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Finiteness Axioms on
Fragments of Intuitionistic Set Theory

Riccardo Camerlo

Abstract It is proved that in a suitable intuitionistic, locally classical, version
of the theory ZFC deprived of the axiom of infinity, the requirement that every
set be finite is equivalent to the assertion that every ordinal is a natural number.
Moreover, the theory obtained with the addition of these finiteness assumptions
is equivalent to a theory of hereditarily finite sets, developed by Previale in “In-
duction and foundation in the theory of hereditarily finite sets.” This solves some
problems stated there. The analysis is undertaken using for each of these results
a limited fragment of the relevant theory.

1 Introduction

In [5], the author develops an intuitionistic theory of hereditarily finite sets HS,
whose axiomatization will be recalled in Section 2. In this theory sets are built start-
ing with the empty set with two operations for adding and removing one element at a
time; it has as primitive notions the membership relation and its transitive closure. It
is based on an induction axiom schema, essentially due to [3], of arithmetical flavor.
The author then compares this with other theories, in particular, an intuitionistic, lo-
cally classical version ZFCint

− Inf of ZFC deprived of the axiom of infinity. He
inquires about the equivalence in ZFCint

− Inf of two principles: every set is finite
(V ⊆ Fin) and every ordinal number is a natural number (Ord ⊆ Nat), where ordi-
nals are defined as those transitive sets all of whose members are transitive. Finally,
after remarking that HS extends ZFCint

− Inf + (V ⊆ Fin) + (Ord ⊆ Nat), he asks
the question of their equivalence. In fact, these questions are raised after pointing
out that the usual arguments for these equivalences in the corresponding classical
theories involve an explicit use of the excluded middle.

This paper is dedicated to answering in the affirmative all these questions by
developing alternative—though rather straightforward—arguments which are fully
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justified in the theories under consideration. The presentation is self-contained. It is
based on the investigations on this subject carried out in [2] and [4].

In order to gauge the strength of the theories used to establish the equivalences,
we will start in Section 3 with a rather detailed discussion of a basic theory AS,
developing in it a good chunk of set theory.

Section 4 discusses the principle of ∈-induction Fint. With this schema a good
amount of the usual arithmetics of ordinal and natural numbers can be carried out.
However, here no efforts will be made to obtain general properties, rather the focus
will be to get those facts to be used in the proof of the main results.

Section 5 deals with finiteness principles and answers two of the questions of [5]
by showing that AS + Fint

+ (V ⊆ Fin) proves both Ord ⊆ Nat and the induction
axiom schema of HS. Whereas the former statement admits a direct proof, the latter
will be established by describing the complexity of the construction of each set with
the assignment of a natural number and then using an induction on this number.

Finally, Section 6 introduces the power set axiom P. This allows to define
the cumulative hierarchy of sets and to settle the last question by showing that
AS + Fint

+ P + (Ord ⊆ Nat) proves V ⊆ Fin.
The notation used will be standard, with the convention that in a substitution A(t)

the bound variables of A do not occur in t . Moreover, whenever there will be the
need of introducing a variable to be used also as a bound variable, it will be assumed
that this does not occur in the expressions already considered. Also, when writing a
formula A as A(x, y, . . .) no implicit assumptions will be made on the free variables
of A.

2 The Theory HS

Theory HS has been introduced and studied in [5]. It is an intuitionistic theory of
hereditarily finite sets. The language of HS consists of

1. a constant symbol ∅ (empty set);
2. binary function symbols W, L (with and less);
3. binary relation symbols ∈, <.

The value of W, L on the pair (x, y) is denoted with Wy x, L y x , respectively.
The nonlogical axioms of HS are

S.1 u /∈ ∅;
S.2 u ∈ Wy x ↔ u ∈ x ∨ u = y;
S.3 u ∈ L y x ↔ u ∈ x ∧ u 6= y;
S.4 ∀u (u ∈ x ↔ u ∈ y) → x = y;
S.5 u 6< ∅;
S.6 u < Wy x ↔ u < x ∨ u ≤ y;
S.7 (principle of induction) for every formula A:

A(∅) ∧ ∀x, y (A(x) ∧ A(y) ∧ y /∈ x → A(Wy x)) → ∀x A(x).

Note that the subpremise y /∈ x in S.7 is not irrelevant, as the instance y ∈ x ∨ y /∈ x
of excluded middle is not available as an axiom, though it turns out to be provable as
is A ∨ ¬A for any 10-formula A.
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3 The Theory AS

Theory AS (absolute set theory) is an intuitionistic first-order theory with equality.
The language of AS consists just of the binary relation symbol ∈. The nonlogical
axioms are
A.1 x ∈ y ∨ x /∈ y;
A.2 for every formula B, ∀y (B(y) ∨ ¬B(y)) → ∃y ∈ x B(y) ∨ ¬∃y ∈ x B(y);
A.3 ∀u (u ∈ x ↔ u ∈ y) → x = y;
A.4 ∃z ∀u u /∈ z;
A.5 ∃z ∀u (u ∈ z ↔ u = x ∨ u = y);
A.6 ∃z ∀u (u ∈ z ↔ ∃y ∈ x u ∈ y);
A.7 for every formula A,

∀u ∈ x ∃!v A(u, v) → ∃z (∀u ∈ x ∃v ∈ z A(u, v) ∧ ∀v ∈ z ∃u ∈ x A(u, v)).

A few remarks may be useful here. Axioms A.1, A.2 are rather strong assumptions
which, with the aid of A.3, imply the decidability of every bounded formula, mak-
ing the theory locally classical (see Corollary 3.2 below). The fact that in AS it is
possible to decide whether an element belongs to a set gives this theory quite a dif-
ferent flavor from other well-known intuitionistic set theories. Note, however, that
HS proves A.1 and A.2 (as well as the other axioms of AS—see [5]), so any theory
comparable with HS needs to be quite strong. Axioms A.3–A.7 are extensional-
ity, empty set, (unordered) pair, union, and replacement, respectively. Note that, by
extensionality, the sets z whose existence is postulated in A.4–A.7 are unique.

If A is a formula, we say that A is determined relative to a theory T if T ` A∨¬A.
Reference to T will be omitted when the context is unambiguous.

Definitions and propositions of this section refer to AS and to extensions by defi-
nitions of AS that will be introduced throughout.

Proposition 3.1 Let A be a formula; suppose that either A is atomic or it is of one
of the forms ¬B, Bγ C, Qy ∈ x B(y) where γ is a propositional connective, Q is a
quantifier, and B, C are determined formulas. Then A is determined.

Proof If A is x ∈ y, the assertion is A.1. If A is ¬B, Bγ C, ∃y ∈ x B(y),
∀y ∈ x B(y), then use logical rules, the hypotheses on B, C , and A.2. If A is
x = y, then use extensionality and apply the preceding part of this proof. �

Corollary 3.2 (Excluded middle for bounded formulas) For each bounded formula
A, the formula A ∨ ¬A is a theorem.

Proof By metamathematical induction on A, using Proposition 3.1. �

Proposition 3.3 (Separation scheme) Let A(y) be a formula for which ∀y (A(y)
∨ ¬A(y)). Then ∃z ∀u (u ∈ z ↔ u ∈ x ∧ A(u)).

Proof By A.2 one has ∃y ∈ x A(y) ∨ ¬∃y ∈ x A(y). If there is y ∈ x such
that A(y), let C(u, v) be the formula (A(u) ∧ v = u) ∨ (¬A(u) ∧ v = y). Then
∀u ∃!v C(u, v); by replacement ∃z (∀u ∈ x ∃v ∈ z C(u, v)∧∀v ∈ z ∃u ∈ x C(u, v)).
Hence, u ∈ z ↔ u ∈ x ∧ A(u). If ¬∃y ∈ x A(y), apply the axiom of empty set. �

3.1 Extensions by definitions In the theory AS several definitions of new relation
and function symbols will be introduced. A definition is called determined if its
defining formula satisfies excluded middle. Note the following important fact.
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Proposition 3.4 Let T be a theory with respect to which equality is determined.
Then the definitions of function symbols are determined.

Proof Let z = F(Ex) ↔ A(Ex, z) be the definition of the n-ary function symbol F .
This means that

∀x1, . . . , xn ∃!z A(Ex, z). (1)

Thus, given x1, . . . , xn, y, let z satisfy (1). Being equality determined, we can dis-
tinguish cases y = z, y 6= z, obtaining A(Ex, y), ¬A(Ex, y), respectively. �

In order to be able to use Proposition 3.1 for the extended language, we allow a new
definition only if determined.

Proposition 3.5 Let AS+ be an extension of AS by determinate definitions. Then,
for any bounded formula A of the relative language, A ∨ ¬A is a theorem of AS+.

Proof By metamathematical induction on A nested in a metamathematical induc-
tion on the number of definitions. If A is atomic the assertion follows from Propo-
sition 3.1 or the meaning of determinate definition. Otherwise, argue as in Proposi-
tion 3.1. �

Thus it will be possible to still denote by AS any extension of AS by determined
definitions.

3.2 Basic development of the theory We begin here to develop the part of the
theory AS that will be needed for the main results. Most proofs will be standard
verifications and will therefore be omitted.

Definition 3.6

1. For each formula A(u, Ey) such that ∀Ey ∀u (A(u, Ey)∨¬A(u, Ey)) is a theorem,
z = {u ∈ x | A(u, Ey)} ↔ ∀u (u ∈ z ↔ u ∈ x ∧ A(u, Ey)). Existence is
by Proposition 3.3; uniqueness by extensionality. This is the definition of a
function symbol of the form F(x, Ey).

2. ∅ = {u ∈ x | u 6= u}.
3. L y x = {u ∈ x | u 6= y}.
4. z = {x, y} ↔ ∀u (u ∈ z ↔ u = x ∨ u = y). Existence by axiom of pairing;

uniqueness by extensionality.
5. {x} = {x, x}.
6. z =

⋃
x ↔ ∀u (u ∈ z ↔ ∃y ∈ x u ∈ y). Existence by the axiom of union;

uniqueness by extensionality.
7. x ∪ y =

⋃
{x, y}.

8. Wy x = x ∪ {y}.
9. Sx = Wx x .

10. x ∩ y = {u ∈ x | u ∈ y}.
11. x − y = {u ∈ x | u /∈ y}.
12. (x, y) = {{x}, {x, y}}.
13. OP(z) ↔ ∃x ∈

⋃
z ∃y ∈

⋃
z z = (x, y).

14. x ⊆ y ↔ ∀z ∈ x z ∈ y.
15. x ⊂ y ↔ x ⊆ y ∧ x 6= y.
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Proposition 3.7

(a) u /∈ ∅.
(b) u ∈ Wy x ↔ u ∈ x ∨ u = y.
(c) u ∈ L y x ↔ u ∈ x ∧ u 6= y.
(d) {x} = Wx∅.
(e) {x, y} = Wy{x}.
(f) x ⊂ y → ∃z ∈ y z /∈ x.
(g) x ⊆ y ∧ y − x 6= ∅ → x ⊂ y.
(h) y ∈ x ↔ Wy x = x.
(i) y /∈ x ↔ L y x = x.
(j) y ∈ x ↔ Wy L y x = x.
(k) y /∈ x ↔ L y Wy x = x.
(l) (x, y) = (u, v) → x = u ∧ y = v.

Proof
(f) Apply A.1, A.2, and extensionality.

(j) From the instance u = y∨u 6= y of excluded middle, u ∈ x → (u ∈ x∧u 6= y)
∨ u = y follows. Then

y ∈ x → ∀u ((u ∈ x ∧ u 6= y) ∨ u = y ↔ u ∈ x)

→ ∀u (u ∈ Wy L y x ↔ u ∈ x)

→ Wy L y x = x .

The converse holds as y ∈ Wy L y x .

(k) We have

y /∈ x → ∀u ((u ∈ x ∨ u = y) ∧ u 6= y ↔ u ∈ x)

→ ∀u (u ∈ L y Wy x ↔ u ∈ x)

→ L y Wy x = x .

The converse obtains as y /∈ L y Wy x .

(l) A very short proof uses the fact that, by Proposition 3.1, it is possible to distin-
guish cases x = y ∨ u = v, x 6= y ∧ u 6= v. However, there is also a proof that does
not appeal to any instance of excluded middle (see [1]). �

Definition 3.8

x = π1(z) ↔ ∃y ∈
⋃

z z = (x, y) ∨ (¬OP(z) ∧ x = ∅);
y = π2(z) ↔ ∃x ∈

⋃
z z = (x, y) ∨ (¬OP(z) ∧ y = ∅).

Existence is by the (determinate) definition of OP; uniqueness by Proposition 3.7(l).
For a(y) a term, z = {a(y) | y ∈ x} ↔ ∀u (u ∈ z ↔ ∃y ∈ x u = a(y));

existence is by replacement, uniqueness from extensionality.

Proposition 3.9

(a) π j ((x1, x2)) = x j .
(b) OP(z) → (π1(z), π2(z)) = z.
(c) ∃z ∀u (u ∈ z ↔ ∃x ∈ v ∃y ∈ w u = (x, y)).
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Definition 3.10

1. z = v × w ↔ ∀u (u ∈ z ↔ ∃x ∈ v ∃y ∈ w u = (x, y)). Existence by
Proposition 3.9(c); uniqueness by extensionality.

2. Rel(r) ↔ ∀z ∈ r OP(z).
3. Dom(r) = {x ∈

⋃ ⋃
r | ∃y ∈

⋃ ⋃
r (x, y) ∈ r}.

4. Rng(r) = {y ∈
⋃ ⋃

r | ∃x ∈
⋃ ⋃

r (x, y) ∈ r}.
5. r−1

= {(π2(z), π1(z)) | z ∈ r}.
6. Fun(g) ↔ Rel(g) ∧ ∀x, y ∈ g (π1(x) = π1(y) → π2(x) = π2(y)).
7. z = g(x) ↔ ((¬Fun(g) ∨ x /∈ Dom(g)) ∧ z = ∅) ∨ (Fun(g) ∧ x ∈ Dom(g)

∧ (x, z) ∈ g). Existence by properties of symbols involved; uniqueness by
definition of Fun.

8. g � x = {z ∈ g | π1(z) ∈ x}.
9. Inj(g) ↔ Fun(g) ∧ ∀x, y ∈ Dom(g) (g(x) = g(y) → x = y).

10. Bij(g, x, y) ↔ Inj(g) ∧ Dom(g) = x ∧ Rng(g) = y.
11. Trans(x) ↔ ∀y ∈ x y ⊆ x .

Proposition 3.11

(a) Rel(r) ↔ r ⊆ Dom(r) × Rng(r).
(b) For A(u, v) a formula, ∀u ∈ x ∃!v A(u, v) → ∃g (Fun(g) ∧ Dom(g) =

x ∧ ∀u ∈ x A(u, g(u))).

Proof (b) Assuming the premise ∀u ∈ x ∃!v A(u, v) and letting B(u, r) be the
formula OP(r) ∧ π1(r) = u ∧ A(u, π2(r)), one first gets ∀u ∈ x ∃!r B(u, r). By
replacement, ∃g (∀u ∈ x ∃r ∈ g B(u, r) ∧ ∀r ∈ g ∃u ∈ x B(u, r)). This g
works. �

Proposition 3.12

(a) Trans(x) ∧ Trans(y) → Trans(x ∩ y) ∧ Trans(x ∪ y).
(b) ∀x ∈ z Trans(x) → Trans(

⋃
z).

(c) Trans(∅).
(d) Trans(x) → Trans(Sx).

4 The Principle of ∈-induction

Principle of ∈-induction constitutes a natural constructive version of foundation
scheme.(
Fint) For A any formula, ∀x (∀y ∈ x A(y) → A(x)) → ∀x A(x).

In this section we work in the theory AS + Fint (or extensions by definitions of
it).

4.1 Ordinal and natural numbers

Definition 4.1

1. Ord(x) ↔ Trans(x) ∧ ∀y ∈ x Trans(y).
2. Suc(x) ↔ Ord(x) ∧ ∃y ∈ x x = Sy.
3. Lim(x) ↔ Ord(x) ∧ x 6= ∅ ∧ ¬Suc(x).
4. Nat(x) ↔ Ord(x) ∧ ¬Lim(x) ∧ ∀y ∈ x ¬Lim(y).
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Proposition 4.2

(a) Ord(x) → ∀y ∈ x Ord(y).
(b) Ord(x) ∧ Ord(y) → Ord(x ∩ y) ∧ Ord(x ∪ y).
(c) Ord(∅).
(d) Ord(x) → Ord(Sx).
(e) ∀x ∈ z Ord(x) → Ord(

⋃
z).

(f) Ord(x) → ∀u, v, w ∈ x (u ∈ v ∈ w → u ∈ w).
(g) Nat(∅).
(h) Nat(x) → ∀y ∈ x Nat(y).
(i) Nat(x) → Nat(Sx).

Note that the proof of Proposition 4.2 does not require the use of Fint.

Proposition 4.3

(a) x /∈ x.
(b) ¬x ∈ y ∈ x.
(c) Sx = Sy → x = y.
(d) Ord(x) → ∀u, v ∈ x (u ∈ v ∨ u = v ∨ v ∈ u).
(e) Ord(x) → ∀z (z ⊆ x ∧ z 6= ∅ → ∃u ∈ z u ∩ z = ∅).
(f) Ord(x) ∧ Ord(y) → x ∈ y ∨ x = y ∨ y ∈ x.
(g) Ord(x) ∧ Ord(y) → (x ⊂ y ↔ x ∈ y).
(h) Ord(x) → ∅ ∈ Sx.
(i) Ord(v) ∧ Ord(w) ∧ v ∈ w → Sv ∈ Sw.
(j) Nat(x) ∧ Nat(y) → Nat(x ∩ y) ∧ Nat(x ∪ y).

Proof (a) Apply ∈-induction with A the formula x /∈ x .

(b) By ∈-induction it is enough to observe that ∀z ∈ x ∀y ¬z ∈ y ∈ z → ¬∃v x
∈ v ∈ x .

(c) Assuming Sx = Sy, by (a) and (b) x /∈ y /∈ x ; the result then follows by
extensionality.

(d) Let A(u, v) be the formula u ∈ v ∨ u = v ∨ v ∈ u and assume Ord(x) in order
to prove ∀u, v (u ∈ x → (v ∈ x → A(u, v))). By ∈-induction it is enough to show

∀y ∈ u ∀v (y ∈ x → (v ∈ x → A(y, v))) → ∀v (u ∈ x → (v ∈ x → A(u, v))).

Assume thus ∀y ∈ u ∀v (y ∈ x → (v ∈ x → A(y, v))), u ∈ x with the
aim of proving ∀v ∈ x A(u, v). By ∈-induction again, it is enough to obtain
∀z ∈ v (z ∈ x → A(u, z)) → (v ∈ x → A(u, v)), which means to assume
∀z ∈ v (z ∈ x → A(u, z)), v ∈ x and to prove A(u, v). By assumptions,
∀y ∈ u A(y, v) ∧ ∀z ∈ v A(u, z); using this and Proposition 3.1, the proof can be
completed by distinguishing cases

∃y ∈ u (y = v ∨ v ∈ y), ∃z ∈ v (u ∈ z ∨ u = z), ∀y ∈ u y ∈ v ∧ ∀z ∈ v z ∈ u,

corresponding by Proposition 4.2(f) and extensionality to

v ∈ u, u ∈ v, u = v.
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(e) By ∈-induction we can assume

∀y ∈ x (Ord(y) → ∀z (z ⊆ y ∧ z 6= ∅ → ∃u ∈ z u ∩ z = ∅)),

Ord(x), z ⊆ x ∧ z 6= ∅

in order to prove ∃u ∈ z u ∩ z = ∅. By Proposition 3.1 we can distinguish cases
∃y ∈ x z ∩ y 6= ∅, ∀y ∈ x z ∩ y = ∅. If there is y ∈ x such that z ∩ y 6= ∅,
by inductive hypothesis there exists u ∈ z ∩ y with u ∩ z ∩ y = ∅ and it follows
u ∩ z = ∅: indeed, if r ∈ u ∩ z then r ∈ y too. If ∀y ∈ x z ∩ y = ∅ then ∃!r r ∈ z;
indeed, if r ∈ z ∧ s ∈ z, using r ∈ s ∨ s ∈ r ∨r = s the options r ∈ s, s ∈ r are ruled
out by the corresponding contradictions z ∩ s 6= ∅, z ∩ r 6= ∅. By (a) one deduces
r ∩ z = ∅.

(f) Apply (d) to the ordinal Sx ∪ Sy.

(j) By (f) and (g), x ∩ y = x ∨ x ∩ y = y; similarly, x ∪ y = x ∨ x ∪ y = y. �

Propositions 4.2(f) and 4.3(a), (d), (e) state that every ordinal is well ordered by ∈.
Note that using transitive closures the conclusion of Proposition 4.3(e) can be shown
to hold for any nonempty set z.

Definition 4.4 y = Px ↔ (Suc(x) ∧ x = Sy) ∨ (¬Suc(x) ∧ y = ∅). Existence
by (determinate) definition of Suc; uniqueness follows from Proposition 4.3(c).

Proposition 4.5 Ord(x) → Ord(Px).

Proposition 4.6 (Principles of induction)

(a) (Principle of foundation on ordinals) For A a formula,

∀x (Ord(x) → A(x) ∨ ¬A(x))

→ (∃x (Ord(x) ∧ A(x)) → ∃x (Ord(x) ∧ A(x) ∧ ∀y ∈ x ¬A(y))).

(b) (Principle of transfinite induction) For A a formula,

∀x (Ord(x) ∧ ∀y ∈ x A(y) → A(x)) → ∀x (Ord(x) → A(x)).

(c) (Principle of transfinite induction by cases) For A a formula,

A(∅) ∧ ∀x (Ord(x) ∧ A(x) → A(Sx))

∧ ∀x (Lim(x) ∧ ∀y ∈ x A(y) → A(x)) → ∀x (Ord(x) → A(x)).

(d) (Principle of Nat-induction) For A a formula,

A(∅) ∧ ∀x (Nat(x) ∧ A(x) → A(Sx)) → ∀x (Nat(x) → A(x)).

(e) (Principle of course of values Nat-induction) For A a formula,

∀x (Nat(x) ∧ ∀y ∈ x A(y) → A(x)) → ∀x (Nat(x) → A(x)).

Proof
(a) Assume ∀x (Ord(x) → A(x) ∨ ¬A(x)) and let x be such that Ord(x) ∧ A(x).
Distinguish cases ∀y ∈ x ¬A(y), ¬∀y ∈ x ¬A(y). If ∀y ∈ x ¬A(y) then
Ord(x) ∧ A(x) ∧ ∀y ∈ x ¬A(y). So suppose ¬∀y ∈ x ¬A(y). Then, by the
hypotheses and using A.2, one gets ∃y ∈ x A(y). Let z = {y ∈ x | A(y)} 6= ∅.

By Proposition 4.3(e), there is u ∈ z such that u ∩ z = ∅; then Ord(u) ∧ A(u).
Finally, if y ∈ u then ¬A(y), completing the proof.
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(b) Assume the premise ∀x (Ord(x) ∧ ∀y ∈ x A(y) → A(x)) and prove the
conclusion ∀x (Ord(x) → A(x)) by ∈-induction.

(c) The asserted schema is equivalent to

A(∅) ∧ ∀x (Ord(x) ∧ Suc(x) ∧ A(Px) → A(x))∧

∧ ∀x (Lim(x) ∧ ∀y ∈ x A(y) → A(x)) → ∀x (Ord(x) → A(x))

which holds by the principle of transfinite induction.

(d) Use (b).

(e) The equivalent form ∀x (∀y ∈ x (Nat(y) → A(y)) → (Nat(x) → A(x)))
→ ∀x (Nat(x) → A(x)) is a particular case of ∈-induction. �

In the sequel some arithmetical facts about natural numbers will be helpful. However,
it will not be necessary to develop arithmetics entirely: the following mild properties
will be enough.

Proposition 4.7

(a) Nat(x) → ¬∃y, g (y ⊂ x ∧ Bij(g, x, y)).
(b) Nat(w) → (Nat(z) ∧ Bij(p, z, x) ∧ Bij(g, w, y) ∧ x ⊂ y → z ∈ w).
(c) Nat(x) → (y ⊆ z ∧ Bij(g, x, z) → ∃v, p (Nat(v) ∧ Bij(p, v, y))).
(d) Nat(x) → (Nat(y) ∧ Bij(p, x, u) ∧ Bij(g, y, v) →

∃q, w (Nat(w) ∧ Bij(q, w, u ∪ v))).
(e) Nat(x) → (Nat(y) ∧ Bij(p, x, u) ∧ Bij(g, y, v) →

∃q, w (Nat(w) ∧ Bij(q, w, u × v))).
(f) Nat(y) → (x 6= ∅ ∧ Bij(g, y, x) ∧ ∀u ∈ x Ord(u) →

∃u ∈ x ∀v ∈ x (v ∈ u ∨ v = u)).

Proof By Nat-induction. For (d) note that it is not restrictive to assume u, v disjoint.
�

4.2 Transitive closure, primitive recursion

Proposition 4.8 (Transitive closure)

∃!z (x ⊆ z ∧ Trans(z) ∧ ∀y (x ⊆ y ∧ Trans(y) → z ⊆ y)).

Proof Let A(x, z) be the formula x ⊆ z ∧ Trans(z) ∧ ∀y (x ⊆ y ∧ Trans(y)
→ z ⊆ y). Since A(x, z) ∧ A(x, w) → z = w, uniqueness is immediate. Let
B(x, z) abbreviate

x ⊆ z ∧ Trans(z) ∧ ∀r ∈ z ∃v ∃p (Nat(v) ∧ Fun(p)

∧ Dom(p) = Sv ∧ r = p(∅) ∧ ∀q ∈ v p(q) ∈ p(Sq) ∧ p(v) ∈ x).

It is shown B(x, z) → A(x, z). Assume to this aim B(x, z), so that in particular
x ⊆ z ∧ Trans(z). First, by Nat-induction,

Nat(v) → (Fun(p) ∧ Dom(p) = Sv ∧ s = p(∅)

∧ ∀q ∈ v p(q) ∈ p(Sq) ∧ p(v) ∈ x → s ∈ z). (2)
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It remains to prove ∀y (x ⊆ y ∧ Trans(y) → z ⊆ y). Assume x ⊆ y ∧ Trans(y), to
show ∀r ∈ z r ∈ y and let r ∈ z, to obtain r ∈ y. It is then enough to prove

Nat(v) → (s ∈ z ∧ Fun(p) ∧ Dom(p) = Sv ∧ s = p(∅)

∧ ∀q ∈ v p(q) ∈ p(Sq) ∧ p(v) ∈ x → s ∈ y)

which is obtained by Nat-induction using (2) in the induction step. In particular, we
have now B(x, z) ∧ B(x, w) → z = w.

To conclude the proof it is then enough to show ∃z B(x, z); this is achieved by
∈-induction, that is, assuming ∀u ∈ x ∃q B(u, q) to obtain ∃z B(x, z). By the
hypothesis of ∈-induction we have ∀u ∈ x ∃!q B(u, q); thus, by replacement, there
is w such that

∀u ∈ x ∃v ∈ w B(u, v) ∧ ∀v ∈ w ∃u ∈ x B(u, v).

If z = x ∪
⋃

w then B(x, z), completing the proof. �

Definition 4.9

z = TC(x) ↔ x ⊆ z ∧ Trans(z) ∧ ∀y (x ⊆ y ∧ Trans(y) → z ⊆ y).

Existence and uniqueness are stated in Proposition 4.8.

Proposition 4.10 Trans(x) ↔ TC(x) = x.

Proposition 4.11 TC(y) = y ∪
⋃

{TC(x) | x ∈ y}.

Proof First note that transitivity of the right-hand side of the equation is the unique
interesting claim of the proposition, since the other two properties are immediate.

Let w = {TC(x) | x ∈ y}. If r ∈ y, then r ⊆ TC(r) ∈ w; thus
r ⊆ TC(r) ⊆

⋃
w. If r ∈

⋃
w, then there is x ∈ y such that r ∈ TC(x);

from Trans(TC(x)) it follows r ⊆ TC(x), hence r ⊆
⋃

w again. �

Proposition 4.12 (Induction on transitive closure) Let A(x) be a formula. Then

∀x (∀y ∈ TC(x) A(y) → A(x)) → ∀x A(x).

Proof Assume the premise ∀x (∀y ∈ TC(x) A(y) → A(x)), in order to prove
∀x ∀y ∈ TC(x) A(y). This will do as x ∈ TC({x}).

By ∈-induction it is enough to obtain ∀w ∈ x ∀y ∈ TC(w) A(y) → ∀y ∈ TC(x)
A(y). Assuming also ∀w ∈ x ∀y ∈ TC(w) A(y), one gets ∀w ∈ x A(w). Thus
∀y ∈ x ∪

⋃
{TC(w) | w ∈ x} A(y). By Proposition 4.11 this gives the claim. �

Proposition 4.13 (Definition by primitive recursion) Let G be an n+2-ary function
symbol. It is possible to define, in a unique way, an n + 1-ary function symbol F in
such a way that the formula

F(Ex, y) = G(Ex, y, {(r, F(Ex, r)) | r ∈ TC(y)}) (3)

is a theorem of the theory obtained from AS+Fint (or some extension of it) by adding
the defining axiom of F.

Proof Let A(Ex, y, z, g) be the formula

Fun(g) ∧ Dom(g) = TC(y) ∧ z = G(Ex, y, g)

∧ ∀w ∈ TC(y) g(w) = G(Ex, w, g � TC(w)).
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Proving ∀x1, . . . , xn, y ∃!z ∃g A(Ex, y, z, g) it will yield the existence and uniqueness
conditions to define

z = F(Ex, y) ↔ ∃g A(Ex, y, z, g); (4)

more precisely, we are going to show{
A(Ex, y, z, g) ∧ A(Ex, y, r, p) → z = r ∧ g = p
∀y ∃z, g A(Ex, y, z, g).

First we remark that

A(Ex, y, z, g) ∧ w ∈ TC(y) → A(Ex, w, g(w), g � TC(w)). (5)

Now we are going to prove A(Ex, y, z, g) ∧ A(Ex, y, r, p) → z = r ∧ g = p by
induction on TC(y). Thus suppose ∀w ∈ TC(y) (A(Ex, w, u, q) ∧ A(Ex, w, v, s)
→ u = v ∧ q = s) and assume A(Ex, y, z, g) ∧ A(Ex, y, r, p) in order to show
z = r ∧ g = p. Since we have z = G(Ex, y, g) ∧ r = G(Ex, y, p) it is enough
to obtain g = p; as Dom(g) = Dom(p) = TC(y), this will consist in showing
∀w ∈ TC(y) g(w) = p(w). By the assumptions and what was observed earlier, for
w ∈ TC(y), we have A(Ex, w, g(w), g � TC(w)) ∧ A(Ex, w, p(w), p � TC(w)). By
induction hypothesis, g(w) = p(w).

Then we show ∃z, g A(Ex, y, z, g) by induction on TC(y), so assume

∀w ∈ TC(y) ∃u, p A(Ex, w, u, p).

By what was already observed, the pair (u, p) is unique; so, in particular,

∀w ∈ TC(y) ∃!u ∃!p A(Ex, w, u, p).

From Proposition 3.11(b) there is g such that

Fun(g) ∧ Dom(g) = TC(y) ∧ ∀w ∈ TC(y) ∃!p A(Ex, w, g(w), p).

So the existence condition will follow from A(Ex, y, G(Ex, y, g), g), which is proved
by obtaining ∀v ∈ TC(y) g(v) = G(Ex, v, g � TC(v)). Given v ∈ TC(y), let pv

be the unique object such that A(Ex, v, g(v), pv), so that g(v) = G(Ex, v, pv); so it
remains to prove g � TC(v) = pv . Let r ∈ Dom(pv) = TC(v). By (5) it follows
A(Ex, r, pv(r), pv � TC(r)). So, by the uniqueness part of this proof, pv(r) = g(r).

We have thus justified the definition introduced in (4). This definition satisfies (3).
Uniqueness uses again induction on the transitive closure. �

Corollary 4.14 Let G be an n + 2-ary function symbol. It is possible to define in a
unique way an n + 1-ary function symbol F in such a way that the formula

F(Ex, y) = G(Ex, y, {(r, F(Ex, r)) | r ∈ y})

is a theorem of the theory obtained from AS+Fint (or some extension of it) by adding
the defining axiom of F.

Proof Let H be the n + 2-ary function symbol defined by H(Ex, y, g) =

G(Ex, y, g � y) and apply Proposition 4.13. �
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4.3 Ranks

Definition 4.15 rank(x) =
⋃

{Srank(y) | y ∈ x}. This is justified by Corol-
lary 4.14.

Proposition 4.16

(a) Ord(rank(x)).
(b) Ord(x) ↔ rank(x) = x.

Proof (a) By ∈-induction.

(b) The forward implication by transfinite induction; the converse by (a). �

5 The Axiom of Finiteness

The axiom of finiteness V ⊆ Fin asserts that every set is in bijection with some
natural number:
(V ⊆ Fin) ∃y, g (Nat(y) ∧ Bij(g, y, x)).

In this section we work in AS + Fint
+ (V ⊆ Fin) (or extensions by definitions).

Proposition 5.1 ∃!y ∃g (Nat(y) ∧ Bij(g, y, x)).

Proof By V ⊆ Fin and Proposition 4.7(a). �

Theory AS + Fint is already enough to settle the first problem from [5]. Let
Ord ⊆ Nat) Ord(x) → Nat(x)

be the assertion stating that every ordinal is a natural number.

Theorem 5.2 AS + Fint
+ (V ⊆ Fin) ` Ord ⊆ Nat.

Proof Assume Ord(x). By finiteness, there are a natural number y and a bi-
jection g from y onto x . As Nat(y) → Ord(y), by Proposition 4.3(f) we have
x ∈ y ∨ x = y ∨ y ∈ x ; it is then enough to check x /∈ y, y /∈ x . Formula
x /∈ y holds by Proposition 4.7(a). On the other hand, admitting y ∈ x , one gets
Sy ⊆ x together with Bij({u ∈ g | π2(u) ∈ Sy}

−1, Sy, {r ∈ y | g(r) ∈ Sy})
where {r ∈ y | g(r) ∈ Sy} ⊆ y ⊂ Sy. Since Nat(Sy) this contradicts Proposi-
tion 4.7(a). �

5.1 Deriving induction from finiteness The next step will be the derivation of the
induction principle S.7 of HS in AS + Fint

+ (V ⊆ Fin). The main tool will be the
function K defined below. The idea of function K is to assign to each set x a number
describing the complexity of building x from scratch by adding 1 to the sum of the
complexities of all elements of x . Under the hypotheses of S.7 the conclusion will
be drawn by course of values Nat-induction on this complexity number.

Definition 5.3

1. z = E(r, w) ↔ (Fun(w)∧ r ∈ Dom(w)∧ z = {r}×w(r))∨ ((¬Fun(w)∨ r
/∈ Dom(w)) ∧ z = ∅). Existence and uniqueness hold by the properties of
functions and relations involved.

2. I (x, w) =
⋃

{E(r, w) | r ∈ x}.
3. z = J (x, w) ↔ ∃v, g (Nat(v) ∧ Bij(g, v, I (x, w)) ∧ z = Sv). Existence by

finiteness; uniqueness by Proposition 4.7(a).
4. K (x) = J (x, {(y, K (y)) | y ∈ x}). This is justified by Corollary 4.14.
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Proposition 5.4 ∅ ∈ K (x).

Proposition 5.5 x ⊂ y → I (x, {(z, K (z)) | z ∈ x}) ⊂ I (y, {(z, K (z)) | z ∈ y}).

Proof Assume x ⊂ y and let

p ∈ I (x, {(z, K (z)) | z ∈ x}) =

⋃
{E(r, {(z, K (z)) | z ∈ x}) | r ∈ x};

hence there is r ∈ x such that
p ∈ E(r, {(z, K (z)) | z ∈ x}) = {r} × K (r) = E(r, {(z, K (z)) | z ∈ y})

⊆

⋃
{E(r, {(z, K (z)) | z ∈ y}) | r ∈ y} = I (y, {(z, K (z)) | z ∈ y});

so we can conclude I (x, {(z, K (z)) | z ∈ x}) ⊆ I (y, {(z, K (z)) | z ∈ y}).
By Proposition 3.7(f), there is q ∈ y such that q /∈ x ; moreover, by Proposi-

tion 5.4, ∅ ∈ K (q); hence

(q, ∅) ∈ {q} × K (q) = E(q, {(z, K (z)) | z ∈ y})

⊆

⋃
{E(r, {(z, K (z)) | z ∈ y}) | r ∈ y} = I (y, {(z, K (z)) | z ∈ y}).

On the other hand q /∈ x ; so ∀r ∈ x (q, ∅) /∈ E(r, {(z, K (z)) | z ∈ x}) and hence

(q, ∅) /∈
⋃

{E(r, {(z, K (z)) | z ∈ x}) | r ∈ x} = I (x, {(z, K (z)) | z ∈ x}).

Now apply Proposition 3.7(g). �

Proposition 5.6 x ⊂ y → K (x) ∈ K (y).

Proof Use Propositions 5.5, 4.7(b), and 4.3(i). �

Proposition 5.7 K ({x}) = SK (x).

Proof By definition, there are v, g such that

Nat(v) ∧ Bij(g, v, I ({x}, {(x, K (x))})) ∧ K ({x}) = Sv

where I ({x}, {(x, K (x))}) = E(x, {(x, K (x))}) = {x}×K (x) and hence g is a bijec-
tion between v and {x}× K (x). Moreover, Bij({r ∈ K (x)× ({x}× K (x)) | π1(r) =

π2(π2(r))}, K (x), {x} × K (x)). Since Nat(K (x)), by Proposition 5.1 one gets
K (x) = v, hence the claim. �

Proposition 5.8 x ∈ y → K (x) ∈ K (y).

Proof From the premise x ∈ y one has {x} ⊆ y. By the instance {x} = y ∨{x} 6= y
of excluded middle, we can distinguish cases {x} = y, {x} 6= y. If {x} = y, from
Proposition 5.7 it follows K (x) ∈ SK (x) = K ({x}) = K (y). If {x} 6= y, then
{x} ⊂ y. By Proposition 5.6, K (x) ∈ SK (x) = K ({x}) ∈ K (y). The assertion
follows as Nat(K (y)) and thus K (x) ∈ K (y). �

Now all ingredients are ready to prove the induction principle, providing the answer
of another problem raised in [5].

Theorem 5.9 (Principle of induction) Let A be a formula.

AS + Fint
+ (V ⊆ Fin)

` A(∅) ∧ ∀x, y (A(x) ∧ A(y) ∧ y /∈ x → A(Wy x)) → ∀x A(x).
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Proof Assume the premise A(∅)∧∀x, y (A(x)∧A(y)∧y /∈ x → A(Wy x)) in order
to get the conclusion ∀x A(x). Let B(z) be the formula ∀w (K (w) = z → A(w)).
Since ∀x ∃z (Nat(z) ∧ K (x) = z), to prove ∀x A(x) it is enough to show
∀z (Nat(z) → B(z)), which will be shown by course of values Nat-induction on z.
So assume Nat(s)∧∀y ∈ s B(y) in order to get B(s) that is ∀w (K (w) = s → A(w));
so assume K (w) = s too, to obtain A(w). By the instance w = ∅ ∨ w 6= ∅ of
excluded middle, we can distinguish cases w = ∅, w 6= ∅.

If w = ∅, then A(w) by the premise of the principle to be proved. If w 6= ∅,
let r ∈ w. By Proposition 3.7(j), Wr Lrw = w; moreover, Propositions 5.8 and 5.6
yield K (r) ∈ s ∧ K (Lrw) ∈ s. By inductive assumption B(K (r))∧ B(K (Lrw)) and
so A(r) ∧ A(Lrw). As r /∈ Lrw, by the premise of the principle we got A(Wr Lrw),
which means A(w). �

Remark 5.10 Since the instance y ∈ x ∨ y /∈ x of excluded middle is an axiom
of the theory AS + Fint

+ (V ⊆ Fin), clause y /∈ x in the premise of the principle
of induction can be dropped. That is, principle of induction can be equivalently
formulated as

A(∅) ∧ ∀x, y (A(x) ∧ A(y) → A(Wy x)) → ∀x A(x).

Recall from [5] that HS is an extension of AS + Fint
+ (V ⊆ Fin). Moreover,

HS is equivalent to the theory obtained removing < from the primitive vocabulary,
omitting axioms S.5 and S.6, and adding y < x ↔ y ∈ TC(x) as defining axiom
for <. Theorem 5.9 entails that the theories HS and AS + Fint

+ (V ⊆ Fin) are
actually equivalent. Thus definitions and propositions concerning any of the two
theories refer in fact to both.

6 The Power Set Axiom

Let AS + Fint
+ P be the theory obtained from AS + Fint by adding the power set

axiom
(P) ∃z ∀y (y ∈ z ↔ y ⊆ x).

In this section we work in AS + Fint
+ P. By [5], HS extends AS + Fint

+ P.

Definition 6.1

1. z = P (x) ↔ ∀y (y ∈ z ↔ y ⊆ x). Existence by the power set axiom;
uniqueness by extensionality.

2. x y
= {g ∈ P (y × x) | Fun(g)}.

3. R(x) =
⋃

{P (R(y)) | y ∈ x}. This is justified by Corollary 4.14.

Proposition 6.2 Trans(x) ↔ Trans(P (x)).

Proposition 6.3

(a) Nat(x) → (Bij(g, x, y) → ∃z, h (Nat(z) ∧ Bij(h, z, P (y)))).
(b) Nat(x) ∧ Nat(y) ∧ Bij(g, x, u) ∧ Bij(p, y, v)

→ ∃w, h (Nat(w) ∧ Bij(h, w, uv)).

Proof (a) By Nat-induction on x . Since Bij(g, ∅, y) implies y = ∅, P (y) = {∅},
the basis is readily established. Assume the inductive hypothesis for natural x and
suppose Bij(g, Sx, y). Since Bij(g � x, x, Lg(x)y), there are a natural number z and a
bijection between z and P (Lg(x)y). Moreover, Bij({(p, Wg(x) p) | p ∈ P (Lg(x)y)},
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P (Lg(x)y), {v ∈ P (y) | g(x) ∈ v}), and thus there is also a bijection between z and
{v ∈ P (y) | g(x) ∈ v}. Finally, P (Lg(x)y) ∪ {v ∈ P (y) | g(x) ∈ v} = P (y). Now
apply Proposition 4.7(d).

(b) By (a) and Proposition 4.7(e), (c). �

Proposition 6.4 Ord(x) → (y ∈ R(x) ↔ rank(y) ∈ x).

Proof By transfinite induction on x . Assume the inductive hypothesis Ord(x) ∧ ∀z
∈ x (y ∈ R(z) ↔ rank(y) ∈ z). Then we have

y ∈ R(x) ↔ ∃r ∈ x y ∈ P (R(r)) ↔ ∃r ∈ x ∀z ∈ y rank(z) ∈ r ↔

↔ ∃r ∈ x rank(y) ∈ Sr ↔ rank(y) ∈ x .

�

Proposition 6.5 Ord(y) ∧ x ∈ y → R(x) ⊂ R(y).

Proof Assuming the premise, let z ∈ R(x). By Proposition 6.4, rank(z) ∈ x
and consequently rank(z) ∈ y. By Proposition 6.4 again, z ∈ R(y). Moreover,
x ∈ R(y) − R(x). �

Proposition 6.6 Ord(x) → R(Sx) = P (R(x)).

Proof By definition R(Sx) =
⋃

{P (R(v)) | v ∈ Sx}. By Proposition 6.5, the
right-hand side of this equation is just P (R(x)). �

Proposition 6.7 Nat(x) → ∃y, g (Nat(y) ∧ Bij(g, y, R(x))).

Proof By Nat-induction on x , the basis holding as R(∅) = ∅. Admitting the
property for natural x and having R(Sx) = P (R(x)), the assertion follows from
Proposition 6.3(a). �

We are now ready to establish the following answer to the remaining question raised
in [5].

Theorem 6.8 AS + Fint
+ P + (Ord ⊆ Nat) ` V ⊆ Fin.

Proof We want to prove ∃y, g (Nat(y) ∧ Bij(g, y, x)). By Propositions 6.4 and
6.6 we derive x ∈ R(S rank(x)) = P (R(rank(x))). Thus x ⊆ R(rank(x)). By
Proposition 6.7, R(rank(x)) is finite and such is x by Proposition 4.7(c). �

To summarize, denote by ZFCint the theory AS + Fint
+ P + Inf + AC, where

(Inf) ∃x (∅ ∈ x ∧ ∀y ∈ x Sy ∈ x),
(AC) ∃g (Fun(g) ∧ Dom(g) = x ∧ ∀y ∈ x (y 6= ∅ → g(y) ∈ y))

are the axioms of infinity and choice.
We have then proved that in ZFCint

− Inf the assertions V ⊆ Fin and Ord ⊆ Nat
imply each other. Moreover, the theories HS, ZFCint

− Inf + (V ⊆ Fin) and
ZFCint

− Inf + (Ord ⊆ Nat) are all equivalent. Note, however, that our analy-
sis stressed the use of P for proving V ⊆ Fin from Ord ⊆ Nat (Theorem 6.8),
whereas the other implications (Theorems 5.2 and 5.9) did not need this principle.
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