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Brauer Equivalence in a Homogeneous Space
with Connected Stabilizer

MIKHAIL Borovol & BoRris KUNYAVSKIT

0. Introduction

In this note we investigate the Brauer equivalence in a homogeneousXpace
G/H, whereG is a simply connected semisimple algebraic group over a local field
or a number field and’ is a connected subgroup 6f

In more detail, lek be a field of characteristic 0, and lebe a fixed algebraic
closure ofk. For a smooth algebraic variet§ overk, setY = Y; = Y x; k.
Let BrY denote the cohomological Brauer grouplfBrY = Hézt(Y, G,,). Set
BriY = ker[BrY — BrY]. There is a canonical pairing

Y(k) x B Y — Brk, (y,b) — b(y) (0.1)

called theManin pairing. We define the Brauer equivalence Bk) as follows:

y1 ~ y2if (y1,b) = (y2,b) for all b € Br1Y. We denote the set of classes of
Brauer equivalence i (k) by Y(k)/Br. Note that we define the Brauer equiv-
alence in terms of BrY, not in terms of BfY < or BrY ¢, whereY ¢ is a smooth
compactification of.

The notion of B-equivalence for a subgroup of the Brauer group BY was
introduced by Manin [M1; M2]. Colliot—-Théléne and Sansuc [CS]] investigated
the Brauer equivalence in algebraic tori (they defined the Brauer equivalence in
terms of the Brauer group of a smooth compactification). The Brauer equivalence
in reductive groups was studied in [T].

Let G be a simply connected semisimple algebraic group évéret H be a
connected subgroup @f. We denote byH '°" the biggest toric quotient group of
H. We are interested in the Brauer equivalence in the&ggj whereX = G/H.

We computeX(k)/Br whenk is a local field. Namely, we prove that there is a
bijection

X(k)/Br = im[ker[H'(k, H) — H(k, G)] — H*(k, H'")]

(Theorem 2.1). Moreover, whéenis a non-archimedean local field, we prove that
there is a bijectiorX (k)/Br = H(k, H") (Theorem 2.2).
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We also computél(k)/Br whenk is a number field. We prove that there is a
bijection

X(k)/Br => im[ker[Hl(k, H) - HYk, G)] — @ H(k,, H“")]

(Theorem 3.1), where runs over the set of places bf Moreover, wherk is a
totally imaginary number field, we prove that there is a bijection

X(k)/Br => HY(k, H"")/ Ik, H™")

(Theorem 3.4), wherHI! denotes the Shafarevich-Tate kernel.
In Example 3.9 we computk(k)/Br whenX is a symmetric space of a simply
connected almost simple group over a totally imaginary number#ield

RemMark 0.1. It would be interesting to compute the set of Brauer equivalence
classes irX(k), whereX = G/H, with respect to the Brauer equivalence defined
by the group BiX ¢, whereX¢ is a smooth compactification &f. Unfortunately,

the group BiX ¢ is not known; there is only a conjecture of Colliot—Thélene and
the second author [CK]. Note thatkfis a number field and = G/H is a sym-
metric space of a simply connected semisimiplgroup G, then it follows from

the conjecture of [CK] that BK“ = Br k and hence there is only one equivalence
class inX (k).
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1. Generalities over an Arbitrary Field

1.1. Weintroduce some notation. For a smooth algebraic vaiietyer a fieldk
of characteristic O, lel/(Y) = k[Y]*/k*. Let PicY denote the Picard group &f
Let BrY and BrY be as in the Introduction. Set BY = coker[Brk — BriY].
Assume that’ has ak-rational pointy, and define
Br, Y = ker[Br;Y RN Brk],
wherey* is the specialization map.
We prove that Bf Y ~ Br, Y. Consider the composed map

Brk — BriY 2> Brk;

it is the identity of Bik. It follows that the exact sequence

0 Br,Y — BriY 25 Brk — 0

splits, and we obtain an isomorphism,Bf @ Brk ~ Br;Y. Thus we obtain an
isomorphism By Y — Br, Y and a splitting Bf Y — Bry Y of the exact sequence

0— Brk—-BrhY —>Br,Y — 0.
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1.2. We wish to investigate the Brauer equivalence in homogeneous spaces. Let
G be a simply connected semisimple algebraic group over akiefccharacter-
istic 0. LetH C G be a connected-subgroup. SeX = G/H; thenX is a left
homogeneous space 6f with connected stabilizer. The varieX has a distin-
guishedk-rational pointrg, the image inX(k) of the unit element € G (k).

We recall the definition of the connecting mépX (k) — H(k, H) (cf. [Se,
I-5.4]). Letz: G — G/H = X denote the canonical morphism. The gratdp
acts on the right oiG by g «x h = gh, whereg € G andh € H. Letx € X(k);
thensz ~1(x) is a right torsor undeH. By definition,5(x) is the class of the torsor
7~ Y(x) in H'(k, H). Note that the map induces a canonical bijection

G()\ X (k) => ker[HY(k, H) — HY(k, G)]

(cf. [Se, I-5.4, Cor. 1 of Prop. 36]), wher@(k)\ X (k) is the quotient ofX (k) by
the left action ofG (k).

We construct a map (k) — H(k, H™") takingxo to 1. Composing the map
8: X(k) — H(k, H) with the canonical mapl/*(k, H) — H(k, H"") induced
by the homomorphisnil — H'™", we obtain a map

a: X(k) - HYk, H™"). (1.1)

Clearly this map is constant on the orbits@€k) in X (k).
Let X (H ) denote the group df-characters of{; that is,

X(H) = Homi(H, G,,).
We haveX (H) = X(H™").

ProrosiTION 1.3. There is a canonical isomorphisk(H) = PicX.

Proof. By [S, 6.10] there is an exact sequence
U(G) - X(H) — PicX — PicG.

By Rosenlicht’s theorem [RJ/(G) = X(G); clearly X(G) = 1 because&s is
semisimple, s&/(G) = 1 By [S, 6.9(iv)] we have Pi& = 1. Thus we obtain an
isomorphismX (H) = PicX. O

1.3.1. REmARK. In the case wheh is algebraically closed, Proposition 1.3 was
proved in [P, Cor. of Thm. 4].

14. We have seen in the proof of Proposition 1.3 th&F) = 1. It follows that
UX)=1 )
SinceX (k) # @ andU(X) = 1, we have by [S, 6.3(iii)] that

Br, X = H(k, PicX).
We have By, X ~ Br, X. By Proposition 1.3, Pi& = X(H). We obtain
Br,, X = HYk, X(H)) = H*(k, X(H"")). (1.2)
There is a canonical cup product pairing
HYk, H®") x HY(k, X(H"")) — Brk. (1.3)
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The pairing (1.3), together with the mafgk) — H(k, H"") in (1.1) and théso-
morphism (1.2), defines a pairing

X(k) x Bry, X — Brk. (1.4)

THEOREM 1.5. The pairing(1.4) up to sign coincides with the restriction of the
Manin pairing (0.1)to X (k) x Bry, X C X(k) x Bry X.

Proof. We use the description of the Manin pairing with the help of torsors given
in [CS2, Sec. 2].

We regard the canonical m&— X = G/H as aright (non-abeliary-torsor
underH. SetS = H™ and denote by7%"the kernel of the natural homomor-
phismy,: H — S. This homomorphism induces push-forward maps in cohomol-
ogy: HYk, H) — Hk,S) and HX(X, H) — H(X, §) sending non-abelian
torsors undetH to abelian torsors undef (explicitly, a torsorZ underH goes
to the torsorZ/H*"underS). Let Y = G/H*"be the torsor undes§ obtained
from X by push-forward. Note that by Proposition 1.3 we have an isomorphism
X(S) => PicX.

Letdy: X(k) — H(k, S) be the canonical evaluation map associate#f;to
that is,0y takesx € X (k) to the isomorphism class of the fiber Bfat x. Notice
that6y coincides with the map defined by(1.1). Indeed,« is the composition
X(k)y — HYk,H) — H(k, H™"), where the first arrow is the connecting map
8 defined in 1.2 and the second one is the push-forward map inducgd®gcall
thats(x) coincides with the isomorphism class of the fibelGof> X atx. Since
push-forward commutes with specializatiofix) coincides with the isomorphism
class of the fiber ot atx, and thusy = 6y.

To finish the proof, it remains only to recall the isomorphism (1.2) and to apply
the diagram

X(k) x Bri X — Brk

v [ |
HYk, S) x HYk, X(§)) —> Brk.

Here the top row is the Manin pairing and the bottom row is the cup product.
The diagram is commutative up to sign (cf. [CS2, Projg.1®]),which proves the
theorem. 0

2. Brauer Equivalence over a Local Field

THEOREM 2.1. LetG, H, X be as in 1.2. Assume thats a local field of char-
acteristicO (archimedean or nt Then the map:: X(k) — H(k, H™ ") of (1.1)
induces a bijection

X(k)/Br = im[ker[H(k, H) — Hk, G)] — H(k, H'"].
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Proof. It follows from Theorem 1.5 that two poinis, x, € X(k) are Brauer equi-
valent if and only if(a(x1), ) = (a(x2), n) for everyn € HY(k, X (H")). Since

k is a local field, the cup product pairing (1.3) is perfect (Tate—Nakayama duality,
cf. [Mi, Cor. I-2.4]), and it follows that; andx, are Brauer equivalent if and only

if @(x1) = a(x2). Thus the set of classes of Brauer equivalence is in a bijective
correspondence with il We see that we must describe only the imagé ¢f)

in H(k, H'"). But the image ofX(k) in H(k, H) is the same as the image of
G(k)\ X(k), and it equals ket *(k, H) — H(k, G)]. Hence the image of (k)

in Hi(k, H®") is

im[ker[H'(k, H) — H(k, G)] - H'(k, H*"],

and the assertion of the theorem follows. O

THEOREM 2.2. LetG, H, X be asin 1.2, and assume thais a non-archimedean
local field of characteristi®. Then the mag in (1.1)induces a bijection

X(k)/Br => HY(k, H™").

Proof. SinceG is a simply connected group, by Kneser’s theorem (see [PR, 6.1,
Thm. 4]) it follows thatH(k, G) = 1. We see now from Theorem 2.1 th¥&tk)/Br

is in a bijective correspondence with iddf(k, H) — H(k, H'")]. Let Hde-
notekerld — H'']; itis an extension of a semisimple group by a unipotent group.
Becausek is local non-archimedean an@d/ %" = 1, the mapH(k, H) —
H(k, H™") is surjective (cf. [B, Cor. 6.4]). This proves the theorem. O

3. Brauer Equivalence over a Number Field

THEOREM 3.1. Letk be a number field, and |k, H, X be as in 1.2. Then the
map

X(k) = G(k)\X(k) = ker[HY(k, H) — H(k, G)] — @Hl(kv, H'™"
induces a bijection

X(hy/Br = m[erli k. 1) — 1k 6] — € k. 1)

wherev runs over the set of places &f
To prove Theorem 3.1, we need a lemma.

LeEMMA 3.2 [MT, 4.5]. LetY be a variety over a number field Then the map
Y(k)/Br — [, Y(k,)/Br is injective, where runs over the set of places af
and whereY (k,)/Br denotes the set of Brauer equivalence classégin).

Proof. Lety,, yo € Y(k), and assume that andy, are Brauer equivalent ifi(k,)
for all placesv of k. This means thatys, b,) = (y2, b,) for everyb, € Br1 Y;,.
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Let nowb € Bry Y. We wish to comparéy,, b) and(y», b). Consider lo¢(y;, b) €
Brk, (i =1, 2), whereloc meanslocalization. We haveJog;, b) = (y;, loc, b),
where log b € Bri Y;,. By assumption we haveys, loc, b) = (y2, loc, b). We
see that log(y1, b) = loc,(y2, b) for all v. It follows that(y1, b) = (y2, b), be-
cause the map loc: Br — [],Brk, is injective. Thusy; andy, are Brauer
equivalent inY (k). O

3.3. ProoF oF TuEorEM 3.1. Note that BfG = Brk (cf. [S, 6.9(iv)]), hence
every orbit ofG(k) in X (k) is contained in one class of Brauer equivalence. It
follows that the mapX (k) — X(k)/Br factors throughG (k)\ X (k):

X(k) — G(k)\X(k) — X(k)/Br,

and these maps are surjective.
Consider the commutative diagram

X(k)/Br —> HYk,H) ——>  HYk, H")

l l ld (3.1)

[T, X(ky)/Br —— [, HXky, H) —> [T, HX(ky, H').

The image of the mag is contained ir®, H(k,, H'") (cf. e.g. [V, 11.3, Cor. 1
of Prop. 1]), and we obtain a map

X(k)/Br - HYk, H) — @Hl(kv, H").
Consider the maps

X(k) > HYk. H) 1> @, H\(k,, H). (3.2)

Since in diagram (3.1) the mapis injective by Lemma 3.2, and since the map
¢ o b is injective by Theorem 2.1, we see that in (3.2) the fibers of the fhap
are exactly the Brauer equivalence classes(ik); thus

X(k)/Br = im(f oe) = f(ime),

whence Theorem 3.1. O

THeOREM 3.4. In Theorem 3.1, assume thais a totally imaginary number field.
Then the bijection of Theorem 3.1 induces a bijection

X(k)/Br => HY(k, H"")/ 1Yk, H'").
To prove Theorem 3.4, we need a proposition and two corollaries.

ProposiTioN 3.5.  Letk be a totally imaginary number field and I&t= (F, k)
be ak-kernel(k-lien) (se€[B; FSS; Sp]for a definitior), whereF is a connected
linear k-group such tha# " = 1. Then every element & ?(k, L) is neutral.
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Proof. The proposition follows from [B, Thm. 6.8(iii) and Thm. 6.3(ii)]. Note
that in the case whe# is semisimple, the proposition was proved in Douai [D,
Cor. 5.1]; see also [B, Cor. 6.9]. The proposition follows also from Douai’s result
and [B, Prop. 4.1]. O

CoroLLARY 3.6. Letk be a totally imaginary number field and let
1-G1—>G,—>Gz3—~>1

be an exact sequence of lineaigroups. IfG; is connected an@i*" = 1, then
the mapH(k, G») — HY(k, G3) is surjective.

Proof. We argue as in the proof of [B, Cor. 6.4]. Lt HY(k, Gs3), and lety €
ZY(k, G3) be a cocycle from the clags According to Springer [Sp, 1.20], one
can associate t¢r ak-kernelL, = (G, k) and a cohomology clas&(y)
H?(k, Ly) that is the obstruction to lifting to H'(k, G2). SinceG!% = 1, by
Proposition 3.5 the class(y) is neutral and henggcomes fromH(k, G5). O

CoroLLARY 3.7. Let F be a connected linear group over a totally imaginary
number fieldk. Then the ma(k, F) — H(k, F'") is surjective.

Proof. We have an exact sequence
1> F' > F —» Fo 5 1

where(F %" = 1. Now the corollary follows from Corollary 3.6. O

3.8. ProoF ofF THEOREM 3.4. SinceG is simply connected ankl is a totally
imaginary number field, we havB(k, G) = 1 (Kneser—Harder—Chernousov;
see [PR, Sec. 6.1, Thm. 6]). Thus k& {k, H) — H(k, G)] = H(k, H). By
Theorem 3.1X(k)/Br is in a bijective correspondence with

im[Hl(k, H) — HYk, H") — @ HY(k,, H“”)].

By Corollary 3.7, the magH'(k, H) — Hk, H™") is surjective. We see that
X (k)/Br is in a bijective correspondence with

im[Hl(k, H"") — @Hl(kv, H‘Of)] = HY(k, H®")/ 1Yk, H" ). O

v

ExampLE 3.9. LetG be a simply connected absolutely almost simple group over
a number fieldk, let H C G be a connected-subgroup, and leX = G/H.
Assume thaK is a symmetric space, that ig, is the group of invariants of an in-
volution of G. From the classification of involutions of simple Lie algebras (see
e.g. [H, X-5, p. 514)), it follows that din# *°" < 1.

If H'°" =1 orif H° is a one-dimensional split torus, théfl(k,, H°") =1
for all v; by Theorem 3.1X(k)/Br consists of one element.
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If H'" is a one-dimensional nonsplit torus, thel®" splits over a quadratic
extensionk of k. Assume in addition that is totally imaginary. Then, by The-
orem 3.4,X(k)/Br = H(k, H®")/111*(k, H"). SinceK /k is cyclic, we have
1Yk, H*°") = 1]V, 11.6, Cor. 3], and we see that

X(k)/Br = HYk, H*") = k*/Ng i K>,

whereN . denotes the norm map.
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