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Parabolic Manifolds for
Semi-Attractive Holomorphic Germs

Marzia Rivi

1. Introduction

The purpose of this paper is to study the local behavior ofsemi-attractiveholomor-
phic self-maps ofCm (m > 2) in a neighborhood of a fixed point that we assume
to be the origin. Such transformations are the ones whose differential at 0 has one
eigenvalue equal to 1 while the remaining ones, sayβ1, . . . , βs with s ≥ 1, have
modulus strictly less than 1.

Semi-attractive transformations such that 0 is not an isolated fixed point have
been studied by Nishimura [N], who considered analytic automorphismsF of
complex manifolds admitting aq-dimensional complex submanifoldM of attract-
ing fixed points forF. Then, for each pointp0 ∈M, one can choose local coor-
dinates(w, z) ∈ Cq × Cm−q in a neighborhoodU of p0 such thatU ∩ M has
equationz = 0; hence the mapF can be locally written as

w1= w +O(‖z‖),
z1= C(w)z+O(‖z‖2),

whereC(w) is a(m−q)× (m−q)matrix whose elements are holomorphic func-
tions onU and whose eigenvaluesβ1(w), . . . , βm−q(w) have modulus strictly less
than 1.

Let� = {p ∈U | F n(p)→ p0, p0 ∈M}, which is an open set containingM.
Nishimura proved that if these eigenvalues have no relations in any point ofM,

that is, if for each multi-indexj = (j1, . . . , jm−q) with
∑m−q

k=1 jk ≥ 2 and 1≤ i ≤
m− q we haveβj11 (w) · · ·βjm−qm−q (w) 6= βi(w), then there exists a biholomorphism
S:N → �, whereπ :N → M is the normal bundle ofM, which conjugatesF to
the automorphismG of N induced byF and given inπ−1(U ∩M) by

s1= s,
u1= C(s)u.

When 0 is an isolated fixed point, the problem has been studied only for maps
such that the eigenvalue1has multiplicityq = 1. Fatou [F] and subsequently Ueda
[U1; U2] studied the dynamics of such transformationsF in two complex vari-
ables. Fatou found a system of coordinates(w, z) such thatF has the following
expression in a neighborhood of 0:
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w1= a1(z)w + a2(z)w
2 + · · ·,

z1= bz+ b1(z)w + b2(z)w
2 + · · ·, (1.1)

whereb is the eigenvalue such that 0< |b| < 1 and whereai(z), bi(z) are holo-
morphic functions in a neighborhood of 0∈C such thata1(0) = 1 andb1(0) = 0;
he then proved the existence of a basin of attraction to the origin whena2(0) 6= 0.

The same result was obtained by Ueda after reducingF to a simpler form of
type (1.1), where (for fixedk ≥ 2) the coefficientsai(z) are constants andbi(z)
are linear monomials fori ≤ k. Ueda gave a precise description of the basin of
attraction� and showed that ifF is an automorphism then� is biholomorphic to
C2; he also proved thatF is conjugated to the translation(x, y) 7→ (x +1, y) on
an open subset of�.

Finally, Hakim [H1] considered semi-attractive maps ofCm with m ≥ 2; for
eachk ≥ 2 she proved the existence of a local system of coordinates(w, z) ∈
C× Cm−1 with respect to whichF has the form

w1= w + a2w
2 + · · · + akwk + ak+1(z)w

k+1+ · · ·,
z1= g(z)+ zh(w, z), (1.2)

wherea2, . . . , ak are constants;aj(z) (j ≥ k+1), g(z), andh(w, z) are germs of
holomorphic maps fromCm−1 to C, from Cm−1 to itself, and fromCm to Cm−1

(respectively), withh(0,0) = 0, g(0) = 0, anddg(0) as the eigenvalues ofdF(0)
that have modulus strictly less than1. Ifaj ≡ 0 for eachj, then there exists a curve
of fixed points(w, z(w)) passing through the origin; otherwise (i.e., ifa2 = · · · =
ah = 0 andah+1 6= 0 for someh ≥ 1) she found an attracting domain. Precisely,
Hakim proved the following result.

Theorem 1.1 [H1]. Let F be a semi-attractive holomorphic transformation of
Cm such that the origin is an isolated fixed point and the eigenvalue1 of dF(0)
has algebraic multiplicity1. Then: either (a) there exists a curve of fixed points
or (b) F − idCm has finite multiplicityh + 1 at 0 and there exists an attracting
domainD of 0 with h petals.

Moreover, in the latter case, ifF is a global automorphism of(C2,0) then
every petal ofD is biholomorphic toC2.

We are interested in the general case inCm, where the algebraic multiplicity of
the eigenvalue 1 isq > 1. The center stable manifold theorem [R, p. 32] guaran-
tees the existence of a closed analytic stable manifold of dimensionm− q tangent
at 0 to the generalized eigenspaceE corresponding to the eigenvaluesβ1, . . . , βs
with modulus strictly less than 1. In particular, in a neighborhood of 0 and choos-
ing local coordinates(w, z) ∈ Cq × Cm−q such that this manifold has equation
w = 0, we can write our map in the form

w1= f1(w, z) = A(z)w + P2,z(w)+ P3,z(w)+ · · ·,
z1= f2(w, z) = G(z)+ B(w, z)w, (1.3)

where:A(z) is aq × q matrix, whose elements are holomorphic functions inz,

such thatA(0) = J is the Jordan block ofdF(0) corresponding to the eigenvalue1;
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Pi,z:Cq → Cq are homogeneous polynomials of degreei whose coefficients are
holomorphic functions inz;G is a holomorphic transformation ofCm−q such that
G(0) = 0 anddG(0) has eigenvaluesβ1, . . . , βs; andB(w, z) is an(m− q)× q
matrix whose elements are holomorphic functions ofCm vanishing at(w, z) =
(0,0).

Note that, if the first componentf1 is just the identity inCq, then by the implicit
mapping theorem we obtain aq-dimensional manifold of fixed points by solving
the equationz1= z in z = z(w).

We consider the case where the origin is an isolated fixed point, and we shall
prove the existence of larger stable manifolds with the origin in the boundary. First,
we generalize Hakim’s method to separate the contracting part from the neutral
part ofF to sufficiently high order (Section 2). Then we distinguish the case where
the algebraic and geometric multiplicities of 1 are equal (Sections 3 and 4) from
the one where they are different (Sections 5 and 6).

For semi-attractive maps such that the eigenvalue 1 ofdF(0) has Jordan block
J equal to the identity matrix, we extend Hakim’s argument about germs of holo-
morphic transformationsF1 of (Cq,0) with differentialdF1(0) = I (see [H2; H3]
and also [W]): by studying the blow-up ofF1, Hakim proved that, for each non-
degenerate complex directionV invariant under the homogeneous polynomial of
lowest degreeh+1 in the expansion ofF1− idCq , we can obtainh stable curves
0i tangent toV at 0, with 0∈ ∂0i, as fixed points of suitable operators on Banach
spaces. She also introduced some invariants associated toV and determined con-
ditions ensuring the existence ofh attracting domains to 0 such that each orbit
inside them converges tangentially toV.

To describe the result obtained for our maps, we need to recall some definitions
introduced by Hakim. Given a transformationF :Cm → Cm, we say thatF is
tangent to the identity at orderh + 1 if, in a neighborhood of the origin, it has
homogeneous expansionX1= X + Ph+1(X)+ Ph+2(X)+ · · · with Ph+1 6= 0.

Let Pd :Cm → Cm be a homogeneous polynomial of degreed ≥ 2; a char-
acteristic directionfor Pd is a directionV ∈ Cm\{0} such thatPd(V ) = λV for
someλ ∈ C; it is callednondegenerateif Pd(V ) 6= 0. Given a nondegenerate
characteristic directionV for Pd, the projectionP̂d : [X] 7→ [Pd(X)] on the pro-
jective complex spacePm−1(C) is defined in a neighborhood ofV, and [V ] is a
fixed point forP̂d . Then the matrix associated to the linear map

1

d −1
(dP̂d [V ] − id): T[V ]Pm−1(C)→ T[V ]Pm−1(C)

is called thematrix associatedto V and denoted byA(V ). A simple computa-
tion shows that this definition is equivalent to the one given by Hakim. Moreover,
if all characteristic directions ofPd are nondegenerate, then̂Pd is defined in the
whole projective spacePm−1(C) and hence the number of characteristic directions
is equal to the number of fixed points ofP̂d , that is,(dm −1)/(d −1) (see [FS]).

We say thatM ⊂ Cm is aholomorphic manifold at the origin of dimensionn
if there exist a domainS of Cn, with 0 ∈ ∂S, and an injective holomorphic map
ψ : S → Cm such thatψ(S) = M and limX→0ψ(X) = 0. The manifoldM is said
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to betangent(at 0) to a vector spaceE if, for any sequence{Xk} ⊂ S such that
Xk → 0 and [ψ(Xk)] → [V ] in Pm−1(C), we haveV ∈E. Finally,M is said to
be parabolic if it is F -invariant and if, for each pointp ∈ M, the forward orbit
F n(p) converges to 0.

By these definitions, the result obtained by Hakim for holomorphic self-maps
tangent to the identity at 0 can be stated as follows.

Theorem1.2 [H2; H3]. LetF be a holomorphic germ of transformations ofCm
tangent to the identity at orderh+ 1.

(i) For every nondegenerate characteristic directionV of F, there existh para-
bolic curves01, . . . , 0h tangent toV at the origin.

(ii) If the associated matrixA(V ) of V has all the eigenvalues with strictly posi-
tive real part, then there existh disjoint attracting domainsDi (i = 1, . . . , h),
such that0∈ ∂Di and0i ⊂ Di, in which every point is attracted to the origin
along an orbit tangent toV at 0.

In our case we derive the following.

Theorem 1.3 (Parabolic Manifold Theorem).Letm > 2 and letF be a holo-
morphic germ of a semi-attractive transformation ofCm, fixing the origin, such
that the eigenvalue1 of dF(0) has the same algebraic and geometric multiplicity
q > 1. Assume thatF is of the form(1.3). If f1(w,0) is tangent to the identity at
orderh + 1 and ifV is a nondegenerate characteristic direction forPh+1,0, then
there existh disjoint parabolic manifolds of dimensionm− q + 1 and tangent to
CV ⊕ E, whereE is generated by the generalized eigenspaces associated to the
eigenvalues ofdF(0) with modulus strictly less than1.

In Remark 2.1 we shall see that the number of these manifolds is strictly less than
the multiplicity ofF − idCm at 0.

We shall also see that the eigenvalues of the matrix associated to a nondegen-
erate characteristic direction are still invariants under change of coordinates and,
moreover, give us a sufficient condition for the existence of attracting domains.

Theorem 1.4. Assume the hypotheses of Theorem 1.3. IfPh+1,0 has a nonde-
generate characteristic directionV such that its associated matrixA(V ) has all
eigenvalues with strictly positive real part, then there existh disjoint attracting
domains forF with the origin in their boundary.

If the algebraic multiplicityq of 1 is different from the geometric multiplicity, then
the idea is to reduce this situation to the previous one by generalizing to our case
the following theorem of Abate.

Theorem 1.5 [A] (Diagonalization Theorem). LetF be a holomorphic germ of
a transformation ofCm such thatF(0) = 0 anddF(0) is invertible and nondiago-
nalizable. Then there exist a complexm-dimensional manifoldM, a holomorphic
projectionπ :M → Cm, a canonical pointẽ ∈ M, and a holomorphic self-map
F̃ :M → M such that:
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(i) π restricted toM\π−1(0) is a biholomorphism betweenM\π−1(0) and
Cm\{0};

(ii) π B F̃ = F B π; and
(iii) F̃(ẽ) = ẽ anddF̃(ẽ) is diagonalizable.

This theorem is proved by making iterated blow-ups ofCm along submanifolds
starting from the blow-up at the origin. We cannot use Abate’s result directly be-
cause it requiresdF(0) to be invertible whereas for our map this matrix may be
singular. But, in order to apply subsequently Theorem 1.3, we need only to diago-
nalize the Jordan blockJ, which is always invertible. Hence, following the same
line of proof as for the diagonalization theorem, but starting now from the blow-up
along the center stable manifold, we shall prove our next theorem.

Theorem 1.6 (Partial Diagonalization Theorem).LetF be a holomorphic germ
of a semi-attractive transformation ofCm fixing the origin, and letX be the cen-
ter stable manifold forF. Then there exist a complexm-dimensional manifoldM,
a holomorphic projectionπ :M → Cm, a canonical point̃e ∈M, and a holomor-
phic self-mapF̃ :M → M such that:

(i) π restricted toM\π−1(X) is a biholomorphism betweenM\π−1(X) and
Cm\X;

(ii) π B F̃ = F B π; and
(iii) ẽ is a fixed point ofF̃ anddF̃(ẽ) = diag{I, J0}, whereI is the identity ma-

trix whose order is equal to the algebraic multiplicity of the eigenvalue1and
whereJ0 is the Jordan block ofdF(0) corresponding to the eigenvalues with
modulus strictly less than1.

Moreover, in a neighborhood ofẽ, there is a system of coordinates such thatF̃

takes the form(1.3)withA(z) ≡ I andP2,0 6= 0.

Finally, Theorem 1.6 allows us to find parabolic manifolds also for semi-attractive
germs with geometric multiplicity of 1 strictly less thanq. In fact, under generic
conditions, we shall prove the existence of an “allowable” nondegenerate char-
acteristic direction forP2,0 and then of aF̃ -parabolic manifold at the origin that
projects to aF -parabolic one (see Corollary 6.1 and Corollary 6.2).

I would like to thank M. Abate, S. Marmi, and J. E. Fornaess for their explana-
tions and suggestions that have contributed to the realization of this paper.

2. Change of Coordinates

Let m ≥ 2 and letF be a germ of holomorphic self-maps ofCm with F(0) =
0 and let 1, β1, . . . , βs be the eigenvalues ofdF(0), where|βi | < 1 for eachi =
1, . . . , s. Let q ≥ 1 be the algebraic multiplicity of 1 and letJ be its correspond-
ing Jordan block. In this section, we reduce the expression (1.3) ofF to a form
where the terms of the first component do not depend on the variablez up to an
orderk. If A(0) 6= I then this order will bek = 2; otherwise, it will be arbitrary.
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Proposition 2.1. AssumeF in the form(1.3). Then there exists a local system
of coordinates(w, z)∈Cq ×Cm−q such that, in a neighborhood of the origin,F
takes the expression

w1= f̃1(w, z) = Jw + P̃2,z(w)+ P̃3,z(w)+ · · ·,
z1= f̃2(w, z) = G(z)+ B̃(w, z)w,

(2.1)

where theP̃i,z are homogeneous polynomials of degreei in Cq whose coefficients
are holomorphic functions inz and whereB̃(w, z) is an(m−q)×q matrix whose
elements are holomorphic functions ofCm with B̃(0,0) = 0.

Proof. Let us consider, in a neighborhoodN1× N2 ⊂ Cq × Cm−q of the origin,
the change of coordinates

χ1 :

{
W = U(z)w,
Z = z; χ−1

1 :

{
w = U(Z)−1W,

z = Z.
HereU :N2→ Gl(C, q) is holomorphic. Then we have

W1= U(z1)w1= U(G(z)+ B(w, z)w)[A(z)w + P2,z(w)+ · · · ]
= U(G(Z)+ B̃(W,Z)U(Z)−1W)[A(Z)U(Z)−1W

+ P2,Z(U(Z)
−1W)+ · · · ]

= U(G(Z))A(Z)U(Z)−1W + P̃2,Z(W )+ · · · .
We want

U(G(Z))A(Z)U(Z)−1= J
or, equivalently,

JU(Z) = U(G(Z))A(Z).
Then it easy to see that

U(z) = lim
n
J−n−1

n∏
i=0

A(Gn−i(z))

is the solution. This limit converges in a neighborhood of 0 by the following facts.

(a) For‖z‖ small enough, there exists 0< γ < 1 such thatA(Gi(z)) = J + Bi
with ‖Bi‖ = O(γ i‖z‖).

(b) Since

J−n(J + Bk) = J−1(J + Bk)J−n+1+ (J−nBk − J−1BkJ
−n+1)

= (I + J−1Bk)J
−n+1+ (J−nBkJ n−1J−n+1− J−1BkJ

−n+1)

= (I + J−1J−n+1BkJ
n−1)J−n+1,

by iteration we obtain
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J−n−1
n∏
i=0

(J + Bn−i ) = J−n−1(J + Bn)
n∏
i=1

(J + Bn−i )

= (I + J−1J−nBnJ n)J−n
n∏
i=1

(J + Bn−i )

=
n∏
i=0

(I + J−1J−n+iBn−iJ n−i ).

(c) Finally,

lim
n

n∑
i=0

‖J−1J−n+iBn−iJ n−i‖ ≤ ‖J−1‖
∞∑
k=0

‖J−kBkJ k‖

≤ ‖J−1‖
∞∑
k=0

O(k2γ k‖z‖)

is convergent.

Moreover, in a small enough neighborhood of 0∈ Cm−q, U(z) is an invertibile
matrix becauseU :N2→ Cq2

is a holomorphic transformation andU(0) = I.
Proposition 2.2. AssumeF in the form(1.3) with A(0) = I. Then, for each
k ≥ 2, there exists a local system of coordinates(w, z)∈Cq ×Cm−q such thatF
takes the following expression in a neighborhood of the origin:

w1= f̃1,k(w, z) = w + P2(w)+ · · · + Pk−1(w)+ P̃k,z(w)+ · · ·,
z1= f̃2(w, z) = G(z)+ B̃(w, z)w,

(2.2)k

wherePi (resp.,P̃i,z)are homogeneous polynomials of degreei inCq with constant
(resp., holomorphic functions inz) coefficients and wherẽB(w, z) is an(m−q)×q
matrix whose elements are holomorphic functions ofCm with B̃(0,0) = 0.

Moreover, iff1(w,0) is tangent to the identity at orderh+1, then for eachk >
h+ 1 we haveP2 = · · · = Ph ≡ 0 andPh+1 = Ph+1,0 6= 0.

Proof. By Proposition 2.1, the assertion is true fork = 2, so we reason by induc-
tion. Suppose that there are coordinates(w, z) such thatF takes the form

w1= w + P2(w)+ · · · + Pk−1(w)+ P̃k,z(w)+ · · ·,
z1= G(z)+ B̃(w, z)w,

and consider the coordinate transformation

χk :

{
W = w +Qk,z(w),

Z = z; χ−1
k :

{
w = W −Qk,Z(W )+ · · ·,
z = Z.

HereQk,z:Cq → Cq is a homogeneous polynomial of degreek whose coeffi-
cients are holomorphic functions in the variablez in a neighborhood of 0. Then
we have
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W1= w1+Qk,z1(w1)

= w + P2(w)+ · · · + Pk−1(w)+ P̃k,z(w)+Qk,G(z)(w)+ P ∗k+1,z(w)+ · · ·
= W −Qk,Z(W )+ P2(W )+ · · ·
+ Pk−1(W )+ P̃k,Z(W )+Qk,G(Z)(W )+ P̄k+1,Z(W )+ · · · .

We want
Qk,Z(W )−Qk,G(Z)(W ) = P̃k,Z(W )− P̃k,0(W ); (2.3)

this implies equalities between the coefficientsp̃i , qi :Cm−q → C of the polyno-
mialsP̃k,z andQk,z. Then, for eachi = 1, . . . , q

(
q+k−1
k

)
, we need that

qi(z)− qi(G(z)) = p̃i(z)− p̃i(0),
qi(G(z))− qi(G2(z)) = p̃i(G(z))− p̃i(0),

...

qi(G
n(z))− qi(Gn+1(z)) = p̃i(Gn(z))− p̃i(0);

hence, the solutions are

qi(z) =
∞∑
n=0

[ p̃i(G
n(z))− p̃i(0)].

For eachi, the series converges in a neighborhood of 0 becauseG is a contraction
andp̃i(z)− p̃i(0) = 0 for z = 0. In particular we haveQk,0 ≡ 0 for eachk ≥ 2.

Finally, assumef1(w,0) tangent to the identity at orderh+ 1, that is,h+ 1=
min{d | Pd,0 6= 0}. Then the second part of the assertion is proved because
χk(w,0) = idCq for eachk and thusf̃1,k(w,0) = f1(w,0) for eachk ∈N.
Remark 2.1. Supposef1(w,0) is tangent to the identity at orderh + 1; then
assumeF in the form (2.2)k with k > h + 1. Let mult0(F ) and ord0(F ) be (re-
spectively) the multiplicity and the order ofF at 0. SinceG′(0)− Im−q is invert-
ibile, we can solve locallyz1− z = 0 in z = z(w). Then mult0(F − idCm) =
mult0(f̃1,k(w, z(w))− idCq ) (see [C, p. 108, Lemma 2]).

Moreover, for a holomorphic self-map of a neighborhood of 0 inCm such
that 0 is an isolated fixed point, the multiplicity at 0 is greater than or equal to∏m

j=1 ord0(p
j
∗ ), wherepj∗ is the initial homogeneous polynomial at 0 of thej th

component of the map (see [C, p. 112, Thm. 2]).
Hence mult0(F − idCm) > ord0(f̃1,k(w, z(w))− idCq ) = h+1.

3. Parabolic Manifold Theorem

Givenf, g1, . . . , gs :Cm→ Cn, from now on we denote

f = O(g1, . . . , gs) ⇐⇒ ∃C1, . . . , Cs > 0 | ‖f(w)‖ ≤ C1‖g1(w)‖
+ · · · + Cs‖gs(w)‖;

f = o(g) ⇐⇒ ‖f(w)‖
‖g(w)‖ → 0 asw→ 0.
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Also, for z ∈ Cp we setOz(g1, . . . , gs) := O(‖z‖g1, . . . , ‖z‖gs). Under the
hypotheses of Theorem 1.3, we can assumeF in the form (2.2)3h+1 with P2 =
· · · = Ph ≡ 0 andPh+1 = Ph+1,0 6= 0, by Proposition 2.2. We splitw =
(x, y) ∈ C × Cq−1 and setPi(x, y) = (pi(x, y), qi(x, y)) and P̃i,z(x, y) =
(p̃i,z(x, y), q̃i,z(x, y)).

Up to a linear change of coordinates, we can assume thatPh+1 has a nondegen-
erate characteristic directionV equal to(1,0). Then, making the blow-upy = ux
with u∈Cq−1, we obtain

x1= x + ph+1(1, u)x
h+1+ · · · + p3h(1, u)x

3h + p̃3h+1,z(1, u)x
3h+1+ · · ·,

u1= u+ r(u)xh +O(xh+1)+Oz(x
3h),

z1= G(z)+O(x 2, ‖z‖x),
wherer(u) = qh+1(1, u)− ph+1(1, u)u.

SinceV is a nondegenerate characteristic direction,r(0) = 0 andph+1(1,0) 6=
0. If we then replacer(u) by its power series expansion at 0 and change the co-
ordinatex into λx with λh = −ph+1(1,0)h, it follows that

x1= x − 1
h
xh+1+O(xh+2, ‖u‖xh+1)+Oz(x3h+1),

u1= (I − Axh)u+O(xh+1, ‖u‖2xh)+Oz(x3h),

z1= G(z)+O(x 2, ‖z‖x),
whereA = r ′(0)/(hph+1(1,0)) is just the matrixA(V ) associated toV.

Moreover, we can find a polynomial functiong(x) such that, changingx with
g(x), the mapF has the following form (see [B, p. 122, Thm. 6.5.7]):

x1= x − 1
h
xh+1+O(x 2h+1, ‖u‖xh+1)+Oz(x3h+1),

u1= (I − Axh)u+O(xh+1, ‖u‖2xh)+Oz(x
3h), (3.1)

z1= G(z)+O(x 2, ‖z‖x).

Proposition 3.1. Let V = (1, u0) be a nondegenerate characteristic direction
for Ph+1. Then the class of similarity of the associated matrixA(V ) is invariant
under changes of coordinates; in particular, its eigenvalues are invariants.

Proof. Let (X, Y, Z) = χ(x, y, z) be a local diffeomorphism that fixes the ori-
gin and preserves the characteristic direction ofPh+1, that is, maps(1, u0, z) into
(1, U0, Z) for eachz ∈Cm−q, where(1, U0) is another characteristic direction of
Ph+1. Then the firstq components ofχ do not depend onz. SincePh+1 is a homo-
geneous polynomial in the firstq variablesx, y1, . . . , y q−1,we can simply consider
the restriction ofχ andF to Cq . In this case the linear part ofF is the identity
andPi ≡ 0 for i = 2, . . . , h, soF̃ = χ−1 B F B χ is still tangent to the identity at
orderh + 1 andP̃h+1 is conjugated toPh+1 by the linear part ofχ. Then, by our
definition of associated matrix, it follows thatA(1, u0) andA(1, U0) belong to the
same class of similarity.
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Later we will find domainsD1, . . . , Dh such that, for each point(x, u, z) ∈ Di,

all iteratesxn are contained in disjoint simply connected domains that omit the
origin. We can then apply the following argument to the restriction ofF toDi.

Proposition 3.2. Let F be a holomorphic transformation of type(3.1) and let
l1, . . . , lc be the eigenvalues ofA(V ) such thathlj ∈ N for eachj = 1, . . . , c.
Then, for eachk ∈ N, there exist an integerdk and an analytic functioñuk(x, z)
in x, xhl1, . . . , xhlc with values inCq−1 such that, after the change of coordinates
u− ũk, the transformationF takes the form

x1= f(x, u, z) = x − 1
h
xh+1+O(x 2h+1 logx, ‖u‖xh+1)+Oz(x

3h+1),

u1= φ(x, u, z) = (I − Axh)u+O(‖u‖2xh, ‖u‖xh+1 logx)

+Oz(‖u‖x3h)+ xh(k+1)ϕk(x, z),

z1= ν(x, u, z) = G(z)+O(x 2, ‖z‖x),

(3.2)

whereϕk(x, z) = O(x(logx)dk , ‖z‖) and the mapsf, φ, ν, xh(k+1)ϕk(x, z) are
analytic in the variablesx, xhl1 logx, . . . , xhlc logx, u, z.

Letα1, . . . , αq−1 be the eigenvalues ofA(V ) and setλ := maxj {Reαj }. Assuming
k > 1+ λ andk > 3, we can takeF in the form (3.2)k. Let D+r = {x ∈ C |
|x − r| < r} and let5i

r, . . . ,5
h
r be theh branches ofz1/h in D+r . Then, for each

i = 1, . . . , h we shall prove the existence of a holomorphic local manifoldMi of
dimensionm− q + 1, with the origin on its boundary, by findingr, δ ∈R+ and a
holomorphic function

ui :5i
r ×1m−qδ → Cq−1

(x, z) 7→ ui(x, z),

where1m−qδ := {z∈Cm−q | ‖z‖ < δ}, such thatui(x, z)→ 0 as(x, z)→ 0.
Observe thatMi = {(x, u, z) ∈Cm | u = ui(x, z)} is invariant underF if and

only if its points satisfy

ui
(
f(x, ui(x, z), z), ν(x, ui(x, z), z)

) = φ(x, ui(x, z), z). (3.3)

Let v ∈Cq−1 defined by

u = xhAv = exp(hA logx)v,

and letH(x, u, z) be the map deduced fromφ by the equality

H(x, u, z) := xhA(v − v1) = u− xhAx−hA1 u1.

By (3.2)k we have

u1− (I − Axh)u = O(xh(k+1)+1(logx)dk , ‖u‖2xh, ‖u‖xh+1 logx)

+Oz(x
h(k+1), ‖u‖x3h);

moreover,

xhA1 = [I − Axh +O(x 2h logx, ‖u‖xh)+Oz(x3h)]xhA
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also implies

u1− (I − Axh)u
= (I − Axh)xhA(v1− v)+ [O(x 2h logx, ‖u‖xh)+Oz(x

3h)]xhAx−hA1 u1

= (I − Axh)xhA(v1− v)
+O(xh(k+3)+1(logx)dk+1, ‖u‖2xh, ‖u‖x 2h logx)

+Oz(x
h(k+3) logx, ‖u‖x3h).

ThenH is analytic inx, xhl1 logx, . . . , xhlc logx, u, z and

H(x, u, z) = O(xh(k+1)+1(logx)dk , ‖u‖2xh, ‖u‖xh+1 logx)

+Oz(x
h(k+1), ‖u‖x3h). (3.4)

Moreover, the componentφ of F can now be written asv1= v− x−hAH(x, u, z).
Since the functional equation (3.3) meansui(x1, z1) = ui1(x, z), it is equivalent to
vi(x1, z1) = vi1(x, z), that is,

x−hAui(x, z)− x−hA1 ui(x1, z1) = x−hAH(x, ui(x, z), z). (3.5)

Lemma 3.1. Letu(x, z) = x 2ht(x, z) with t :5i
r ×1m−qδ → Cq−1 holomorphic

and bounded. Let{(xn, zn)} be the orbit of a point(x, z)∈5i
r ×1m−qδ under the

transformationFu given by

x1= fu(x, z) = f(x, u(x, z), z),
z1= νu(x, z) = ν(x, u(x, z), z).

If r, δ are small enough, then for each(x, z)∈5i
r×1m−qδ it follows that(xn, zn)∈

5i
r ×1m−qδ and thatxn, ‖zn‖ areO(1/n1/h) for eachn∈N.

Proof. By hypothesis,Fu has the form

x1= f(x, u(x, z), z) = x
[
1− 1

h
xh + ax 2h logx + bx 2h + o(x 2h)

]
,

z1= ν(x, u(x, z), z) = G(z)+O(x 2, ‖z‖x),
wherea andb are two constants. By elevating the first component ofFu to the
powerh, we obtain

1

xh1
= 1

xh
+1+ xh(1− b − a logx)+ o(xh);

so, forr andδ sufficiently small, there exists someK > 0 such that∣∣∣∣ 1

xh1
− 1

xh
−1

∣∣∣∣ < K|x|h/2 <
K

R1/2
,

whereR = 1/(2r).
Then, proceeding as in [H1, Prop. 3.1], we derive the assertion for semi-attractive

transformations with the eigenvalue 1 having multiplicity 1.
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Now let Bik,d,r,δ be the Banach space formed by functions of typeu(x, z) =
xhk−1(logx)d t(x, z), with t holomorphic bounded from5i

r ×1m−qδ toCq−1, en-
dowed with the norm‖u‖B = ‖t‖∞. Givenε > 0, for |x| small enough it is not
difficult to show that

‖x−A‖ ≤ |x|−(λ+ε); (3.6)

then, for each elementu(x, z) in this space,

x−hAH(x, u(x, z), z) = O(xh(k+1−λ−ε)(logx)d+1).

Since for eachn∈N we have thatzn ∈1m−qδ and thatxhn = O(1/n) uniformly on
5i
r ×1m−qδ , and sincek > 1+ λ, the series

∞∑
n=0

x−hAn H(xn, u(xn, zn), zn)

is normally convergent. We can thus define

Tu(x, z) = xhA
∞∑
n=0

x−hAn H(xn, u(xn, zn), zn).

Proposition 3.3. T is an operator onBik,d,r,δ. Moreover, there exists a closed
subsetS iT of Bik,d,r,δ such thatT restricted toS iT is a contraction.

Therefore,T has a fixed point̃ui ∈ S iT and soũi satisfies equation (3.5). Hence
u = ũi(x, z) is the equation ofMi defined on5i

r ×1m−qδ . By (3.3), if we make
the changeu− ũi(x, z) in the form (3.2)k of F, we find that

x1= x − 1
h
xh+1+O(x 2h+1 logx, ‖u‖xh+1),

u1= (I − Axh)u+O(‖u‖2xh, ‖u‖xh+1 logx),

z1= G(z)+O(x 2, ‖z‖x),
and the equation ofMi becomesu = 0. Then, for each(x,0, z)∈Mi, by the same
argument as used in Lemma 3.1 we see thatxn and‖zn‖ areO(1/n1/h). Therefore
Mi is stable and tangent toCV ⊕ E at 0.

Proof of Proposition 3.2

The following result is a generalization of Proposition 3.5 in [H2], and it can be
proved with the same argument used by Hakim.

Proposition 3.4. Let (f ∗, φ∗) be a holomorphic transformation ofC × Cq−1

of type

x1= f ∗(x, u) = x
(
1− 1

h
xh
)+O(x 2h+1, ‖u‖xh+1),

u1= φ∗(x, u) = (I − Axh)u+O(‖u‖2xh, ‖u‖xh+1)+ xh+1ψ(x).
(3.8)

Let {l1, . . . , lc} be the eigenvalues ofA such thathli ∈ N for i = 1, . . . , c. Then,
for eachn ∈N, there are an integerbn and a functionun(x) with values inCq−1
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such that(a) un(0) = 0, (b) its components are polynomials inx, xhl1 logx, . . . ,
xhlc logx of total degreen in x, and (c) after the change ofu in s = u− un, the
transformation takes the expression

x1= f̂ ∗(x, s) = x
(
1− 1

h
xh
)+O(x 2h+1 logx, ‖s‖xh+1),

s1= φ̂∗(x, s) = (I − Axh)s +O(‖s‖2xh, ‖s‖xh+1 logx)+ xh+1+nψn(x).

Hereψn(x) = R∗n(logx)+ o(x logx), withR∗n(t) a polynomial of degreebn, and
f̂ ∗, φ̂∗, xh+nψn(x) are analytic inx, xhl1 logx, . . . , xhlc logx, s.

The expression (3.1) of our map can be rewritten as

x1= f ∗(x, u)+Oz(x3h+1),

u1= φ∗(x, u)+Oz(‖u‖x3h)+ x3hϕ(x, z),

z1= G(z)+O(x 2, ‖z‖x),
where(f ∗, φ∗) is of type (3.8) andϕ(x,0) ≡ 0. For eachn∈N, let un(x) be the
function given by Proposition 3.4 for the map(f ∗, φ∗); then, if we changeu with
s = u− un(x), by the same proposition we have

s1= (I − Axh)s +O(‖s‖2xh, ‖s‖xh+1 logx)+ xh+1+nψn(x)

+Oz(‖s‖x3h)+ x3hϕ(x, z).

Hence, by choosingn = 2hwe can assumeF in the form (3.2)2,whereϕ2(x, z) =
xR∗2h(logx)+ o(x)+O(‖z‖).

Now let us consider the simpler caseq = 2, whereA(V ) is a complex num-
berα.

Lemma 3.2. LetF be a self-map ofC× C× Cm−2 in the form

x1= f(x, u, z) = x
(
1− 1

h
xh
)+O(x 2h+1 logx, uxh+1)Oz(x

3h+1),

u1= φ(x, u, z) = (1− αxh)u+O(u2xh, uxh+1 logx)

+Oz(ux
3h)+ x3hϕ2(x, z),

z1= ν(x, u, z) = G(z)+O(x 2, ‖z‖x),
with ϕ2(x, z) = xR2(logx) + o(x) + O(‖z‖). Then there exist sequences{dn}
of integers and{ûn} of polynomialsûn(x, z) in x, xhα logx of degree3h+ n in x
whose coefficients are holomorphic functions inz such that, for eachn ∈N∗, we
haveûn(0,0) = 0 and

φ(x, ûn−1(x, z), z) = ûn−1
(
f(x, ûn−1(x, z), z), ν(x, ûn−1(x, z), z)

)
+ x3h+nϕn(x, z), (3.9)

with ϕn(x, z) = xRn(logx)+ o(x)+O(‖z‖) and whereRn(t) is a polynomial of
degreedn. Moreover,û−1 ≡ 0 and

ûn(x, z) = ûn−1(x, z)+ [x1−hQn(logx)+ cn(z)]x3h+n for n ≥ 0,
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whereQn(t) is a polynomial and

cn(z) =
∞∑
i=0

ϕn(0,G
i(z)).

Proof. Forn = 0 the claim is obvious, by hypothesis. So by induction we assume
there exists a function̂un−1(x, z) such that the assertion is satisfied forn ≥ 1.
Define

ûn(x, z) = ûn−1(x, z)+ [x1−hQn(logx)+ cn(z)]x3h+n

with cn(0) = 0 and letpn ≥ dn be the degree ofQn. Since

ûn−1= O(x 2h+1(logx)p1, ‖z‖x3h),

we have

ûn
(
f(x, ûn(x, z), z), ν(x, ûn(x, z), z)

)
= ûn−1

(
f(x, ûn−1(x, z), z), ν(x, ûn−1(x, z), z)

)
+Qn(logx)x 2h+1+n + cn(G(z))x3h+n

−
[(

2+ n+1

h

)
Qn(logx)+ 1

h
Q′n(logx)+O(‖z‖)

]
x3h+n+1

+O(x3h+n+2(logx)pn+1).

Since ûn−1(x, z) satisfies equality (3.9) andϕn(x, z) = xRn(logx) + o(x) +
O(‖z‖), it follows that

φ(x, ûn(x, z), z)− ûn
(
f(x, ûn(x, z), z), ν(x, ûn(x, z), z)

)
= [cn(z)− cn(G(z))+ ϕn(0, z)]x3h+n + ϕn+1(x, z)x

3h+n+1,

where

ϕn+1(x, z) =
(

2− α + n+1

h

)
Qn(logx)+ 1

h
Q′n(logx)

+ Rn(logx)+O(x(logx)pn+1, ‖z‖).
Then we want

cn(G(z))− cn(z) = ϕn(0, z)
...

cn(G
i+1(z))− cn(Gi(z)) = ϕn(0,Gi(z)).

SinceG is a contraction andϕn(0,0) = 0 by induction, the solution is

cn(z) =
∞∑
i=0

ϕn(0,G
i(z))

because the series converges. SinceG(0) = 0, this implies also thatcn(0) = 0.
Moreover,Qn is the unique solution of the differential equation(

2− α + n+1

h

)
Qn(t)+ 1

h
Q′n(t) = −Rn(t),
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sopn = dn if 2 − α + n+1
h
6= 0; otherwise,pn = dn +1. Hence, by the inductive

construction and equality (3.9),ϕn+1(x, z) = xRn+1(logx)+ o(x)+O(‖z‖). In
particular,ϕn+1(0,0) = 0 andϕn+1(0, z) is analytic.

By induction,x3h+nRn(logx) is a polynomial inx andxhα logx; then alsôun is
a polynomial inx andxhα logx andx3h+nϕn+1(x, z) is analytic inx, xhα logx, z.

Proposition 3.5. LetF be in the form(3.2)2 and letl1, . . . , lc be the eigenvalues
of A such thathli ∈ N for eachi = 1, . . . , c. Then for eachn ∈ N there exist an
integerdn and a functionûn(x, z) with values inCq−1 such that, after the change
of coordinatesu− ûn, the transformationF takes the form

x1= f(x, u, z) = x − 1
h
xh+1+O(x 2h+1 logx, ‖u‖xh+1)+Oz(x3h+1),

u1= φ(x, u, z) = (I − Axh)u+O(‖u‖2xh, ‖u‖xh+1 logx)

+Oz(‖u‖x3h)+ x3h+n+1ϕn+1(x, z),

z1= ν(x, u, z) = G(z)+O(x 2, ‖z‖x),

(3.10)

whereϕn(x, z) = O(x(logx)dk , ‖z‖) and the mapsf, φ, ν, x3h+nϕn(x, z) are
analytic in the variablesx, xhl1 logx, . . . , xhlc logx, u, z.

Proof. By Lemma 3.2, the assertion is true whenq = 2. In the general case we
again reason by induction onn. If the matrixA = (aij ) is in triangular Jordan form,
then the previous argument shows that the componentsû

j
n of ûn are determined

for thej in decreasing order fromq −1 to 1.

Finally, for eachk ∈ N, if we takeũk(x, z) = ûh(k−2)−1 (whereûn(x, z) are the
functions given in Proposition 3.5), then Proposition 3.2 is proved.

Proof of Proposition 3.3

To simplify the notation, we shall prove Proposition 3.3 forh = 1. The same argu-
ment can be used also whenh > 1.

Letu(x, z) = x 2t(x, z)with t :D+r ×1m−qδ → Cq−1holomorphic and bounded,
and let{(xn, zn)} be the orbit of(x, z) under the transformation

x1= fu(x, z) = f(x, u(x, z), z),
z1= νu(x, z) = ν(x, u(x, z), z).

By Lemma 3.1, there are positive constantsr andδ such that, for each(x, z) ∈
D̄+r × 1m−qδ , one has(xn, zn) ∈ D̄+r × 1m−qδ andxn = O(1/n) for eachn ∈ N.
Moreover, there is an integerl such that

x1= x − x 2 + ax3+ bx3 logx +O(x4(logx)l),

where the constantsa andb do not depend onz. Hence

1

x1
= 1

x
+1+ x(1− a − b logx)+O(x 2(logx)l).

Then, arguing as in [H2, Lemma 4.2 and Cor. 4.3], we find
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|xn| ≤ 2
|x|
|1+ nx| ∀n∈N (3.11)

and, for each real numberµ > 1 and for each integerl, there exists a constantCµ,l
such that ∞∑

n=0

|xn|µ|logxn| l ≤ Cµ,q |x|µ−1|log|x|| l . (3.12)

Lemma 3.3. There are positive constantsr andδ such that, for everyt satisfying
‖t‖∞ ≤ 1,

∥∥x ∂t
∂x

∥∥∞ ≤ 1, and
∥∥ ∂t
∂z

∥∥∞ ≤ 1 and for each(x, z)∈ D̄+r ×1m−qδ ,∣∣∣∣∂xn∂x
∣∣∣∣ ≤ 2

|xn|2
|x|2 ,

∥∥∥∥∂xn∂z
∥∥∥∥ ≤ |xn|2,∥∥∥∥∂zn∂x

∥∥∥∥ ≤ 1,

∥∥∥∥∂zn∂z
∥∥∥∥ ≤ 1,

for all n∈N.
Proof. Letµ = G′(0); sinceG(0) = 0, we getz1= µz+O(x 2, ‖t‖∞x4, ‖z‖x,
‖z‖2). By the hypotheses ont and‖µ‖ < 1, for r andδ sufficiently small there
exist positive constantsK1,K2,K3,K4 such that∥∥∥∥∂z1

∂x

∥∥∥∥ ≤ K1|x| +K2‖z‖ ≤ 1,∥∥∥∥∂z1

∂z

∥∥∥∥ ≤ ‖µ‖ +K3|x| +K4‖z‖ ≤ 1.

Since

x1= f(x, u, z) = x − x 2 + ax3+ bx3 logx +O(x4(logx)l, ‖u‖x 2)+Oz(x4)

for a suitablel, it follows that

1

x1
+ (1− a) logx1− b

2
(logx1)

2

= 1

x
+1+ (1− a) logx − b

2
(logx)2 + ψ(x, u, z),

where
ψ(x, u, z) = O(x 2(logx)l, ‖u‖, ‖z‖x 2).

Settingu = u(x, z) yields

ψ(x, u(x, z), z) = O(x 2(logx)l, x 2‖t‖∞, ‖z‖x 2),∣∣∣∣ ∂∂x ψ(x, u(x, z), z)
∣∣∣∣ ≤ C1|x||log|x|| l + C2

(
‖t‖∞ +

∥∥∥∥x ∂t∂x
∥∥∥∥∞
)
|x|, (3.13)∥∥∥∥ ∂∂zψ(x, u(x, z), z)

∥∥∥∥ ≤ C3

(∥∥∥∥ ∂t∂z
∥∥∥∥∞ +1

)
|x|2, (3.14)

whereC1, C2, C3 are positive constants.
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Differentiating with respect tox (resp.,z) the relation

1

xn
+ (1− a) logxn − b

2
(logxn)

2

= 1

x
+ n+ (1− a) logx − b

2
(logx)2 +

n−1∑
j=0

ψ(xj, u(xj, zj ), zj ),

we have
1− (1− a)xn + bxn logxn

x 2
n

∂xn

∂x

= 1− (1− a)x + bx logx

x 2
−

n−1∑
j=0

∂

∂xj
[ψ(xj, u(xj, zj ), zj )]

∂xj

∂x

−
n−1∑
j=0

∂

∂zj
[ψ(xj, u(xj, zj ), zj )]

∂zj

∂x

and (resp.)

1− (1− a)xn + bxn logxn
x 2
n

∂xn

∂z

= −
n−1∑
j=0

∂

∂xj
[ψ(xj, u(xj, zj ), zj )]

∂xj

∂z
−

n−1∑
j=0

∂

∂zj
[ψ(xj, u(xj, zj ), zj )]

∂zj

∂z
.

By (3.11),|xn| ≤ 2|x|. Moreover, argxn → 0 and then, for|x| small, it follows
that∣∣∣∣∂x1

∂x

∣∣∣∣ ≤ |1− (1− a)x + bx logx| + C1|x|3|log|x|| l + 2C2|x|3
|1− (1− a)x1+ bx1 logx1|

|x1|2
|x|2 ≤ 2

|x1|2
|x|2 ,∥∥∥∥∂x1

∂z

∥∥∥∥ ≤ 2C3|x|2
|1− (1− a)x1+ bx1 logx1| |x1|2 ≤ |x1|2.

We argue by induction onn. Suppose that, for eachj < n, all inequalities of the
assertion are satisfied; by (3.13) and (3.14) and then applying (3.12), we obtain

n−1∑
j=0

∣∣∣∣ ∂∂xj [ψ(xj, u(xj, zj ), zj )]
∂xj

∂x

∣∣∣∣ ≤ C̃1|log|x|| l + C̃2,

n−1∑
j=0

∥∥∥∥ ∂

∂zj
[ψ(xj, u(xj, zj ), zj )]

∂zj

∂x

∥∥∥∥ ≤ C̃3|x|,

n−1∑
j=0

∥∥∥∥ ∂

∂xj
[ψ(xj, u(xj, zj ), zj )]

∂xj

∂z

∥∥∥∥ ≤ C ′1|x|2|log|x|| l + C ′2|x|2,

n−1∑
j=0

∥∥∥∥ ∂

∂zj
[ψ(xj, u(xj, zj ), zj )]

∂zj

∂z

∥∥∥∥ ≤ C ′3|x|.
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Hence, for|x| small we have∣∣∣∣∂xn∂x
∣∣∣∣ ≤ |1− (1− a)x + bx logx| + C̃1|x|2| log|x|| l + C̃2|x|2 + C̃3|x|3

|1− (1− a)xn + bxn logxn|
|xn|2
|x|2

≤ 2
|xn|2
|x|2 ,∥∥∥∥∂xn∂z

∥∥∥∥ ≤ C ′1|x|2|log|x|| l + C ′2|x|2 + C ′3|x|
|1− (1− a)xn + bxn logxn| |xn|

2 ≤ |xn|2.

Finally, by the inductive hypothesis and (3.11) (which implies|xj |/|x| ≤ 2),∥∥∥∥∂zj∂x
∥∥∥∥ ≤ ‖µ‖ + K̃1|xj−1| + K̃2‖zj−1‖ ≤ 1

and ∥∥∥∥∂zj∂z
∥∥∥∥ ≤ ‖µ‖ + K̃3|xj−1| + K̃4‖zj−1‖ ≤ 1.

Lemma 3.4. Let T be the operator on the Banach spaceBk,d,r,δ defined previ-
ously. Given a constantR0 ≥ 0, we can findr, δ small enough such that, if

‖u(x, z)‖ ≤ R0|x|k−1|log|x||d ∀(x, z)∈D+r ×1m−qδ , (3.15)

then‖Tu(x, z)‖ satisfies the same inequality inD+r ×1m−qδ .

Proof. Recall that

Tu(x, z) =
∞∑
n=0

(
xn

x

)−A
H(xn, u(xn, zn), zn).

By (3.4), for eachR0 the hypothesis implies

H(x, u(x, n), z) = O(|x|k+1|log|x||d+1, ‖z‖|x|k+1).

Sincezn ∈ 1m−qδ for eachn, for r, δ small enough it follows that there exists a
positive constantC1 such that, inD+ ×1m−qδ ,

‖H(xn, u(xn, zn), zn)‖ ≤ C1|xn|k+1|log|xn||d+1.

Sincek > max{3,1+ λ}, by (3.6) and (3.12) we obtain

‖Tu(x, z)‖ ≤ C1

∞∑
n=0

∣∣∣∣xnx
∣∣∣∣−(λ+ε)|xn|k+1|log|xn||d+1 ≤ C ′1|x|k|log|x||d+1.

Hence, when|x| is small enough,‖Tu(x, z)‖ satisfies the inequality.

Lemma 3.4 tells us that, ifu(x, z)∈Bk,d,r,δ with ‖u‖B ≤ R0, then alsoTu(x, z)
belongs to the same Banach space and its norm is bounded byR0. HenceT is an
operator on the Banach spaceBk,d,r,δ and

‖T ‖ = sup
‖u‖B≤1

‖Tu‖B ≤ 1.
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Lemma 3.5. LetT be the operator previously defined, and assume the hypothe-
ses of Lemma 3.3 are satisfied. Given two positive constantsR1 andR2, we can
find r andδ such that, ifu(x, z) satisfies inequality(3.15)and if∥∥∥∥∂u∂x (x, z)

∥∥∥∥ ≤ R1|x|k−2|log|x||d , (3.16)∥∥∥∥∂u∂z (x, z)
∥∥∥∥ ≤ R2|x|k−1|log|x||d (3.17)

for every(x, z)∈D+r ×1m−qδ , then also the partial derivatives ofTu(x, z) satisfy
(3.16)and (3.17).

Proof. Inequalities (3.15)–(3.17) imply that

‖H(xn, u(xn, zn), zn)‖ ≤ C1|xn|k+1|log|xn||d+1,∥∥∥∥ ∂∂xH(x, u(x, z), z)
∥∥∥∥ ≤ C2|x|k|log|x||d+1,∥∥∥∥ ∂∂uH(x, u(x, z), z)
∥∥∥∥ ≤ C3|x|2|log|x||,∥∥∥∥ ∂∂zH(x, u(x, z), z)
∥∥∥∥ ≤ C4|x|k+1|log|x||d+1

for some positive constants.
Differentiating with respect tox the formula

Tu(x, z) = xA
∞∑
n=0

x−An H(xn, u(xn, zn), zn),

we have
∂

∂x
Tu(x, z) = s1+ s2 + s3+ s4,

where

s1= dxA

dx

∞∑
n=0

x−An H(xn, u(xn, zn), zn),

s2 = xA
∞∑
n=0

x−An

[
−Ax−1

n H(xn, u(xn, zn), zn)+
∂

∂xn
H(xn, u(xn, zn), zn)

]
∂xn

∂x
,

s3 = xA
∞∑
n=0

x−An
∂

∂u
H(xn, u(xn, zn), zn)

[
∂u

∂xn

∂xn

∂x
+ ∂u

∂zn

∂zn

∂x

]
,

s4 = xA
∞∑
n=0

x−An
∂

∂zn
H(xn, u(xn, zn), zn)

∂zn

∂x
.

Since dx
A

dx
= Ax−1xA, the proof of the previous lemma shows that there exists a

constantK1 such that
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‖s1‖ ≤ K1|x|k−1|log|x||d+1.

Lemma 3.3 and (3.12) imply that

‖s2‖ ≤ 2
∞∑
n=0

(‖A‖C1+ C2)

∣∣∣∣xnx
∣∣∣∣−(λ+ε) |xn|k+2

|x|2 |log|xn||d+1

≤ K2|x|k−1|log|x||d+1,

whereC1 is the constant given in Lemma 3.4.
Similarly, by inequalities (3.16) and (3.17), we find

‖s3‖ ≤ K3|x|k−1|log|x||d+1,

‖s4‖ ≤ K4|x|k|log|x||d+1.

Becauses1, s2, s3, ands4 are of order higher than|x|k−2|log|x||d , it follows that
∂
∂x
Tu(x, z) satisfies inequality (3.16) whenr, δ are small enough.
Similarly, differentiating with respect toz the formula ofTu(x, z), we have

∂

∂z
Tu(x, z) = s̃1+ s̃2 + s̃3,

where

s̃1= xA
∞∑
n=0

x−An

[
−Ax−1

n H(xn, u(xn, zn), zn)+
∂

∂xn
H(xn, u(xn, zn), zn)

]
∂xn

∂z
,

s̃2 = xA
∞∑
n=0

x−An
∂

∂u
H(xn, u(xn, zn), zn)

[
∂u

∂xn

∂xn

∂z
+ ∂u

∂zn

∂zn

∂z

]
,

s̃3 = xA
∞∑
n=0

x−An
∂

∂zn
H(xn, u(xn, zn), zn)

∂zn

∂z
.

Then

‖s̃1‖ ≤ K̃1|x|k+1|log|x||d+1,

‖s̃2‖ ≤ K̃2|x|k|log|x||d+1,

‖s̃3‖ ≤ K̃3|x|k|log|x||d+1.

Hence ∂
∂z
Tu(x, z) satisfies inequality (3.17) whenr, δ are small enough.

LetR0, R1, R2 be positive constants. LetST (r, δ, R0, R1, R2) be the closed subset
of Bk,d,r,δ formed by functionsu(x, z) such that, for each(x, z) ∈D+r × 1m−qδ ,

the inequalities (3.15)–(3.17) are satisfied. Then, by the preceding lemmas, the
operatorT sendsST (r, δ, R0, R1, R2) into itself.

Lemma 3.6. Let

u1(x, z) = xk−1(logx)d t1(x, z) and u2(x, z) = xk−1(logx)d t2(x, z)
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be two functions inST (r, δ, R0, R1, R2). Let {(xn, zn)} and {(x ′n, z ′n)} be the iter-
ates of (x, z) by (fu1, νu1) and (fu2, νu2), respectively. Then there exist positive
constantsK1,K2 such that, for eachn∈N,

|x ′n − xn| ≤ K1|xn||x|k−1|log|x||d‖t2 − t1‖∞,
‖z ′n − zn‖ ≤ K2|x|k−1|log|x||d‖t2 − t1‖∞.

Proof. If r, δ are small enough, then for each(x, z) ∈D+r ×1m−qδ there exists a
C1 > 0 such that

|x ′1−x1| = |f(x, u2(x, z), z)−f(x, u1(x, z), z)| ≤ C1|x1||x|k|log|x||d‖t2−t1‖∞.
Suppose, by induction, that there exists someK > C1 such that

|x ′n−1− xn−1| ≤ K|xn−1|
n−2∑
i=0

|xi |k|log|xi ||d‖t2 − t1‖∞.

Sincex ′n = xn + o(xn) andzn, z ′n ∈1m−qδ , we obtain

|x ′n − xn| ≤ |x ′n−1− xn−1||1− x ′n−1− xn−1+ o(xn−1)|
+K|xn||xn−1|k|log|xn−1||d‖t2 − t1‖∞

≤ K
(
|xn−1||1− x ′n−1− xn−1+ o(xn−1)|

n−2∑
i=0

|xi |k|log|xi ||d

+ |xn||xn−1|k|log|xn−1||d
)
‖t2 − t1‖∞

≤ K|xn|
n−1∑
i=0

|xi |k|log|xi ||d‖t2 − t1‖∞.

Then, by (3.12),

|x ′n − xn| ≤ K1|xn||x|k−1|log|x||d‖t2 − t1‖∞.
A similar argument can be used forν:

‖z ′1− z1‖ = ‖ν(x, u2(x, z), z)− ν(x, u1(x, z), z)‖ ≤ C2|x|k|log|x||d‖t2− t1‖∞;
since‖G(z ′)−G(z)‖ ≤ γ ‖z ′ − z‖ with 0 < γ < 1 and sincexn, x ′n areO(1/n)
by the estimate on|x ′n − xn|, we have

‖z ′n − zn‖
≤ ‖z ′n−1− zn−1‖(γ +O(|xn−1|))+ C3|x ′n−1− xn−1||xn−1|
+ C4|xn−1|k+1|log|xn−1||d‖t2 − t1‖∞
≤ ‖z ′n−1− zn−1‖ + C3K1|xn−1|2|x|k−1|log|x||d‖t2 − t1‖∞
+ C4|xn−1|k+1|log|xn−1||d‖t2 − t1‖∞

≤
(
C3K1|x|k−1|log|x||d

n−1∑
i=0

|xi |2 + C4

n−1∑
j=0

|xj |k|log|xj ||d
)
‖t2 − t1‖∞

≤ K2|x|k−1|log|x||d‖t2 − t1‖∞.
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Finally, the previous inequalities allow us to argue as Hakim (see [H2, Prop. 4.8])
to prove that, forr, δ small enough, the restriction to the metric spaceST (r, δ, R0,

R1, R2) of the operatorT is a contraction. This establishes Proposition 3.3.

4. Existence of Attracting Domains

Given a semi-attractive self-mapF of Cm such that the eigenvalue 1 ofdF(0) has
the same algebraic and geometric multiplicities, we have seen thatF can assume
the form (2.2)k for k ≥ 2. Then Theorem 1.4 is an immediate consequence of
Proposition 3.1 and of the following proposition.

Proposition 4.1. LetF be a holomorphic germ of semi-attractive self-maps of
Cm such thatF(0) = 0, and assume the eigenvalue1 of dF(0) has algebraic
and geometric multiplicityq > 1. Choose a local coordinate system(w, z) ∈
Cq × Cm−q such thatF takes the form(2.2)3h+1 in a neighborhood of0, with
P2 = · · · = Ph ≡ 0 andPh+1 6= 0. LetV ∈Cq be a nondegenerate characteris-
tic direction forPh+1. If the matrixA = A(V ) associated toV has all eigenvalues
with strictly positive real part, then there existh attracting domainsD1, . . . , Dh

for F such that0 ∈ ∂Di and each point inDi has the firstq components of its
orbit converging tangentially toV.

Proof. Under a linear change of coordinates, we can assume thatV = (1,0) ∈
C × Cq−1. We have seen that for eachi = 1, . . . , h there is a local system of co-
ordinates, analytic in a sector

{(x, y, z)∈C× Cq−1× Cm−q | x ∈5i
r, ‖y‖ ≤ c|x|, ‖z‖ < δ},

such that, after the blow-upy = ux, the transformation takes the form (3.7). Let
{α1, . . . , αq−1} be the eigenvalues ofA, and letλ be a positive constant such that
Reαj > λ for eachj = 1, . . . , q −1.

Forj = 1, . . . , q−1, letD+1/|αj | = {x ∈C | |1−αj x| < 1}. Since the real part of
every eigenvalueαj is positive, there exist two constantsη, ρ such that the sector

Sη,ρ := {x ∈C | |Im x| ≤ ηRex, |x| ≤ ρ}
is contained in the intersection ofD̄+r and theD̄+1/|αj |. Then, for eachi = 1, . . . , h,
the sets5i

η,ρ = {x ∈5i
r | xh ∈ Sη,ρ} are disjoint nonempty domains with the ori-

gin in their boundary.
Choose a system of coordinate such thatA is in an almost diagonal Jordan form,

that is, the elements ofA that are above the diagonal are equal to 0 orε1,with ε1 >

0 small compared toλ. Then there exists someε > 0 such that

‖I − Axh‖ ≤ 1− (λ+ ε)|x|h.
Then, ifη, ρ, δ, c are small enough, for(x, u, z) ∈5i

η,ρ ×1q−1
c ×1m−qδ we see

that
‖u1‖ ≤ ‖u‖(1− λ|x|h). (4.1)
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Hence‖u‖ is uniformly bounded. We have

1

xh1
= 1

xh
+1+O(xh logx, ‖u‖)

and so, forρ, c, δ sufficiently small, there exists aK > 0 such that∣∣∣∣ 1

xh1
− 1

xh
−1

∣∣∣∣ < c̃ +K|x|h|logx| ≤ 1

2
.

We then proceed as in Lemma 3.1 to prove thatxn and‖zn‖ areO(1/n1/h). Since
‖u‖ is uniformly bounded, we also getyn = unxn→ 0.

Letµ be a positive number such thatµ < λ; then

x
−hµ
1 = x−hµ(1+ µxh +O(x 2h logx, ‖u‖xh))

and, forρ, c, δ small enough,

|x1|−hµ ≤ |x|−hµ(1+ λ|x|h).
Thus, by inequality (4.1),

‖u1‖|x1|−hµ ≤ ‖u‖|x|−hµ(1− λ2|x|2h) < ‖u‖|x|−hµ.
Hence there exists a constantC such that‖un‖ ≤ C|xn|hµ. In particular,
un → 0 faster than 1/nλ for each positive numberλ such that Reαj > λ (j =
1, . . . , q −1), and(xn, yn) converges to 0 tangentially toV with yn = o(1/nλ+1).

5. Iterated Blow-up of Cm along Submanifolds

We shall refer to the notion given in [A] ofblow-upof a complexm-manifoldM
along a closed complex submanifoldX ⊂ M and, for increased clarity, we shall
use the same notation.

LetNX/M be the normal bundle ofX in M, and letEX = P(NX/M) be the pro-
jective normal bundle whose fiber overp ∈X is Ep = P(TpM/TpX). Then the
blow-up ofM alongX is the setM̃X = (M\X) ∪EX endowed with the complex
structure that we shall describe, together with the projectionσ : M̃X → M defined
by σ|M\X = idM\X andσ|Ep ≡ {p} for eachp ∈X.

Given z = (z1, . . . , zm) ∈ Cm and a splittingP = P ′ ∪ P ′′ of {1, . . . , m} of
weight 0≤ r < m (i.e.,P ′ = {i1, . . . , ir} andP ′′ = {ir+1, . . . , im}, wherei1 <
· · · < ir and ir+1 < · · · < im), we shall writez ′ = (zi1, . . . , zir ) and z ′′ =
(zir+1, . . . , zim).

A chart φ = (z1, . . . , zm):V → Cm is said to beadaptedto X if there is a
splittingP = P ′ ∪ P ′′ of {1, . . . , m} of weight r = dimX such thatV ∩ X =
{z ′′ = 0}. Choose a chart(V, φ) adapted toX and, forj ∈P ′′ andp ∈V ∩X, set
Xj = {zj = 0} ⊂ V, Lj,p = P(Ker(dzj(p))/TpX) ⊂ Ep, Lj = ⋃p∈V∩XLj,p,
EV∩X = σ−1(V ∩X), andVj = (V \Xj) ∪ (EV∩X\Lj).
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Defineχj :Vj → Cm by

χj(p)h =
{
zh(p) if h∈P ′ ∪ {j}
zh(p)/zj(p) if h∈P ′′ \{j}

}
if p ∈V \Xj

and by

χj([v])h =


zh(σ([v])) if h∈P ′
dzh(σ([v]))(v)/dzj(σ([v]))(v) if h∈P ′′\{j}
0 if h = j


if [ v] ∈EV∩X\Lj .

The family(Vj, χj ) together with an atlas ofM\X determines anm-dimensional
complex structure oñMX such that the projectionσ is holomorphic.

Moreover,

φ B σ B χ−1
j (w)h =

{
wh if h∈P ′ ∪ {j},
wjwh if h∈P ′′ \{j}. (5.1)

The setEX = σ−1(X) is called theexceptional divisorof the blow-up. IfY ⊆ M
is a submanifold ofM, thenỸ = σ−1(Y\X) ⊂ M̃ is called theproper transform
of Y.

Let End(M,X) be the set of germs atX of holomorphic self-maps ofM such
thatF(X) ⊆ X, and letF ∈ End(M,X). Takep ∈X and choose charts(V, φ)
and(Ṽ, φ̃) adapted toX so thatp ∈V andF(p)∈ Ṽ. Then, settingH = φ̃ BF Bφ,
in a neighborhood ofp we can write the homogeneous expansion ofH ′′ as

H ′′(z) =
∑
l≥1

Pl,z ′(z
′′).

Let
νX(F, p) = min{l | Pl,φ(p)′ 6= 0} ≥ 1

be theorder ofF at p, and let

νX(F ) = min{νX(F, p) | p ∈X}
be theorder ofF alongX. ThenF is saidnondegenerate alongX if F −1(X) ⊆
X and if, for eachp ∈X, we have:νX(F, p) = νX(F ) andPνX(F ),φ(p)′(v) = 0 iff
v = 0∈Cm−r .
Proposition 5.1 [A]. LetM be a complex manifold of dimensionm, and let
X ⊂ M be a closed submanifold of dimensionr ≥ 0. Let F ∈ End(M,X) be
nondegenerate alongX. Then there exists a uniquẽF ∈ End(M̃X,EX) such that
F B σ = σ B F̃ . Furthermore, ifp ∈X and (V, φ), (Ṽ, φ̃) are charts adapted toX
with p ∈V andF(p)∈ Ṽ, then for all [v] ∈Ep we have

F̃([v]) = (iF(p),φ̃)−1
([
PνX(F ),φ(p)′(ip,φ([v]))

])
,

whereip,φ :Ep → Pm−r−1(C) is the canonical isomorphism defined by the chartφ.
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Arguing as in [A], it is possible to prove the following results.

Proposition 5.2. LetM be a complex manifold of dimensionm, and letX ⊂ M
be a closed submanifold of dimensionr ≥ 0. LetF ∈End(M,X) be nondegener-
ate alongX with F̃ ∈End(M̃X,EX) its lifting. LetY ⊆ M be a submanifold ofM
of dimensionr + s (with s ≥ 1) and letỸ ⊆ M̃ be its proper transform. Assume
that:

(i) Y properly containsX;
(ii) F(Y ) ⊆ Y andF −1(Y ) ⊆ Y ; and
(iii) there exists a local system of coordinates such that

dF(p) = diag{J1(p), J2(p)},
whereJ1(p) = d(F |X)(p) andJ2(p) ∈ Mm−r,m−r (C) is invertible for all
p ∈ Y.

ThenF̃ is nondegenerate along̃Y anddF̃(p̃) = diag{J̃1(p̃), J̃2(p̃)} with J̃2(p̃)

invertible for all p̃ ∈ Ỹ.
Proposition 5.3. LetM be a complex manifold of dimensionm, and letX ⊂ M
be a closed submanifold of dimensionr ≥ 0. LetF ∈End(M,X) be nondegener-
ate alongX, with F̃ ∈End(M̃X,EX) its lifting. Takep ∈X and a linear subspace
L ⊆ Ep of dimensions − 1 (with s ≥ 1). Assume that:

(i) F̃(L) ⊆ L; and
(ii) there exists a local system of coordinates such that

dF(p) = diag{J1(p), J2(p)},
whereJ1(p) = d(F |X)(p) andJ2(p)∈Mm−r,m−r (C) is invertible.

Then F̃ is nondegenerate alongL and dF̃([v]) = diag{J̃1([v]), J̃2([v])} with
J̃2([v]) invertible for each[v] ∈L.
Now we describe a precise sequence of blow-ups ofCm starting from the blow-up
along a complex submanifoldX containing the origin. Givenρ ≥ 1, aρ-partition
of n is a setM = {µ1, . . . , µρ} ⊂ Nwithµ1 ≥ · · · ≥ µρ ≥ 1 andµ1+· · ·+µρ =
n. The lengthofM is l(M) = µ1 if µ1 > µ2 or l(M) = µ1+1 if µ1= µ2.

Let r = dimX. Given aρ-partition ofm− r, setν1 = r andνj = νj−1+ µj−1

for j = 2, . . . , ρ. For each 1≤ l ≤ ρ and each 0≤ k ≤ µ1− 1, define also the
sets

P ′kl =
{ ∅ if k = 0,

{νl +1, . . . , νl +min{k, µl}} if 1 ≤ k ≤ µ1−1.

In addition, for 1≤ l ≤ ρ define

P ′µ1l
=
{ {νl +1, . . . , νl + µl} if l 6= 2 or µ1 6= µ2,

{ν2 +1, . . . , ν2 + µ2 −1} if l = 2 andµ1= µ2

and defineP ′µ1+1,1 = {ν1+ 1, . . . , ν1+ µ1, ν2 + µ2}. Finally, letP ′k =
⋃ρ

l=1P ′kl
andP ′′k = {r +1, . . . , m}\P ′k.
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We now setM 0 = Cm, X0 = X, ande0 = 0∈X and letϕ0 be a local chart cen-
tered at 0 and adapted toX with respect to the standard splittingP ′ = {1, . . . , r},
P ′′ = {r+1, . . . , m}. Starting from the blow-up ofM 0 alongX0,we obtainM1=
M̃ 0
X0 andπ1 = σ1:M1→ M 0. Let {∂/∂w1, . . . , ∂/∂wm} be the canonical basis of

T0Cm; thenT0X = span{∂/∂w1, . . . , ∂/∂wr}. Set

ph =
[

∂

∂wr+h
+ T0X

]
∈E1= π−1

1 (X0), h = 1, . . . , m− r;

Y k = span{ph | h∈P ′k} ⊂ E1
0, k = 1, . . . , l(M)−1.

Now putX1 = Y 1 and setM 2 = M̃1
X1. LetX2 ⊂ M 2 be the proper transform of

Y 2, and setM 3 = M̃ 2
X2. Next, letX3 ⊂ M 3 be the proper transform (with respect

to σ3:M 3→ M 2) of the proper transform (with respect toσ2:M 2→ M1) of Y 3,

and putM 4 = M̃ 3
X3. Proceeding in this way, fork = 2, . . . , l(M) − 1 we define

the manifoldMk+1 as the blow-up ofMk along the iterated proper transformXk

of Y k; we denote byσk+1:Mk+1→ Mk the associated projection and byEk+1=
σ−1
k+1(X

k) the exceptional divisor.
We also putπk = σ1 B · · · B σk:Mk → M 0 for k = 1, . . . , l(M). The set

π−1
k (X

0) is called thesingular divisorof Mk.

Lemma 5.1. For 1 ≤ k ≤ l(M), there existek ∈ Mk and a canonical chart
(Uk, ϕk) centered inek such that

Uk ∩Xk = ϕ−1
k

(
{wr+1 = 0} ∩

⋂
h∈P ′′

k

{wh = 0}
)
,

Uk ∩ π−1
k (X

0) = ϕ−1
k

( ⋃
h∈P ′

k1

{wh = 0}
)
,

and, forj = k + 1, . . . , l(M)− 1,

Uk ∩Xj = ϕ−1
k

(
{wr+1 = 0} ∩

⋂
h∈P ′′

j

{wh = 0}
)
.

Furthermore,

ϕ0 B σ1 B ϕ−1
1 (w) = (w1, . . . , wr+1, wr+1wr+2, . . . , wr+1wm),

ϕµ1 B σµ1+1B ϕ−1
µ1+1(w) = (w1, . . . , wr, wr+1wµ2+ν2, wr+2, . . . , wm),

and, for2 ≤ k ≤ µ1,

ϕk−1 B σk B ϕ−1
k (w)h =

{
wh if h∈ (P ′k−1\{r + 1}) ∪ {1, . . . , r, r + k},
wkwh if h∈ {r + 1} ∪ (P ′′k−1\{r + k}).

Proof. Fix e1= p1. Let (U1, ϕ1) be the canonical chart, centered ate1 and adapted
to X1, obtained fromϕ0 via the previous construction. Then, fork = 1, the
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assertion is an immediate consequence of (5.1) and the definition of blow-up along
a manifold. Fork > 1 one argues by induction, taking

ek =
[

∂

∂wr+k
+ Tek−1X

k−1

]
∈ σ−1

k (ek−1)

or, if k = µ1+1,

ek =
[

∂

∂wν2+µ2

+ Teµ1
Xµ1

]
∈ σ−1

µ1
(eµ1)

and defining(Uk, ϕk) as(Vr+k, χr+k) via (Uk−1, ϕk−1).

Writing now z = ϕ0 B πk B ϕ−1
k (w), by induction we have, for 1≤ k ≤ µ1,

zj =



wj if j ∈ {1, . . . , r},
wr+1

∏j

h=r+2(wh)
2∏r+k

h=j+1wh if j ∈P ′k1,
wr+1

∏r+j−νl
h=r+2(wh)

2
(∏r+k

h=r+j−νl+1wh
)
wj if j ∈P ′kl, 2 ≤ l ≤ ρ,

wr+1
∏r+k

h=r+2(wh)
2wj if j ∈P ′′k ;

for k = µ1+1,

zj =



wj if j ∈ {1, . . . , r},
wr+1

∏j

h=r+2(wh)
2
(∏r+µ1

h=j+1wh
)
wν2+µ2 if j ∈P ′µ11,

wr+1
∏r+j−νl

h=r+2(wh)
2
(∏r+µ1

h=r+j−νl+1wh
)
wjwν2+µ2 if j ∈P ′µ1l

,

2 ≤ l ≤ ρ,
wr+1

∏r+µ1
h=r+2(wh)

2(wν2+µ2)
2 if j ∈P ′′µ1

.

Furthermore, ifzr+1, . . . , zr+k 6= 0 then, for 1≤ k ≤ µ1, we have

wj =



zj if j ∈ {1, . . . , r},
(zr+1)

2/zr+k if j = r +1,

zj/zj−1 if j ∈P ′k1\{r +1},
zj/zr+j−νl if j ∈P ′kl, 2 ≤ l ≤ ρ,
zj/zr+k if j ∈P ′′k ;

for k = µ1+1,

wj =



zj if j ∈ {1, . . . , r},
(zr+1)

2/zν2+µ2 if j = r +1,

zj/zj−1 if j ∈P ′µ11\{r +1},
zj/zr+j−νl if j ∈P ′µ1l

, 2 ≤ l ≤ ρ,
zj/zr+µ1 if j ∈P ′′µ1

.
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6. Partial Diagonalization Theorem

Let F ∈ End(Cm,0) be semi-attractive, letX be the center stable manifold ofF,
and letq be the algebraic multiplicity of the eigenvalue 1. ThenX isF -invariant,
0 ∈X, and dimX = m − q. Moreover,F is nondegenerate alongX with order
νX(F ) = 1.

In order to prove Theorem 1.6, we assumeF in the form (2.1) and invert the
variables (we set(x, y) = (z, w)∈Cm−q × Cq):

x1= G(x)+ B̃(x, y)y,
y1= Jy + P̃2,x(y)+ P̃3,x(y)+ · · · .

(6.1)

Then the second component of its linear part does not depend on thex-variables
and is in Jordan form. Hence the linear spacesY k, defined in Section 5, will be
invariant under the lifting ofF to the blow-up ofCm along the center stable man-
ifold. This fact is fundamental for the iteration of the liftings ofF.

Consider the sequence of blow-ups ofCm defined before. By Proposition 5.1,
its lifting F̃1∈ End(M1, E1) exists andF̃1|E1 is induced byJ. Moreovere1∈E1

is a fixed point ofF̃1 andF̃1(Y
k) = Y k for k = 1, . . . , µ1.

By Proposition 5.3,F̃1 is nondegenerate alongX1 and so Proposition 5.1 yields
F̃2. By Proposition 5.2,F̃2 is nondegenerate alongX2 and thus we havẽF3. By
Proposition 5.2,F̃3 is nondegenerate alongX3 because, outside ofE2 ⊂ X2,

dF̃2 = dF̃1 and then Proposition 5.1 yields̃F4. Hence we can repeat this proce-
dure for allk ≤ l(M) to obtainF̃k. By the Jordan structure ofdF(0) and the
definition ofF̃k, the pointek defined in Lemma 5.1 is a fixed point for̃Fk.

Finally, sinceF B πl(M) = πl(M) B F̃l(M), we also have

F B (ϕ0 B πl(M) B ϕ−1
l(M)) = (ϕ0 B πl(M) B ϕ−1

l(M)) B (ϕl(M) B F̃l(M) B ϕ−1
l(M)).

Then, applying the formulas at the end of Section 5, and inverting the coordinates
once again, we find̃F := F̃l(M) in the form (1.3) withA(z) ≡ I, andP2,z =
(p1

2,z, . . . , p
q

2,z) has the following expression:

(a) if µ1 > µ2,

p
j

2,z(w) =



−aµ1
11 (z)w

2
1 + 2w1w2 if j = 1,

−w2
j + wj+1wj if 2 ≤ j ≤ µ1−1,

a
µ1
11 (z)w1wµ1 − w2

µ1
if j = µ1,

wj−νl+m−q+1(−wj + wj+1) if m− q + j ∈P ′µ1,l
\{νl + µl},

2 ≤ l ≤ h,
−wµl+1wj if m− q + j = νl + µl,

µl < µ1−1,

a
j

11(z)w1wµ1 − wµ1wj if m− q + j = νl + µl,
µl = µ1−1;
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(b) if µ1= µ2,

p
j

2,z(w) =



−aν2+µ2−m+q
11 (z)w2

1 + 2w1w2 if j = 1,

−w2
j + wj+1wj if 2 ≤ j ≤ µ1−1,

−w2
µ1

if j = µ1,

wj−νl+m−q+1(−wj + wj+1) if m− q + j ∈P ′µ1,l
\{νl + µl},

2 ≤ l ≤ h,
a
ν2+µ2−m+q
11 (z)w1wν2+µ2−m+q if m− q + j = ν2 + µ2,

0 if m− q + j = νl + µl,
µl < µ1,

a
j

11(z)w1wν2+µ2−m+q if m− q + j = νl + µl,
µl = µ1, 3≤ l ≤ ρ.

Herez = x andaj11(x) is the coefficient ofy2
1 in thej th component ofP̃2,x(y).

Corollary 6.1. LetF ∈End(Cm,0) be semi-attractive. Letq be the algebraic
multiplicity of the eigenvalue1 of dF(0), and suppose that the geometric multi-
plicity of 1 is strictly less thanq. LetM be theρ-partition of q induced by the
structure of the Jordan block associated to the eigenvalue1. Assume thatl(M) =
µ1 andaµ1

11 (0) 6= 0.
ThenF admits a parabolic manifold of dimensionm− q +1 tangent toC⊕E

at 0,whereE is generated by the generalized eigenspaces associated to the eigen-
values ofdF(0) with modulus strictly less than1.

Proof. Consider the liftingF̃µ1 ofF given by Theorem1.6. By Proposition 2.2, we
can assumẽFµ1 in the form (2.2)k with k > 3 andP2 = P2,0. Then we can apply
Theorem1.3 to obtain ãFµ1-parabolic manifold and useπµ1 to project it down toF.

Not all nondegenerate characteristic directions ofP2 are acceptable; we must
exclude the ones tangent toπ−1

µ1
(X) because they are killed when we project down

by πµ1. HenceV = (v1, . . . , vq) is anallowablecharacteristic direction ofP2 if
it is not tangent toπ−1

µ1
(X) (i.e., iff v1, . . . , vµ1 6= 0, because of Lemma 5.1).

Then, using the expression ofP2,z just given and imposingP2,0(V ) = λV with
λ 6= 0, we see that the unique solution is

vj =



1

a
µ1
11 (0)

(2µ1−1)λ for j = 1,

(µ1+ j − 2)λ for 2≤ j ≤ µ1,

0 for m− q + j = νl + h,
1≤ h ≤ µl, µl < µ1−1,

a
ν l+µl−m+q
11 (0)

a
µ1
11 (0)

(µl + h)λ for m− q + j = νl + h,
1≤ h ≤ µl, µl = µ1−1.
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Thus there exists ãFµ1-parabolic manifold at the origin, tangent toCV ⊕ E and
of dimensionm − q + 1, that is contained inMµ1\π−1

µ1
(X). Because this mani-

fold is given as the image of an injective holomorphic mapψ̃, it follows thatψ =
πµ1 B ψ̃ defines the parabolic manifold forF sinceπµ1 restricted toMµ1\π−1

µ1
(X)

is a biholomorphism.

Remark 6.1. With computations similar to those made in the preceding proof,
we also see that ifρ ≥ 2 andµ1 = µ2 then there are no allowable characteristic
directions forP2,0 of F̃µ1+1.

Corollary 6.2. LetF ∈End(Cm,0) be semi-attractive such that the eigenvalue
1 of dF(0) has algebraic multiplicityq = 2 and the corresponding Jordan block
is nondiagonalizable. AssumeF in the form(6.1)with a2

11(0) = 0, that is,

x1= G(x)+ B(x, y)y,
y1

1 = y1+ y2 + a1
11(x)y

2
1 + 2a1

12(x)y1y2 + a1
22(x)y

2
2 + · · ·,

y1
2 = y2 + 2a2

12(x)y1y2 + a2
22(x)y

2
2 + a2

111(x)y
3
1 + · · ·,

and set

ε = a1
11(0)+ a2

12(0), η = (a1
11(0)− a2

12(0))
2 + 2a2

111(0).

Thenε andη are projective invariants and, when(ε, η) 6= (0,0):
(i) if η 6= 0, ε2, thenF has two distinct parabolic manifolds of dimensionm− 1;
(ii) if η = ε2 6= 0 or η = 0 6= ε2, thenF has one parabolic manifold of dimen-

sionm− 1.

Proof. For such maps, the blow-up along the center stable manifold immediately
diagonalizes the Jordan block ofdF(0) corresponding to the eigenvalue 1. In fact
we have

x1= G(x)+ B̃(x,w)w,
w1

1 = w1+ a1
11(x)w

2
1 + w1w2 +O(‖w‖3),

w1
2 = w2 + a2

111(x)w
2
1 + (2a2

12(x)− a1
11(x))w1w2 − w2

2 +O(‖w‖3).
Then a characteristic directionV = (v1, v2) for P2,0(w) is allowable iffv1 6= 0.
Therefore we obtain two allowable characteristic directions (up to multiplication
by a constant),

V± =
(

1,
a2

12(0)− a1
11(0)±√η
2

)
,

which are degenerate iffε ±√η = 0. Hence the assertion is obtained by apply-
ing Theorem 1.3.

Remark 6.2. Note thatA(V±) = ∓2
√
η/(ε ± √η) and so ReA(V±) > 0 iff

Re(ε/ ± √η) < −1 whenη 6= 0, ε2. Then Theorem 1.4 also implies thatF has
an attracting domain when|Re(ε/

√
η)| > 1.
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