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F-Rational Rings and the
Integral Closures of Ideals

Ian M. Aberbach & Craig Huneke

1. Introduction

The history of the Briançon–Skoda theorem and its ensuing avatars in commuta-
tive algebra have been well documented in many papers (see e.g. [AH1; LS]). We
will therefore only briefly review the relevant concepts and theorems. First recall
the definitions of the integral closure of an ideal.

Definition 1.1. LetR be a ring and letI be an ideal ofR. An elementx ∈R is
integral overI if x satisfies an equation of the formxn + a1x

n−1+ · · · + an = 0,
whereaj ∈ I j for 1≤ j ≤ n. Theintegral closureof I, denoted byĪ , is the set of
all elements integral overI. This set is an ideal.

LetRo be the set of all elements ofR not in a minimal prime. An equivalent though
less standard (but for our purposes a more useful) definition of integral closure is
the following.

Equivalent Definition 1.1. LetR be a Noetherian ring and letI be an ideal
of R. An elementx ∈ R is integral overI if there exists an elementc ∈ Ro such
thatcxn ∈ I n for all n� 0.

A theorem proved by Briançon and Skoda [BS] for convergent power series over
the complex numbers and generalized to arbitrary regular local rings by Lipman
and Sathaye states as follows.

Theorem 1.2 [BS; LS]. LetR be a regular local ring and letI be an ideal gen-
erated bỳ elements. Then, for alln ≥ `,

I n ⊆ I n−`+1.

This was partially extended to the class of pseudo-rational rings by Lipman and
Teissier [LT]. However, they were unable to recover the full strength of Theo-
rem 1.2.

Theorem 1.3 [LT, (2.2)]. LetR be a Noetherian local ring and assume that the
localizationRP is pseudo-rational for every prime idealP in R. Suppose thatI
has a reductionJ such thatdimRP ≤ δ for every associated primeP ofJ n. Then
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I n+δ−1 ⊆ J n.
In particular, if J can be generated by a regular sequence of lengthδ, then the
above containment holds for alln ≥ 1.

The present two authors, as well as Lipman, have pushed the original theorem fur-
ther by introducing “coefficients”; see [AH1; AH2; AHT; L]. The methods used
by the present authors have relied on the theory of tight closure. These improve-
ments, however, have been valid only in regular rings, and the question of whether
the statement of Theorem 1.2 remains valid in arbitrary pseudo-rational rings has
remained open since 1981. Recent progress was made by Hyry and Villamayor
[HyV], who proved (among other things) that ifR is local Gorenstein and essen-
tially of finite type over a field of characteristic 0, thenI n+`−1⊆ I n for an arbitrary
idealI with ` generators. In this paper we will use tight closure methods to prove
that Theorem 1.2 is valid for F-rational rings (the definition is in Section 2). In
characteristicp, Smith [Sm] proved that F-rational implies pseudo-rational, but
it can be stronger in general. However, for affine algebras in equicharacteristic
0, the concepts of rational singularity, pseudo-rational singularity, and F-rational
type all agree, owing to work of Lipman and Teissier [LT] for the equivalence of
rational singularity and pseudo-rational singularity, and of Smith [Sm] and Hara
[Ha] and independently Mehta and Srinivas [MS] for the equivalence of rational
singularity and F-rational type (Smith proved that rational implies F-rational type
and the other authors have just recently proved the converse). It follows from these
equivalences that, in equicharacteristic 0, we are able to prove Theorem 1.2 for
rational singularities.

The basic idea of this paper is inspired by the proof of a cancellation theorem
(see [Hu1]). The key idea is to relate an arbitrary idealI to a system of parame-
ters in a manner that closely approximates the structure of the powers ofI. We do
this by using first a basic construction and then a theorem that relates the integral
closure of powers ofI with the tight closure of the system of parameters. In the
next section we briefly discuss tight closure; see [HH1; Hu2] for more references
and information.

2. Tight Closure

We begin with the definition.

Definition 2.1. LetR be a Noetherian ring of characteristicp > 0. Let I be an
ideal ofR. An elementx ∈ R is said to be in thetight closureof I if there exists
an elementc ∈Ro such thatcxq ∈ I [q] for all largeq = pe, whereI [q] is the ideal
generated by theqth powers of all elements ofI.

Every ideal in a regular ring is tightly closed. We say that elementsx1, . . . , xn in
R areparametersif the height of the ideal generated by them is at leastn (we
allow them to be the whole ring, in which case the height is said to be∞). If the
ideal they generate is proper, then the Krull height theorem says that the height is
exactlyn.
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Definition 2.2. A Noetherian ringR of characteristicp > 0 is said to beF-
rational if the ideals generated by parameters are tightly closed.

This definition arose from the work of Fedder and Watanabe [FW] because of the
apparent connection to the concept of rational singularities.

The concept of pseudo-rationality was introduced in [LT], partly as a substitute
for the notion of rational singularities in positive and mixed characteristic, where
desingularizations are not known to exist in general. Their definition is as follows
(see [LT, Sec. 2]).

Definition 2.3. Let(R,m) be ad-dimensional local Noetherian ring. The ring
R is said to bepseudo-rationalif it is normal, Cohen–Macaulay, and analytically
unramified and if, for every proper birational mapπ : W → X = Spec(R) with
W normal and closed fiberE = π−1(m), the canonical map

H d
m(π∗(OW)) = H d

m(R)→ H d
E (OW)

is injective.

In [LT] it is proved that, for a local ring essentially of finite type over a field of
characteristic 0, the notions of pseudo-rational and rational singularity agree. In
[Sm] it is shown that, in positive characteristic, F-rational implies pseudo-rational.
Smith uses this to prove that rings of finite type over a field of characteristic 0 that
are F-rational type have rational singularities. Here “F-rational type” essentially
means that characteristic-p models of the variety are F-rational. More precisely,
we next introduce the idea of a model.

LetR be a ring that is finitely generated over a field of characteristic 0, sayR =
k [X1, . . . , Xn]/I. Then we can choose generators for the idealI and, by collecting
coefficients of those generators, find a finitely generatedZ-algebraA ⊆ k such
that definingRA = A[X1, . . . , Xn]/(I ∩A[X1, . . . , Xn]) yieldsR = k⊗A RA. We
call the mapA→ RA a family ofmodelsof R. We sometimes insist that the map
A → RA be flat, which one can always obtain by expandingA by localizing at
a single element. A typical closed fiber ofRA overA is a characteristic-p model
of R.

Definition 2.5. LetR be a finitely generated algebra over a field of charac-
teristic 0. ThenR is said to haveF-rational typeif R admits a family of models
A→ RA in which a Zariski dense set of closed fibers are F-rational. (This does
not depend on the choice of models.)

The theorem in [Sm] states that, ifX is a scheme of finite type over a field of
characteristic 0, then ifX has F-rational type it has only rational singularities. Re-
cently, the converse has been proved by Hara [Ha] and independently by Mehta
and Srinivas [MS].

3. F-Rational Rings and Tight Closure

In this section we first discuss a basic construction that will play a crucial role in
the paper. Given an idealI in a Noetherian local ring(R,m), a minimal reduction
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J of I—say,J = (a1, . . . , a`)—and an integerN, we wish to construct an idealA
generated by parameters such thatJ ≡ A modulomN and such thatA is closely
related toI and its powers. For example, one would likeI ⊆ A, but this is in
general not possible sinceI may not be contained in any ideal generated by param-
eters. We record what we need in Proposition 3.2. We need the following lemma
from [AHT].

Lemma 3.1. Let (R,m) be a local ring with infinite residue field and letI ⊆ R
be an ideal of analytic spread̀. Let J ⊆ I be a minimal reduction ofI. Then
there exists a “basic” generating seta1, . . . , a` for J such that

(1) if P is a prime ideal containingI and htP = i ≤ ` then(a1, . . . , ai)P is a
reduction ofIP , and

(2) ht((a1, . . . , ai)I
n : I n+1+ I ) ≥ i + 1 for all n� 0.

(3) If ci ≡ ai moduloI 2, then(1) and (2) hold withci replacingai.

Proof. The first two statements are found in [AHT, Lemma 7.2]. The last state-
ment follows from the proof of Lemma 7.2 in [AHT]. The choice of a basic gen-
erating set depends only on the images of theai in the associated graded ringG =
R/I ⊕ I/I 2 ⊕ · · · . In particular, sinceci andai have the same leading forms in
G, (3) follows.

Proposition 3.2. Let (R,m) be an equidimensional and catenary local ring
with infinite residue field and letI ⊆ R be an ideal of analytic spread̀. LetJ ⊆
I be a minimal reduction ofI. We assume thathtI = g andJ = (a ′1, . . . , a ′` ), a
basic generating set forJ as in Lemma 3.1. LetN andw be fixed integers, and
suppose that forg + 1≤ i ≤ ` we are given finite sets of primes3i = {Qji} all
containingI and of heighti. Then there exist elementsa1, . . . , a` and tg+1, . . . , t`
such that the following hold(we setti = 0 for i ≤ g for convenience):

(1) ai ≡ a ′i moduloI 2;
(2) for g + 1≤ i ≤ `, ti ∈mN ;
(3) b1, . . . , bg, bg+1, . . . , b` are parameters, wherebi = ai + ti;
(4) if R/I is equidimensional then the images oftg+1, . . . , t` in R/I are parame-

ters;
(5) there is an integerM such thatti+1∈ (J ti IM : IM+t ) for all 0 ≤ t ≤ w + `,

whereJi = (a1, . . . , ai);
(6) ti+1 /∈⋃j Qji, where the union is over the primes in3i.

Proof. We choose theai andti inductively. We first modifya ′1, . . . , a ′g toa1, . . . , ag
in such a way that these elements form parameters. We can do this withai ≡ a ′i
moduloI 2 for 1≤ i ≤ g. Suppose we have chosena1, . . . , ai andt1, . . . , ti so that
all six of the listed statements are true for these elements. Fix the minimal primes
P1, . . . , Pk (all necessarily of heighti) aboveBi = (b1, . . . , bi). Divide them into
two sets: letP1, . . . , Pn be the ones that containI, and letPn+1, . . . , Pk be those
that don’t containI. We first changea ′i+1 to an elementai+1 ≡ a ′i+1 moduloJ 2

such thatai+1 /∈⋃k
j=n+1Pj . This choice is possible because the nilradical ofJ is
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the same as the nilradical ofI. Next chooseMi such that the height ofI + (JiIMi :
IMi+1) is at leasti +1, and chooseM to be the maximum of theMi. (This is pos-
sible by Lemma 3.1.) This choice forces all(J ti I

M : IM+t )+ I to be of height at
leasti + 1 for all t ≥ 0. For suppose that(J ti I

M : IM+t ) + I ⊆ Q, whereQ is
a prime of height at mosti. SinceI ⊆ Q, this forces(JiIM : IM+1) * Q, and
after localization atQ we have(IM+1)Q = (JiIM)Q. But this forces(IM+t )Q =
(J ti I

M)Q for all integerst, and so(J ti I
M : IM+t ) * Q, a contradiction. Using

prime avoidance, choose

ti+1∈⋂w+`
t=0 (J

t
i I
M : IM+t ) ∩mN ∩ (⋂k

j=n+1Pj
)

and
ti+1 /∈

(⋃n
j=1Pj

) ∪ (⋃j Qji
)
.

This is possible becauseI is contained in each of the primes in the second line
and all these primes have heighti,while the height ofI + (J ti IM : IM+t ) is at least
i+1. We setbi+1= ai+1+ ti+1. We claim this choice proves (1)–(6) for these new
elements. Our choice ofai+1 andti+1 make statements (1), (2), (5), and (6) triv-
ial. To prove (3) we need only provebi+1 /∈⋃k

j=1Pj . If j ≤ n, thenai+1 ∈ I ⊆
Pj while ti+1 /∈Pj . Hencebi+1 /∈Pj . If j ≥ n+ 1, thenai+1 /∈Pj while ti+1∈Pj .
Again bi+1 /∈ Pj, proving (3). Statement (4) follows from (3). Clearly the height
of (I, bg+1, . . . , bi+1) is at least that ofb1, . . . , bi+1 and hence at leasti + 1. But
(I, bg+1, . . . , bi+1) = (I, tg+1, . . . , ti+1). SinceR is equidimensional and catenary,
it follows that the images of thetj in R/I form parameters.

Theorem 3.3. Let (R,m) be an equidimensional and catenary local ring of
characteristicp having infinite residue field. LetI be an ideal of analytic spread
` and positive heightg. LetJ be a minimal reduction ofI. Fixw,N ≥ 0. Choose
ai andti as in Proposition 3.2. SetA = B` = (b1, . . . , bg, . . . , b`). Then

I `+w ⊆ (Aw+1)∗.

Proof. Our choice of elements means thata1, . . . , ag, ag+1+ tg+1, . . . , ai+1+ ti+1

is part of a system of parameters. Fix the notation as in Proposition 3.2. By our
choice of thetj we have thattj IM+k ⊆ J kj−1I

M for all 1 ≤ k ≤ w + `. We first
claim that this implies

t nj I
M+nk ⊆ J nkj−1I

M

for all n ≥ 1. Assume this is true for a fixedn, and multiply bytj I k. We obtain
that(tj I k)(t nj I

M+nk) ⊆ (tj I k)J nkj−1I
M. Sincetj IM+k ⊆ J kj−1I

M, we now have

t n+1
j IM+(n+1)k ⊆ J nkj−1J

k
j−1I

M

as required. Fixc ∈ IM ∩Ro. Note that the above containment shows that, for all
n ≥ 1,

ct n+1
j I (n+1)k ⊆ J (n+1)k

j−1 . (3.4)

SetBi = (b1, . . . , bi). Let g ≤ i ≤ ` andw ≥ r ≥ 0. We show by induction
thatci−gJ (i+r)qi ⊆ (Br+1

i )[q] . The base case is wheni = g andr ≤ w is arbitrary.
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In this caseJ (g+r)qg ⊆ (J r+1
g )[q] = (Br+1

g )[q] . The first inclusion in the above line
follows at once from [HH1, proof of (5.4)].

Assume now that we are givenr andi > g and that the claim is true either for
i ′ < i (with r ′ ≤ w arbitrary) or fori ′ = i (with r ′ < r ≤ w). By our choice ofc
and of thetj,

c i−gJ (i+r)qi ⊆ ci−gJ [q]
i J

(i+r−1)q
i

⊆ ci−g[J [q]
g J

(i+r−1)q
i + aqg+1J

(i+r−1)q
i + · · · + aqi J (i+r−1)q

i ]

= ci−g−1[cJ [q]
g J

(i+r−1)q
i + caqg+1J

(i+r−1)q
i + · · · + caqi J (i+r−1)q

i ].

Consider a typical term in this sum,caqj J
(i+r−1)q
i , whereg + 1 ≤ j ≤ i. Since

bj = aj + tj, we can write this term as

ca
q

j J
(i+r−1)q
i = cbqj J (i+r−1)q

i − ct qj J (i+r−1)q
i .

Using (3.4) (notei + r −1≤ w + `), we obtain

ca
q

j J
(i+r−1)q
i ⊆ cbqj J (i+r−1)q

i + J (i+r−1)q
j−1

and so

ci−gJ (i+r)qi ⊆ ci−g−1[cJ [q]
g J

(i+r−1)q
i + (cbqg+1J

(i+r−1)q
i + J (i+r−1)q

g )

+ · · · + (cbqi J (i+r−1)q
i + J (i+r−1)q

i−1 )],

which by the induction hypothesis is contained in

J [q]
g (Bri )

[q] + bqg+1(B
r
i )

[q] + (Br+i−gb )[q] + · · · + bqi (Bri )[q] + (Br+1
i−1 )

[q]

⊆ (Br+1
i )[q] .

In particular, note that

c`−gJ (`+r)q` ⊆ (Br+1
` )[q] (3.5)

for all r ≤ w.
We now prove thatI `+w ⊆ (Aw+1)∗. Let u∈ I `+w. Choose an elementd ∈Ro

such thatduq ⊆ J (`+w)q . Thenc`−gduq ∈ c`−gJ (`+w)q ⊆ (Bw+1
` )[q] by (3.5). It

follows thatu∈ (Bw+1
` )∗ = (Aw+1)∗.

Remark. Theorem 3.3 is still valid even if ht(I ) = 0. In this case, choosec1∈
IM andc2 in the intersection of the minimal primes of 0 that do not containI and
avoiding those that do containI. Thusc2I

N = 0 for N � 0 andc = c1+ c2 ∈
Ro satisfies equation (3.4).

An almost immediate consequence is one of our main theorems.

Theorem 3.6. Let (R,m) be an F-rational local ring of positive characteristic
p, and letI ⊆ R be an ideal generated bỳelements. ThenI `+w ⊆ I w+1 for all
w ≥ 0.
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Proof. There is no loss of generality in assuming thatR has an infinite residue
field. We can replaceI by a minimal reduction of itself; suppose thatJ is that
minimal reduction. The number of generators ofJ is at most̀ , so without loss
of generality we may assumèis the number of generators ofJ. Fix an integer
N. We think ofw as fixed and choosetg+1, . . . , t` anda1, . . . , a` as in Proposi-
tion 3.2. In particular,ti ∈ mN for all i. By (3.3), I `+w ⊆ (Aw+1)∗ = Aw+1 ⊆
Jw+1+ (th+1, . . . , t`) ⊆ Jw+1+ mN. The equality(Aw+1)∗ = Aw+1 above fol-
lows from [A, Thm.1.1]. By theKrull intersection theorem we obtain thatI `+w ⊆⋂

N(J
w+1+mN) = Jw+1.

This characteristic-p theorem allows us to prove the same result in equicharacter-
istic 0.

Theorem 3.7. Let R be an algebra of finite type over a field of characteristic
0 and having only rational singularities. LetI ⊆ R be an ideal generated bỳ
elements. ThenI `+w ⊆ I w+1 for all w ≥ 0.

Proof. By the work of both Hara [Ha] and Mehta and Srinivas [MS],R is of
F-rational type. It is straightforward to prove in this case that, if the conclusion
holds in a dense open set of fibers in some family of modelsA → RA of R, it
also holds inR. Hence we may pass to positive characteristic and assume thatR

is finitely generated over a field of characteristicp > 0 such thatRP is F-rational
for all primesP. The conclusion will follow if we prove it locally, since the num-
ber of generators can only drop after localization. It follows that we can reduce to
the local F-rational case and apply Theorem 3.6 to finish the proof.

4. F-Rational Gorenstein Rings

Our next theorem is new, even forR regular, as far as we know. The proof is based
on a careful analysis of the proof of Theorem 3.5 together with the ideas behind
the cancellation theorem of [Hu1] (see also [CP] for further cancellation results).
Our main theorem applies to rings that are F-rational and Gorenstein. It is known
[HH2, (3.4), (4.7)] that F-rational and F-regular are the same when the base ring
is Gorenstein. A ringR is F-regular if every ideal is tightly closed in every local-
ization ofR. Of course, all regular rings are F-regular, but the class of F-regular
rings is considerably broader than that of regular rings.

Theorem 4.1. Let (R,m) be an F-rational Gorenstein local ring of dimension
d and having positive characteristic. Suppose thatI is an ideal of heightg and
analytic spread̀ > g with R/I Cohen–Macaulay. Then, for any reductionJ of
I, I `−1 ⊆ J.
Proof. There is no loss of generality in assuming thatR has an infinite residue
field and thatJ is a minimal reduction. Fix an integerN and setw = 0 in the no-
tation of Proposition 3.2 and Theorem 3.3. We will prove thatI `−1 ⊆ J + mN.

An application of the Krull intersection theorem then finishes the proof.
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We choosetg+1, . . . , t` anda1, . . . , a` as in Proposition 3.2, withN fixed as be-
fore. Letbi = ai+ ti for 1≤ i ≤ `. Choosex = x`+1, . . . , xd so thatbg+1, . . . , b`,x
is a regular sequence onR/I and setA = (b1, . . . , b`, x). We setD = Jg : tg+1

andK = (Jg, bg+2, . . . , b`, x).
LetQ = (I, bg+2, . . . , b`, x) + K : D. We claim thatA : tg+1 ⊆ Q. Suppose

that
tg+1u = w + vbg+1, (4.2)

wherew ∈K. Thentg+1(u− v)∈ (Jg+1, bg+2, . . . , b`, x) and hence

u− v ∈ (Jg+1, bg+2, . . . , b`, x) : bg+1⊆ (I, bg+2, . . . , b`, x) : bg+1

⊆ (I, bg+2, . . . , b`, x)

sinceR/I is Cohen–Macaulay. Henceu − v ∈Q and to proveu ∈Q it suffices
to show thatv ∈K : D. Let d ∈D and considerdv. Using (4.2), we obtain that
tg+1du = dw + dvbg+1 and hencedvbg+1∈ (Jg, bg+2, . . . , b`, x). Thus

Dv ⊆ (Jg, bg+2, . . . , b`, x) : bg+1= (Jg, bg+2, . . . , b`, x) = K.
This proves our claim and in particular proves thatA : Q ⊆ A : (A : tg+1).

We next claim thatI `−1⊆ A : Q. First observe that(I, bg+2, . . . , b`, x) ·I `−1⊆
I · I `−1+A and, by Theorem 2.6,I · I `−1⊆ A (using thatR is F-rational). Hence
it remains only to prove thatI `−1 · (K : D) ⊆ A. We use a lemma.

Lemma 4.3. With the same notation as before,

tg+1 · I `−1 ⊆ Jg.
Proof. Let z ∈ I `−1 and choose an elementd ∈ Ro such thatdzn ∈ I n(`−1) for all
n. Choosec ∈ IM nonzero as in (3.4). Using (3.4), we then obtain

dct
q

g+1z
q ∈ ct qg+1I

q(`−1) ⊆ t qg+1I
q(`−1)+M ⊆ J q(`−1)

g ⊆ J [q]
g ,

where the last containment follows because` − 1 ≥ g andJg hasg generators.
Hencetg+1z∈ (Jg)∗. SinceR is F-rational,tg+1z∈ Jg, proving the lemma.

Lemma 4.3 proves thatI `−1 ⊆ D. HenceI `−1((Jg, bg+2, . . . , b`, x) : D) ⊆ A.
We have proved thatI `−1⊆ A : Q.

By local duality, we haveI `−1 ⊆ A : Q ⊆ A : (A : tg+1) ⊆ (Jg+1, tg+1,

bg+2, . . . , b`, x) ⊆ (J, tg+1, . . . , t`, x) ⊆ J +mN.

Acknowledgment. The authors thank Reinhold Hübl for valuable corrections
in our original preprint.
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