop/Rad(H ∗cop) have the same dimension, since Rad(H ∗cop) =
(H0)

⊥, andφ is injective, sinceH0 is semisimple by [LR]. Letπ : H → H0 be
the associated projection.

We see, arguing exactly as in [G, Thm. 3.1], thatH0 is also minimal triangu-
lar, say withR-matrix R0. Now, by [EG1, Thm. 2.1], we can find a twistJ in
H0 ⊗ H0 such that(H0)

J is isomorphic to a group algebra and hasR-matrix
(R0)

J of rank≤ 2. Notice that here we are relying on Deligne’s theorem, as men-
tioned in the introduction.

Let us now considerJ as an element ofH0⊗H0 and the twisted Hopf algebra
HJ ,which is again triangular. The projectionπ : HJ → (H0)

J is still a Hopf alge-
bra map and sendsRJ to (R0)

J . It induces a projection(HJ )m → C[Z2] whose
kernelKm is contained in the kernel ofπ. Because any simple(HJ )m-module
is contained as a constituent in a simpleH -module (see Lemma 5.3.5),Km =
Rad((HJ )m). Hence,(HJ )m is minimal triangular and(HJ )m/Rad((HJ )m) =
(C[Z2], Ru). It follows, again by minimality, that(HJ )m is also pointed with co-
radical isomorphic toC[Z2]. Therefore, by Lemma 5.3.4,(HJ )m (and henceHJ )

can be further twisted into a triangular Hopf algebra withR-matrix of rank≤ 2,
as desired.

Now we can prove the main theorem.

Proof of Theorem 5.1.1. (2.⇒ 1.) By Proposition 4.2,H/Rad(H ) is a semisim-
ple Hopf algebra. LetHm be the minimal part ofH, and letH ′m be the image of
Hm in H/Rad(H ). ThenH ′m is a semisimple Hopf algebra.

Consider the kernelK of the projectionHm→ H ′m. ThenK = Rad(H )∩Hm.

This means that any elementk ∈K is zero in any simpleH -module. This implies
thatk acts by zero in any simpleHm-module, since by Lemma 5.3.5 we have that
any simpleHm-module occurs as a constituent of some simpleH -module. Thus,
K is contained in Rad(Hm). On the other hand,Hm/K is semisimple, soK =
Rad(Hm). This shows that Rad(Hm) is a Hopf ideal. Therefore,Hm is minimal
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triangular satisfying the conditions of Proposition 5.3.6. By Proposition 5.3.6,Hm

is a twist of a triangular Hopf algebra withR-matrix of rank≤ 2. HenceH is a
twist of a triangular Hopf algebra withR-matrix of rank≤ 2 (by the same twist),
as desired.
(1.⇒ 2.) By assumption, Rep(H ) is equivalent to Rep(G̃) for some supergroup

G̃ (as a tensor category without braiding). But we know that supergroup algebras
have the Chevalley property because, modulo their radicals, they are group alge-
bras. This concludes the proof of the main theorem.

Remark 5.3.7. Notice that it follows from the proof of the main theorem that any
triangular Hopf algebra with the Chevalley property can be obtained by twisting a
triangular Hopf algebra withR-matrix of rank≤ 2 by aneventwist.

Definition 5.3.8. If a triangular Hopf algebraH overC satisfies condition 1 or
2 of Theorem 5.1.1,then we will say thatH is of supergroup type.

5.4. Corollaries of the Main Theorem

Corollary 5.4.1. A finite-dimensional triangular Hopf algebraH is of super-
group type if and only if its minimal partHm is also.

Proof. If H is of supergroup type then Rad(H ) is a Hopf ideal. Thus, as in the
(2.⇒ 1.) proof of Theorem 5.1.1, weconclude that Rad(Hm) is a Hopf ideal, that
is,Hm is of supergroup type.

Conversely, ifHm is of supergroup type thenHm is a twist of a triangular Hopf
algebra withR-matrix of rank≤ 2. HenceH is a twist of a triangular Hopf alge-
bra withR-matrix of rank≤ 2 (by the same twist), soH is of supergroup type.

Corollary 5.4.2. A finite-dimensional triangular Hopf algebra whose co-radi-
cal is a Hopf subalgebra is of supergroup type. In particular, this is the case for
finite-dimensional triangular pointed Hopf algebras.

Proof. This follows from Corollary 5.4.1.

Corollary 5.4.3. Any finite-dimensional triangular basic Hopf algebra is of
supergroup type.

Proof. A basic Hopf algebra automatically has the Chevalley property, since all its
irreducible modules are 1-dimensional. Hence, the result follows from the main
theorem.

5.5. Questions

The previous results motivate the following question.

Question 5.5.1. Does any finite-dimensional triangular Hopf algebra overC
have the Chevalley property (i.e., is any such algebra of supergroup type)? Is
it true under the assumption thatS 4 = Id or at least under the assumption that
u2 = 1?
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Remark 5.5.2. Recall from [G] that it is not known whether any finite-dimen-
sional triangular Hopf algebra overC has the propertyu2 = 1 or at leastS 4 =
Id. It is also not known ifS 4 = Id impliesu2 = 1 for triangular Hopf algebras.
However, it is clear that, for finite-dimensional triangular Hopf algebrasH of
supergroup type,u2 = 1 (and henceS 4 = Id). Indeed, sinceS2 = Id on the
semisimple part ofH, it follows thatu acts by a scalar in any irreducible represen-
tation ofH. In fact, since tr(u) = tr(u−1), we have thatu = 1 oru = −1 on any
irreducible representation ofH, and henceu2 = 1 on any irreducible representa-
tion of H. Thus,u2 is unipotent. But it is of finite order (since it is a grouplike
element), so it is equal to 1 as desired.

Remark 5.5.3. Note that the answer to Question 5.5.1 is negative in the infinite-
dimensional case. Namely, although the answer is positive in the co-commutative
case (by [C]), it is negative already for triangular Hopf algebras withR-matrix of
rank 2, which correspond to co-commutative Hopf superalgebras. Indeed, let us
take the co-commutative Hopf superalgebraH := U(gl(n|n)) (for the definition
of the Lie superalgebra gl(n|n), see [K, p. 29]). The associated triangular Hopf
algebraH̄ does not have the Chevalley property, since it is well known that the
Chevalley theorem fails for Lie superalgebras (e.g., for gl(n|n)); more precisely,
already the product of the vector and co-vector representations for this Lie super-
algebra is not semisimple.

Remark 5.5.4. It follows from Corollary 5.4.1 that a positive answer to Question
5.5.1 in the minimal case would imply the general positive answer.

Here is a generalization of Question 5.5.1.

Question 5.5.5. Does anyC-linear abelian symmetric rigid tensor category,
with End(1) = C and finitely many simple objects, have the Chevalley property?

Here is an even more ambitious question.

Question 5.5.6. Is such a category equivalent to the category of representations
of a finite-dimensional triangular Hopf algebra withR-matrix of rank≤ 2 ? In
particular, is it equivalent to the category of representations of a supergroup as a
category without braiding? Are these statements valid at least for categories with
Chevalley property? For semisimple categories?

6. Finite-Dimensional Co-triangular Pointed Hopf Algebras
Are Generated by Grouplikes and Skewprimitives

There is a conjecture (see [AS2]) that any finite-dimensional pointed Hopf algebra
overC is generated by grouplike and skewprimitive elements. Here we confirm it
in the co-triangular case.

Theorem 6.1. A finite-dimensional co-triangular pointed Hopf algebraH over
C is generated by grouplike and skewprimitive elements.
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In order to prove the theorem, we will need the following lemma.

Lemma 6.2. LetH be a finite-dimensional pointed Hopf algebra or superalge-
bra. Then the following are equivalent.

1. H is generated by grouplike and skewprimitive elements.
2. There exists a faithfulH ∗-module that is a direct sum of tensor products of
H ∗-modules of dimension2.

Proof. IrreducibleH ∗-modules are 1-dimensional, so a 2-dimensional represen-
tation has the form

a 7→
(
p(a) r(a)

0 q(a)

)
, a ∈H ∗,

wherep, q are characters (i.e., they belong toG(H )) andr is aq : p skewprimi-
tive. Conversely, such a 2-dimensional representation exists for any skewprimitive
element. Matrix elements of tensor products of representations ofH ∗ are products
of the matrix elements of these representations (as elements ofH ). This implies
the lemma.

Now we are ready to give the following.

Proof of Theorem 6.1.We need to show thatH ∗ has a faithful representation that
is a direct sum of products of 2-dimensional representations. By [G], the Drin-
feld elementu of H ∗ satisfiesu2 = 1. Hence, by Theorem 3.1.1, we canreplace
H ∗ with the corresponding Hopf superalgebrãH ∗ (since this does not change the
representation category as a tensor category). ButH ∗ is basic triangular, which
means (by Corollary 5.4.3) that̃H ∗ is twist-equivalent to a supergroup algebraB.
Thus, by Lemma 6.2, it suffices to show thatB∗ (the dual ofB) is generated by
grouplikes and skewprimitives.

But B = C[G] n 3V, whereG is abelian. Thus,V is decomposed in the di-
rect sum of eigenspaces forG. Let v1, . . . , vn be a basis ofV such thatgvig−1 =
χi(g)vi, where theχi are some characters ofG. Using this presentation ofB, it
is easy to compute its dualB∗ and show that it is generated as an algebra byG∨
(the character group) andχi : 1 skew primitive elementsξi, i = 1, . . . , n. We are
done.

Corollary 6.3. Theorem 5.1 of[G] gives the classification of all minimal tri-
angular pointed Hopf algebras.

Proof. Since minimal triangular pointed Hopf algebras are also co-triangular, by
Theorem 6.1 they are generated by grouplikes and skewprimitives (which answers
a question from [G]). On the other hand, [G, Thm. 5.1] gives a classification
of minimal triangular Hopf algebras that are generated by grouplikes and skew-
primitives.

Remark 6.4. Lemma 6.2 implies that, ifH1, H2 are finite-dimensional pointed
Hopf algebras and if the co-multiplication ofH ∗1 is obtained by conjugating that
of H ∗2 by an invertible element (not necessarily a twist), thenH1 is generated by
grouplike and skewprimitive elements if and only ifH2 is.
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7. Categorical Dimensions in Symmetric Categories
with Finitely Many Irreducibles Are Integers

In this paper we classified finite-dimensional triangular Hopf algebras with the
Chevalley property. In conclusion, let us give one result that is valid in the greater
generality of any finite-dimensional triangular Hopf algebra—and even for any
symmetric rigid category with finitely many irreducible objects.

Let C be aC-linear abelian symmetric rigid category with1 as its unit object,
and suppose that End(1) = C. Recall that there is a natural notion of dimension
in C that generalizes the ordinary dimension of an object in Vect. Letβ denote the
commutativity constraint inC and, for an objectV, let evV and coevV denote the
associated evaluation and coevaluation morphisms, respectively.

Definition 7.1 [DM]. The categorical dimension dimc(V ) ∈ C of V ∈Ob(C )
is the morphism

dimc(V ) : 1
evV−−→ V ⊗V ∗ βV,V ∗−−−→ V ∗ ⊗V coevV−−−→ 1. (10)

The main result of this section is the following.

Theorem 7.2. In any C-linear abelian symmetric rigid tensor categoryC with
finitely many irreducible objects, the categorical dimensions of objects are integers.

Proof. First note that the categorical dimension of any objectV of C is an algebraic
integer. Indeed, letV1, . . . , Vn be the irreducible objects ofC. Then{V1, . . . , Vn}
is a basis of the Grothendieck ring ofC. Write V ⊗ Vi = ∑

j Nij(V )Vj in the
Grothendieck ring. ThenNij(V ) is a matrix with integer entries, and dimc(V ) is
an eigenvalue of this matrix. Thus, dimc(V ) is an algebraic integer.

Now, if dimc(V ) = d then it is easy to show (see e.g. [D1]) that

dimc(S
kV ) = d(d +1) · · · (d + k −1)/k!

and
dimc(3

kV ) = d(d −1) · · · (d − k +1)/k!;
hence these dimensions are also algebraic integers. Therefore, the theorem fol-
lows from our next lemma.

Lemma. Supposed is an algebraic integer such thatd(d +1) · · · (d + k−1)/k!
andd(d−1) · · · (d−k+1)/k! are algebraic integers for allk. Thend is an integer.

Proof. LetQ be the minimal monic polynomial ofd overZ. Sinced(d − 1) · · ·
(d − k +1)/k! is an algebraic integer, so ared ′(d ′ −1) · · · (d ′ − k +1)/k!, where
d ′ is any algebraic conjugate ofd. Taking the product over all conjugates, we get
that

N(d)N(d −1) · · ·N(d − k +1)/(k!)n

is an integer, wheren is the degree ofQ. But N(d − x) = (−1)nQ(x). Hence
we have thatQ(0)Q(1) · · ·Q(k−1)/(k!)n is an integer. Similarly, from the iden-
tity for S kV it follows thatQ(0)Q(−1) · · ·Q(1− k)/(k!)n is an integer. Now,
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without loss of generality, we can assume thatQ(x) = xn + axn−1+ · · ·, where
a ≤ 0 (otherwise, replaceQ(x) byQ(−x); we can do it because our condition
is symmetric under this change). Then for largek we haveQ(k − 1) < kn, so
the sequencebk := Q(0)Q(1) · · ·Q(k −1)/k!n is decreasing in absolute value or
zero starting from some place. But a sequence of integers cannot be strictly de-
creasing in absolute value forever. Hencebk = 0 for somek and soQ has an
integer root. This means thatd is an integer (i.e.,Q is linear), sinceQmust be ir-
reducible over the rationals. This concludes the proof of the lemma and hence of
the theorem.

Corollary 7.3. For any triangular Hopf algebraH (not necessarily finite-
dimensional), the categorical dimensions of its finite-dimensional representations
are integers.

Proof. It is enough to consider the minimal partHm ofH that is finite-dimensional,
since dimc(V ) = tr(u|V ) for any moduleV (whereu is the Drinfeld element of
H ) andu∈Hm. Hence the result follows from Theorem 7.2.

Remark 7.4. Theorem 7.2 is false without the finiteness conditions. In fact, in
this case any complex number can be a dimension, as is demonstrated in exam-
ples constructed by Deligne [D2, pp. 324–325]. Also, it is well known that the
theorem is false for ribbon, nonsymmetric categories (e.g., for fusion categories
of semisimple representations of finite-dimensional quantum groups at roots of
unity, where dimensions can be irrational algebraic integers).

Remark 7.5. Note that Theorem 7.2 can be regarded as a piece of supporting
evidence for a positive answer to Question 5.5.6.

Remark 7.6. In any rigid braided tensor category with finitely many irreducible
objects, we can define the Frobenius–Perron dimension of an objectV,FPdim(V ),
to be the largest positive eigenvalue of the matrix of multiplication byV in the
Grothendieck ring. This dimension is well-defined by the Frobenius–Perron theo-
rem and has the usual additivity and multiplicativity properties. For example, for
the category of representations of a quasi-Hopf algebra, it is just the usual dimen-
sion of the underlying vector space. If the answer to Question 5.5.6 is positive then
FPdim(V ) for symmetric categories is always an integer that is equal to dimc(V )

modulo 2. It would be interesting to check this, at least in the case of modules over
triangular Hopf algebras, when the integrality of FPdim is automatic (so only the
mod 2 congruence has to be checked).

8. Appendix: On Pointed Hopf Algebras

In this appendix we use the lifting method [AS1; AS2] to give alternate proofs of
Theorem 5.2.1 and Corollary 6.3 and a generalization of Lemma 5.3.4.

By a braided Hopf algebrawe shall mean a Hopf algebra in the braided tensor
category of Yetter–Drinfeld modules over a group algebraC[0], where0 is a fi-
nite abelian group. For example, one can endow the exterior algebra3V with the
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structure of a braided Hopf algebra as follows. Letx1, . . . , xN be a basis ofV and
let there be giveng1, . . . , gN ∈0 andχ1, . . . , χN ∈0∨ such that

χi(gj ) = −1, 1≤ i, j ≤ N.
ThenV is aYetter–Drinfeld module overC[0], where the action and co-action of
0 onxi are given byχi andgi (respectively). This action and co-action extend to
3V and turn3V into a braided Hopf algebra.

Lemma 8.1. LetR = ⊕
n≥0R(n) be a graded braided Hopf algebra such that

R(0) = C, R(1) ' V as a Yetter–Drinfeld module(with the preceding assump-
tions), andR is generated byR(1). ThenR is isomorphic to3V as a graded
braided Hopf algebra.

Proof. It is known and easy to see that3V satisfies all the hypotheses thatR does,
plus that the primitive elements are concentrated in degree 1:P(3V ) = 3V(1) =
V (see e.g. [AS1, Sec. 3]). In other words,3V is the Nichols algebra ofV, and
there exists a surjective homomorphism of graded braided Hopf algebrasR →
3V that is the identity in degree 1 (see e.g. [AS2, Lemma 5.5]). On the other hand,
it is clear that3V can be presented by generatorsx1, . . . , xN with relations

xi xj + xj xi = 0, 1≤ i, j ≤ N. (11)

So, in particular,x 2
i = 0 for all i. It is thus enough to show that equations (11)

also hold inR, with an evident abuse of notation. Butxi xj + xj xi is a primitive
element ofR, whose action is given by the characterχiχj and whose co-action is
given bygigj . Sinceχiχj(gigj ) = 1 andR is finite-dimensional,xi xj + xj xi =
0 inR by [AS1, Lemma 3.1].

Let H be a finite-dimensional pointed Hopf algebra such thatG(H ) is isomor-
phic to0. We recall that the lifting method [AS1; AS2] attaches several invariants
toH :

(a) the graded Hopf algebra grH associated to the co-radical filtration ofH ;
(b) a graded braided Hopf algebraR, the co-invariants of the homogeneous pro-

jection from grH to C[0];
(c) a Yetter–Drinfeld moduleW := R(1) over C[0], called the infinitesimal

braided vector space ofH.

We may conclude immediately from Lemma 8.1 as follows.

Corollary 8.2. LetH be a finite-dimensional pointed Hopf algebra such that
G(H ) is isomorphic to0. Assume that the infinitesimal braiding ofH is isomor-
phic toV as before. ThenH is generated by grouplike and skewprimitive elements.

Remark 8.3. Notice that Corollary 8.2 allows one to give an alternative proof of
Corollary 6.3. This is because Lemmas 5.3 and 5.4 in [G] imply that the infinites-
imal braiding of any minimal triangular pointed Hopf algebra is isomorphic to a
V as described previously.
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Assume now that0 = Z2. There is only one possible choice forV as before—
namely,g1 = · · · = gN = u andχ1 = · · · = χN = the sign. This gives the
Hopf superalgebra as explained in Section 5. Let nowH be a finite-dimensional
pointed Hopf algebra such thatG(H ) is isomorphic toZ2. Then, for some natural
numberN, the infinitesimal braiding ofH is isomorphic toV as before by [AS1,
Lemma 3.1] again. The lifting method gives a very direct proof of the following
well-known result.

Theorem 8.4 [N, Thm. 4.2.1; CD]. If H is a finite-dimensional pointed Hopf
algebra withG(H ) isomorphic toZ2, thenH ' C[Z2] n3V.

Proof. By the foregoing remarks and Corollary 8.2, we know that grH ' C[Z2]n
3V for someV. The fact thatH ' grH (“there are no liftings”, in the jargon of
the lifting method) is a particular case of the main result [AS1, Thm. 5.5].

We can now give another proof of Theorem 5.2.1.
It is enough to show thatH∗ = 3V for someV as before, since(3V )∗ =

3V ∗ as Hopf superalgebras. By the hypothesis, the co-radical ofH∗ is trivial:
Corad(H∗) = C1. We can consider the bi-productH := C[Z2] n H∗; that is,
H = H̄ in our notation. We claim thatH is a finite-dimensional pointed Hopf
algebra withG(H ) isomorphic toZ2. Indeed, the filtration

C[Z2] ⊂ C[Z2] n (H∗)1⊂ · · · ⊂ C[Z2] n (H∗)j ⊂ · · ·
is a co-algebra filtration, where 1⊂ (H∗)1⊂ · · · ⊂ (H∗)j ⊂ · · · is the co-radical
filtration ofH∗. HenceC[Z2] contains the co-radical ofH, and the other inclu-
sion is evident.

It follows then from Theorem 8.4 thatH ' C[Z2] n 3V. By [AS2, Lemma
6.2],H∗ ' 3V as braided Hopf algebras—that is, as Hopf superalgebras.
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