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The Modal Logic of Cluster-Decomposable
Kripke Interpretations

Michael Tiomkin and Michael Kaminski

Abstract We deal with the modal logic of cluster-decomposable Kripke inter-

pretations, present an axiomatization, and prove some additional results regard-

ing this logic.

1 Introduction

A Kripke interpretation M = 〈U, R, I 〉 is called cluster-decomposable if its set of

possible worlds U can be partitioned into two (disjoint) sets U ′ and U ′′ 6= ∅ such

that the accessibility relation R is of the form

R = (R ∩ (U ′ × U ′)) ∪ (U × U ′′),

where 〈U ′′,U ′′ × U ′′, I |U ′′〉 is called the terminal cluster of M. In what follows we

denote by CD the class of all cluster-decomposable Kripke interpretations. Propo-

sitional modal logics characterized by subclasses of CD play a very important role

in semantics of nonmonotonic logics. This is because cluster-decomposable Kripke

interpretations are tightly connected to minimal knowledge and maximal ignorance

(see [4]; [3], Section 9.3; and [1]). Typical examples of such logics are rather strong

logics S5, Sw5, KD45, and S4F (see [1]). Additional lesser-known logics can be

found in [5]. In this paper, we describe the modal logic characterized by CD . This

logic is denoted by C.1

The paper is organized as follows. In the next section we recall the Kripke se-

mantics of modal logic. In Section 3 we list the axioms of C and derive some of their

basic consequences. Finally, in Section 4 we prove completeness of C with respect

to CD .
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2 Propositional Modal Logic

We start with the language of classical propositional logic that contains propositional

variables and only two classical propositional connectives, ⊥ (a logical constant fal-

sity) and ⊃ (implication). Connectives ⊤ (truth), ¬ (negation), ∧ (conjunction),

∨ (disjunction), and ≡ (equivalence) are defined in a usual manner; for example, ¬ϕ

is ϕ ⊃ ⊥. The language of propositional modal logic is obtained from the language

of classical propositional logic by extending it with a modal connective L (neces-

sary). As usual, the dual connective M (possibly) is defined by ¬L¬.

The weakest normal modal logic K results from the classical propositional logic

by adding the inference rule,

NEC ϕ ⊢ Lϕ,

called necessitation and the axiom scheme,

k L(ϕ ⊃ ψ) ⊃ (Lϕ ⊃ Lψ).

The normal modal logics are obtained by adding to K all instances of some axiom

schemes, for example,

t Lϕ ⊃ ϕ,

d Lϕ ⊃ Mϕ,

4 Lϕ ⊃ L Lϕ,

5 Mϕ ⊃ L Mϕ.

Adding t to K results in T, adding 4 to T results in S4, and so on (see [3], p. 197,

or [5] for a more complete description).

For a modal logic S and a set of formulas Ŵ, called (proper) axioms, we write

Ŵ ⊢S ϕ, if there exists a proof of ϕ from Ŵ in S. The unsubscribed ⊢ denotes deriv-

ability in K.

The Kripke semantics of propositional modal logics is as follows. A Kripke inter-

pretation is a triple M = 〈U, R, I 〉, where U is a nonempty set of possible worlds,

R ⊆ U × U is an accessibility relation on U , and I is an assignment to each world

in U of a set of propositional variables. We assume that the reader is familiar with

the standard definitions of “(M, u) satisfies a formula ϕ,” denoted (M, u) |H ϕ, and

“M satisfies ϕ,” or “M is a model of ϕ,” denoted M |H ϕ, which appear in [2] or [3].

The Kripke semantics is sound and complete for K. That is, Ŵ ⊢ ϕ if and only if

ϕ is satisfied by all Kripke interpretations which satisfy Ŵ. In particular, a set of for-

mulas is consistent if and only if it has a Kripke model. Kripke interpretations with a

reflexive accessibility relation are sound and complete for T, and Kripke interpreta-

tions with a reflexive and transitive accessibility relation are sound and complete for

S4 (see [3], Corollary 7.51, p. 214).

For the proof of the completeness theorem in Section 3 we shall need the notion

of the canonical Kripke model (see [2], Section 6, or [3], Sections 7.2 and 7.3, say).

In what follows, S and Ŵ are a modal logic and a set of formulas, respectively.

Definition 2.1 A set of formulas 1 is said to be S,Ŵ-consistent if, for no finite

subset 1′ of 1, Ŵ ⊢S ¬
∧

ϕ∈1′

ϕ.

Definition 2.2 Maximal (with respect to inclusion) S,Ŵ-consistent sets of formulas

are called S,Ŵ-maximal.
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Proposition 2.3 ([2], Theorem 6.3, p. 115, or [3], Lemma 7.29, p. 204) Each S,Ŵ-

consistent set of formulas can be extended to an S,Ŵ-maximal set.

To define the S,Ŵ-canonical Kripke model we need one more bit of notation. For a

set of formulas1 we define the set of formulas1− by

1− = {ϕ : Lϕ ∈ 1}.

Definition 2.4 The S,Ŵ-canonical Kripke model MŴ
S = 〈UŴ

S , RŴS , IŴS 〉 is defined

as follows.

1. UŴ
S is the set of all S,Ŵ-maximal sets of formulas.

2. RŴS = {(u, v) : u, v ∈ UŴ
S , u− ⊆ v}.

3. IŴS (u) is the set of all propositional variables which belong to u.

Theorem 2.5 ([2], Theorem 6.5, p. 118, or [3], Theorem 7.32, p. 206) For any

formula ϕ and any u ∈ UŴ
S , (MŴ

S , u) |H ϕ if and only if ϕ ∈ u.

3 The Logic C

Let C result in adding to K the following three axiom schemes.

G1 M Lϕ ⊃ L Mϕ.

t L Lϕ ⊃ M Lϕ.

M4 M Lϕ ⊃ M L Lϕ.

Scheme G1 is well studied in the literature. It belongs to the set G
′ consisting of all

axiom schemes of the form

Mm Lnϕ ⊃ L j Mkϕ,

where L0ϕ is ϕ (M0ϕ is ϕ) and L i+1ϕ is L L iϕ (M i+1ϕ is M M iϕ) (see [2], p. 182).

Modal logics containing G1 are characterized by classes of Kripke interpretations

with convergent accessibility relation, that is, Kripke interpretations 〈U, R, I 〉 such

that R satisfies the following condition ([2], p. 134).

If (u, v ′), (u, v ′′) ∈ R, then for some w ∈ U, (v ′, w), (v ′′, w) ∈ R.2

It is easy to verify that C is sound with respect to CD ,3 which together with Theo-

rem 3.1 below implies that C is characterized by CD .

Theorem 3.1 (Completeness) If each cluster-decomposable Kripke model of Ŵ

satisfies ϕ, then Ŵ ⊢C ϕ.

We postpone the proof of the theorem to Section 4 and first establish a number of

properties of C. Some of them, such as the independence of axioms and nonequiv-

alence of modalities (see [2], pp. 55–56) are of interest in their own right, and the

others are needed for the proof of Theorem 3.1.

In the proofs below we shall use the following two derived “modal” rules of infer-

ence and two theorems of K. This is in addition to NEC and a number of well-known

derived propositional rules.

DR1 ϕ ⊃ ψ ⊢ Lϕ ⊃ Lψ (cf. a similar rule in [2], p. 30)

DR3 ϕ ⊃ ψ ⊢ Mϕ ⊃ Mψ (it is dual to DR1, cf. [2], p. 35)

K3 (Lϕ ∧ Lψ) ⊃ L(ϕ ∧ ψ) (see [2], p. 28)

K6 M(ϕ ∨ ψ) ⊃ (Mϕ ∨ Mψ) (see [2], p. 34)
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We shall also use the schemes

t Ld L Mϕ ⊃ Mϕ

M4d L M Mϕ ⊃ L Mϕ

which are dual to t L and M4, respectively, and the axiom

d1 M⊤

which is equivalent to d (see [2], pp. 43–44).

Below we shall use the following notation. We write

ϕ1 ≡ ϕ2 ≡ ϕ3 ≡ · · · ≡ ϕn−1 ≡ ϕn

instead of
n−1
∧

i=1

ϕi ≡ ϕi+1.

Proposition 3.2 C ⊢ M M Lϕ ≡ M L Lϕ ≡ L M Lϕ ≡ M Lϕ.

Proof

1. M Lϕ ⊃ M L Lϕ M4

2. M M Lϕ ⊃ M M L Lϕ DR3 1

3. M L Lϕ ⊃ L M Lϕ G1

4. M M L Lϕ ⊃ M L M Lϕ DR3 3

5. L M Lϕ ⊃ M Lϕ t Ld

6. M L M Lϕ ⊃ M M Lϕ DR3 5

7. M M Lϕ ≡ M M L Lϕ ≡ M L M Lϕ implication cycle 2, 4, 6

8. M Lϕ ⊃ M L Lϕ M4

9. M L Lϕ ≡ L M Lϕ ≡ M Lϕ implication cycle 3, 5, 8

Thus, we have

M M Lϕ ≡ M L(M Lϕ) ≡ L M L(M Lϕ) ≡ L M M(Lϕ) ≡ L M(Lϕ) ≡ M Lϕ,

where the first equivalence is by 7, the second equivalence is by 9, the third equiva-

lence is by 7 and DR1, the fourth equivalence is dual to 9, and the last equivalence is

again by 9. �

Proposition 3.3 t L ⊢ d.

Proof We shall prove d1 instead of d.

1. L⊤ a theorem of K

2. L⊤ ⊃ M L⊤ t L

3. M L⊤ ⊃ M⊤ a theorem of K

4. M⊤ modus ponens (twice) 1, 2, 3

�

For the proof of independence of G1, t L, and M4 we need the following trivial

observation.

Proposition 3.4 t ⊢ t L and 4 ⊢ M4.

Proof Scheme t Ld is an instance of t for Mϕ, and scheme M4 is obtained from 4

by DR3. �



Cluster-Decomposable Kripke Interpretations 515

Proposition 3.5

1. G1,M4 6⊢ t L.

2. t L,M4 6⊢ G1.

3. G1, t L 6⊢ M4.

Proof Let M be a Kripke interpretation with the empty accessibility relation. Then

M |H G1,M4 and M 6|H d1. Thus, by Proposition 3.3, M 6|H t L.

Consider a Kripke interpretation M = 〈U, R, I 〉, where U = {u, v,w}, R is

the reflexive and transitive closure of {u} × {v,w}, and I (u) = I (v) = {p}, and

I (w) = ∅ (see Figure 1). Then M |H S4 and, therefore, M |H t L,M4. However,

(M, u) 6|H M Lp ⊃ L Mp.

Consider a Kripke interpretation M = 〈U, R, I 〉, where U = {u, v,w}, R is the

reflexive closure of {(u, v), (v,w)}, I (u) = I (v) = {p}, and I (w) = ∅ (see Fig-

ure 2). Then M |H G1, because R is convergent and, by Proposition 3.4, M |H t L,

because R is reflexive. However, (M, u) 6|H M Lp ⊃ M L Lp. �

u p

I �

K

v p

K

w ¬p

K

Figure 1 t L,M4 6⊢ MLp ⊃ L Mp.

u

p

-

K

v

p

-

K

w

¬p

K

Figure 2 G1, t L 6⊢ MLp ⊃ ML Lp.

Next we shall classify modalities in C (cf. nonequivalence of modalities [2],

pp. 55–56).

Theorem 3.6 In C each formula of the form M i1 L j1 M i2 L j2 . . .M in L jnϕ, where
∑n

k=1(ik + jk) > 0 is equivalent to one of the following:

1. L iϕ, i = 1, 2, . . .,

2. M Lϕ,

3. L Mϕ, or

4. M iϕ, i = 1, 2, . . ..

Each formula on “level” i implies in C each formula on the level i + 1, i = 1, 2, 3.

Neither formula implies a different formula on the same or upper level.

Proof Note that we prove that some of these modalities are not equivalent even in

the presence of t.
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Nonequivalence of modalities on level 1 First, we show that for 0 ≤ k < i ,

G1, t,M4 6⊢ Lkϕ ⊃ L iϕ and C 6⊢ L iϕ ⊃ Lkϕ. Let Mi = 〈Ui , Ri , Ii 〉 and

M′
i = 〈Ui , R′

i , I ′
i 〉 be the following Kripke interpretations (see Figures 3 and 4,

respectively).

Ui = {u1, u2, . . . , ui+2}.

Ri = {(u j , u j+1) : j = 1, 2, . . . , i} ∪ Ui × {ui+2},

and R′
i is the reflexive closure of Ri .

Ii (u j ) = {p} if j ≤ i, and Ii (ui+1) = Ii (ui+2) = ∅.

I ′
i (u j ) = {p} if j 6= i + 1, and I ′

i (ui+1) = ∅.

u1
p

*

- u2
p

�

- ui

p

I

- ui+1
¬p

ui+2

¬p

Y

U

Figure 3 Mi |H C, but Mi 6|H L i¬p ⊃ Lk¬p for k < i .

u1
p

K

*

- u2
p

K

�

- ui

p
K

I

- ui+1
¬p

K

Y
ui+2

p
U

Figure 4 M′
i |H C, t , but M′

i 6|H Lk p ⊃ L i p for k < i .

Both Mi and M′
i are cluster-decomposable, with the cluster {ui+2}. Thus, by sound-

ness, Mi |H C and M′
i |H C, and, since R′

i is reflexive, M′
i |H t . It is easy to see that

(Mi , u1) 6|H L i¬p ⊃ Lk¬p and (M′
i , u1) 6|H Lk p ⊃ L i p for k = 0, . . . , i − 1.

Relations between modalities on levels 1 and 2 For each i = 1, 2, . . ., a for-

mula of the form L iϕ ⊃ M L iϕ is an instance of t L, and, by Proposition 3.2,

C ⊢ M L iϕ ⊃ M Lϕ. Therefore, C ⊢ L iϕ ⊃ M Lϕ.

We proceed to show that for no i = 0, 1, . . ., C ⊢ M Lϕ ⊃ L iϕ. Consider

a Kripke interpretation M′ = 〈U ′, R′, I ′〉, where U ′ = {u, v}, R′ is the reflexive

closure of {(u, v)}, I ′(u) = ∅, and I ′(v) = {p} (see Figure 5). M′ is cluster-

decomposable; however, (M′, u) 6|H M Lp ⊃ L i p for any i .

Relations between modalities on levels 2 and 3 By G1, C ⊢ M Lϕ ⊃ L Mϕ, and

we need to show that the converse implication is not derivable in C. Consider a

Kripke interpretation M = 〈U, R, I 〉, where U = {u, v,w}, R is the reflexive clo-

sure of {(u, v), (u, w), (v,w), (w, v)}, I (u) = I (v) = {p}, and I (w) = ∅ (see

Figure 6). M is cluster-decomposable: its terminal cluster is {v,w}. Since R is

reflexive, M |H t. However, (M, u) 6|H L Mp ⊃ M Lp.
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u

¬p

-

K

v

p

K

Figure 5 G1, t,M4 6⊢ MLp ⊃ L i p.

u p

I �

K

vp

K

w ¬p

K

�

*

Figure 6 C, t 6⊢ L Mp ⊃ MLp.

Relations between modalities on levels 3 and 4, and nonequivalence of modalities on

level 4 This follows by duality between levels i and 5 − i .

In order to complete the proof we note that, by Proposition 3.2, each formula of

the form M i1 L j1 M i2 L j2 . . .M in L jnϕ, where in, jn > 0, is equivalent in C to M Lϕ.

The case of the modal prefix ending with M is dual to the above. �

The following proposition is needed for the proof of Theorem 3.1 in Section 4.

Proposition 3.7 C ⊢ (M Lϕ ∧ M Lψ) ⊃ M L(ϕ ∧ ψ).

Proof Note that (M L Lϕ∧ L M Lψ) ⊃ M M L(ϕ∧ψ) is a theorem of K. Therefore,

((M Lϕ)∧ M Lψ) ⊃ M L(ϕ ∧ψ) propositionally follows from the first formula and

Proposition 3.2. �

Now consider the logic S4.2 that contains S4 (t and 4) and G1 (see [2]). We can

easily prove that this logic is equivalent to C with S4.

Proposition 3.8 The logic S4.2 and the logic C with S4 are equivalent; that is,

S4.2 ⊢ C, S4, and C, S4 ⊢ S4.2.

Proof The first part trivially follows from Proposition 3.4, and the second part fol-

lows from the fact that C with S4 contains S4.2. �

It is easy to see that S4.2 is sound with respect to CD for reflexive and transitive

Kripke interpretations; that is, if Ŵ ⊢S4.2 ϕ, then each cluster-decomposable, reflex-

ive, and transitive Kripke model of Ŵ satisfies ϕ. This observation, together with

Proposition 3.9 below, implies that S4.2 is characterized by CD restricted to reflex-

ive and transitive Kripke interpretations.

Proposition 3.9 (CD completeness for S4.2) If each cluster-decomposable, reflex-

ive, and transitive Kripke model of Ŵ satisfies ϕ, then Ŵ ⊢S4.2 ϕ.

The proof of Proposition 3.9 is very similar to the proof of Theorem 3.1, and we

postpone this proof to Section 4 which contains the proof of Theorem 3.1.
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3.1 An alternative axiomatization of C In this section we present a “shorter”

axiomatization of C which consists of only two axiom schemes.

Let the logic AC result in adding to K the following axiom schemes.

t L Lϕ ⊃ M Lϕ.

C2 M Lϕ ⊃ L M L Lϕ.

We shall also use the scheme C2d below which is dual to C2.

C2d M L M Mϕ ⊃ L Mϕ.

Note that the axiom scheme C2 is obtained by adding an additional modality L to

the consequent of the scheme M4.

First, we show that AC is derivable in C.

Proposition 3.10 C ⊢ AC.

Proof t L belongs to C, and C2 follows from M4 and Proposition 3.2. �

Now we shall show that C is derivable from AC and, therefore, these logics are

equivalent.

Proposition 3.11 AC ⊢ M4.

Proof

1. M Lϕ ⊃ L M L Lϕ C2

2. L M L Lϕ ⊃ M L Lϕ t Ld

3. M Lϕ ⊃ M L Lϕ syllogism 1, 2

�

Proposition 3.12 AC ⊢ G1.

Proof

1. M L L Lϕ ⊃ M L M Mϕ follows from d Proposition 3.3

2. M L M Mϕ ⊃ L Mϕ C2d

3. M L L Lϕ ⊃ L Mϕ syllogism 1, 2

4. M L Lϕ ⊃ M L L Lϕ M4

5. M Lϕ ⊃ M L Lϕ M4

6. M Lϕ ⊃ L Mϕ a “long” syllogism 5, 4, 3

�

4 Proof of Theorem 3.1

For a Kripke interpretation M = 〈U, R, I 〉 and a world u ∈ U we define the set of

formulas1(M,u) by

1(M,u) = {ϕ : (M, u) |H M Lϕ}.

Lemma 4.1 Let M = 〈U, R, I 〉 be a Kripke interpretation satisfying C. Then for

each world u ∈ U and each set of formulas Ŵ satisfied by M, the set of formulas

1(M,u) is C,Ŵ-consistent.

Proof Let 1′ be a finite subset of 1(M,u). Then, by Proposition 3.7, (M, u) |H

M L
∧

ϕ∈1′

ϕ. That is, for some v ∈ U such that (u, v) ∈ R, (M, v) |H L
∧

ϕ∈1′

ϕ. Since

M |H C, by Proposition 3.3, M |H M⊤. Thus, there exists a world w such that

(v,w) ∈ R, which implies (M, w) |H
∧

ϕ∈1′

ϕ. Now, Ŵ 6⊢C ¬
∧

ϕ∈1′

ϕ follows from the

fact that M |H C, Ŵ. �
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Lemma 4.2 Let M = 〈U, R, I 〉 be a Kripke interpretation satisfying C and

let the worlds u, v ∈ U belong to the same connected component of M. Then

1(M,u) = 1(M,v).

Proof Assume that (u, v) ∈ R.

Let ϕ ∈ 1(M,u). Then (M, u) |H M Lϕ. By Proposition 3.2, (M, u) |H L M Lϕ,

implying (M, v) |H M Lϕ. Thus, ϕ ∈ 1(M,v).

Similarly, let ϕ ∈ 1(M,v). Then (M, v) |H M Lϕ, implying (M, u) |H M M Lϕ.

By Proposition 3.2, (M, u) |H M Lϕ and, therefore, ϕ ∈ 1(M,u).

Now the proof follows by induction on the path between u and v. �

Finally, we shall prove a “partial completeness” result.

Lemma 4.3 Each connected component of MŴ
C belongs to CD .

Proof Let M = 〈U, R, I 〉 be a connected component of MŴ
C , u ∈ U and let

1 = 1(M,u). By Lemma 4.2, 1 does not depend on a particular choice of u, and, by

Lemma 4.1, it is C,Ŵ-consistent. Let U1 = {u ∈ UŴ
C : 1 ⊆ u}. By Proposition 2.3,

U1 6= ∅.

Next we observe that for each u ∈ U and each v ∈ U1, u− ⊆ v; that is,

(u, v) ∈ R. Let ϕ ∈ u−. Then Lϕ ∈ u, and, by t L, M Lϕ ∈ u. Therefore,

ϕ ∈ 1, implying ϕ ∈ v.

Note that the above observation implies U1 ⊆ U and R |U1= U1 × U1.

To complete the proof, we shall show that for each u ∈ U1 and v ∈ U , if

(u, v) ∈ R then v ∈ U1. Let u ∈ U1, v ∈ U , and (u, v) ∈ R; that is, u− ⊆ v. Let

ϕ ∈ 1. By M4, Lϕ ∈ 1 and, therefore, Lϕ ∈ u, implying ϕ ∈ v. �

Now we are ready for the proofs of Theorem 3.1 and Proposition 3.9.

Proof of Theorem 3.1 Assume that Ŵ 6⊢C ϕ. Then Ŵ ∪ {¬ϕ} is C,Ŵ-consistent,

and, by Proposition 2.3 and Theorem 2.5, for some u ∈ UŴ
C , (MŴ

C , u) |H ¬ϕ. By

Lemma 4.3, the connected component of MŴ
C containing u is cluster-decomposable,

and it does not satisfy ϕ. �

Proof of Proposition 3.9 In the case of S4 ⊆ Ŵ, each connected component

M = 〈U, R, I 〉 of MŴ
C is reflexive and transitive (cf. the proofs of [2], Theorem 6.7,

p. 120, and [2], Theorem 6.9, p. 120), and the proof follows from Lemma 4.3. �

Notes

1. It easily follows that C is contained in every logic characterized by a subclass of CD .

2. Cluster-decomposable Kripke interpretations are convergent.

3. That is, if Ŵ ⊢C ϕ, then each cluster-decomposable Kripke model of Ŵ satisfies ϕ.
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