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Propositional Proof Systems and
Fast Consistency Provers

Joost J. Joosten

Abstract A fast consistency prover is a consistent polytime axiomatized theory
that has short proofs of the finite consistency statements of any other polytime
axiomatized theory. Krajíček and Pudlák have proved that the existence of an
optimal propositional proof system is equivalent to the existence of a fast con-
sistency prover. It is an easy observation that NP = coNP implies the existence
of a fast consistency prover. The reverse implication is an open question. In this
paper we define the notion of an unlikely fast consistency prover and prove that
its existence is equivalent to NP = coNP. Next it is proved that fast consistency
provers do not exist if one considers RE axiomatized theories rather than theories
with an axiom set that is recognizable in polynomial time.

1 Introduction

There are many interesting relations between computational complexity and arith-
metic. In this paper we shall focus on one such relation that involves length of
proofs of finite consistency statements. In particular, we shall study fast consistency
provers. Basically, a fast consistency prover, facop for short, is a certain theory S that
has short proofs of the finite consistency statements of any other reasonable theory
T . We shall see precise definitions shortly.

Krajíček and Pudlák proved in [5] that if there is no fast consistency prover, then
NP 6= coNP. We shall plead that it is very unlikely that a facop can exist. It is an
open question whether the existence of a facop is actually equivalent to NP = coNP.
In Section 4 we shall define the notion of an unlikely fast consistency prover, ufacop
for short, and show that the existence of a ufacop is equivalent to NP = coNP.

Before we shall plead that the existence of a facop is unlikely, let us first specify
some definitions. In this paper, we shall always mean by the length of a proof the
number of symbols occurring in it. If S is a theory, we shall denote by S `n ϕ that
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ϕ is provable in S by a proof whose length does not exceed n. We shall denote the
formalization/arithmetization of this statement by PrS(n, pϕq). For those familiar
with formalized provability it is good to stress that there is a logarithm involved
here; that is,

PrS(x, y) := ∃π ( |π |≤x ∧ ProofS(π, y)).

Here ProofS(x, y) is a natural arithmetization of “x is the Gödel number of a proof
in S of a formula with Gödel number y”. All theories considered in this paper will be
first-order theories of some minimal strength which are sound and hence consistent.
With ConT (x) we shall denote ¬PrT (x, p0 = 1q).

If a theory T has a set of axioms which is decidable/recognizable in polynomial
time, we shall speak of a polytime theory. If ϕ is provable in S, we shall denote by
||ϕ||S the length of the shortest proof in S of ϕ. If n is a natural number, we shall
denote by n its efficient (dyadic) numeral. We are now ready to give the definition of
a fast consistency prover.

Definition 1.1 A fast consistency prover (facop) is a consistent polytime theory S
such that for any other consistent polytime theory T there is a polynomial p such
that

||ConT (n)||S ≤ p(n).

Now, why is it hard to believe in the existence of a facop? First of all, let us remark
that a facop is well defined. As, by our assumption, T is consistent, we first remark
that ConT (n) is indeed true. But ConT (n) is also provable in S. This is because there
are at most 2n many proofs whose lengths are below n. So in S all this many proofs
can be listed and combined with the observation that none of these proofs is a proof
of 0 = 1.

This brings us directly to the question of how a facop could possibly exist. For,
if T is completely arbitrary, what else can S do than just give the list of all possible
proofs and remark that none is a proof of 0 = 1? For T weaker than S it seems
conceivable that S can do some smart tricks and summarize this long list. But if T is
a lot stronger than S, it seems very strange that S would have a short way of proving
the finite consistency statements of T .

It is good to realize here that the polytime axiomatizability is not directly say-
ing anything about the proof strength of a theory. For example, a polytime theory
may contain an axiom Con(ZFC + “there exists a superhuge cardinal”) or any other
consistent large cardinal assumption.

But it seems hard to relate proof strength to the length of proofs of finite consis-
tency statements. In Section 3 we shall define a hypothetical facop S (in the proof
of Theorem 3.1). This S consists of a very weak fragment of arithmetic plus the as-
sumption that some hypothetical propositional proof system only proves tautologies.
All these ingredients seem to have little to do with proof strength.

The most tempting way to prove the nonexistence of facops is by using diagonal-
ization, that is, by using fixed points. In Section 6 we set up such an approach for
RE-facops. An RE-facop is obtained by replacing “polytime” in Definition 1.1 by
“RE”. In particular, we show that RE-facops do not exist.

It is good to mention here a result by Pudlák. In [7] and [6] he proved that for a
large class of theories T , the values ||ConT (n)||T can be bounded by a polynomial
in n.
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In addition it is good to mention that questions about the length of proofs of finite
consistency statements have an interest in themselves, not related to computational
complexity. In particular, they have a close relation to foundations of mathematics
and possible partial realizations of Hilbert’s program.

2 Preliminaries

In this section we provide the basic definitions that are needed further on in the paper.
Probably it is best to skip this section and just turn to it if necessary.

As mentioned in the introduction, in this paper we shall study a relation between
arithmetic and computational complexity. By choosing/tailoring the arithmetic lan-
guage in the right way there are straightforward correspondences.

For this reason we shall in this paper always consider theories in the language of
bounded arithmetic (see, e.g., Buss [2]). This language is an extension to the basic
language of arithmetic in that it contains symbols for the binary logarithm |x | and
for the function ω1(x). Here ω1(x) = 2|x |

2
. From now on, all arithmetic formulas in

this paper will be in the language of bounded arithmetic.
We shall employ the usual hierarchy of bounded formulas in this paper. Thus, 1b

0
is the class of formulas (in the language of bounded arithmetic) which contains all
open formulas and which is closed under all Boolean connectives and under sharply
bounded quantification. Here sharply bounded quantification is quantification of the
form ∀ x≤|t | or ∃ x≤|t |, where t is some term in the language of bounded arithmetic
that does not contain x as a variable.

Next we define1b
0 = 6b

0 = 5b
0. The6b

i+1 formulas are those obtained by closing
off the 5b

i formulas under bounded existential quantification, Boolean connectives,
and sharply bounded universal and existential quantification. The5b

i+1 formulas are
defined dually. Bounded quantification is quantification of the form ∀ x≤t or ∃ x≤t .
Again, t is some term in the language of bounded arithmetic that does not contain x
as a variable.

The language is chosen in such a way that there is a close correspondence between
computational complexity classes and definable sets. We say that a formula α(x)
defines a set of natural numbers A if x ∈ A ⇔ N |H α(x). It is not too hard to see
the following correspondences.

A is 1b
0 definable ⇒ A ∈ P.

A is 6b
1 definable ⇔ A ∈ NP.

A is 5b
1 definable ⇔ A ∈ coNP.

This correspondence is pretty straightforward and can be easily continued through all
the bounded formula complexity classes by using oracles. Note that for the complex-
ity class P we have no equivalence. In order to get an equivalence some nontrivial
mathematics has to be applied. In particular, as a consequence of Buss’s Witnessing
Theorems we have the following.

A is 1b
1(S

1
2) definable ⇔ A ∈ P.

A formula is 1b
1(S

1
2) if it is S1

2 equivalent to both a 6b
1 formula and a 5b

1 formula.
Here S1

2 is a pretty weak arithmetic theory with other than the defining axioms of the
symbols of the language of arithmetic a weak form of induction for 6b

1 formulas.
We refer the reader to [2] for details. In the rest of this paper, we shall often speak of
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1b
1(S

1
2) theories instead of polytime theories. Moreover, we assume that all theories

are consistent and contain S1
2 .

We have seen one correspondence between arithmetic and complexity by the
above definability results. Another correspondence goes via propositional proof sys-
tems as introduced by Cook and Reckhow [3]. Let us briefly give the basic definitions
and facts here.

Definition 2.1 A propositional proof system, a pps for short, is a polytime mapping
from the set of all strings onto the set of all tautologies.

Any propositional proof system we know, be it natural deduction, Gentzen, or what-
ever, can be seen as a pps by mapping a string of syntax which is not a proof in
this particular system to the tautology 1 and by mapping a string which is a proof
to the tautology it proves. Checking whether a string is a proof or not is for all
known proof systems polytime (even cubic time would suffice, as to get parsing of
context-free grammars).

An easy correspondence between propositional proof systems and complexity is
given by Theorem 2.3 which is due to Cook and Reckhow and relates the existence
of so-called super proof systems to NP = coNP.

Definition 2.2 A pps P is called super if there is a polynomial p such that

∀
Tautτ ∃ |π |<p(|τ |) P(π, τ ).

Theorem 2.3 NP = coNP if and only if there exists a super pps.

It is important to compare different pps’s to each other in terms of the size, that is,
length of the proofs, which is nothing but the total number of symbols occurring in
it. If π is a proof, we shall denote its length by |π |. This suggests a logarithmic
relation which is good: the length of a string over a finite alphabet is, under efficient
coding, linear in the binary logarithm of the code of that string.

Definition 2.4 Let P and Q be pps’s and let f be a function. We define

1. P ≥ f (x) Q := Q(π, τ ) → ∃π ′ (|π ′
| ≤ f (|π |) ∧ P(π ′, τ ));

2. P ≥ Q := for some polynomial p, P ≥p(x) Q; in this case, we say that
P polynomially simulates Q;

3. P ≡ Q := (P ≥ Q) & (Q ≥ P).

Throughout this paper we shall assume that our bounding polynomials are monotone
increasing which is not an essential assumption, but makes the proofs easier.

In all known propositional proof systems it holds that a tautology is at least as
long as any of its proofs. This does not follow from the general definition of a pps.
However, the following lemma tells us that we, for many purposes, may assume
without loss of generality that indeed a proof of a tautology is at least as long as the
tautology itself.

Lemma 2.5 For every pps P, there is a pps P ′ such that P ′
≡ P and P ′(π, τ )

→ |τ | ≤ |π |.

Proof From P we define P ′ as

P ′(π ′, τ ) :⇔ [π ′
= (πaτ)] ∧ P(π, τ )
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where a denotes concatenation. Clearly, P ≥x P ′. If now P(π, τ ), we can retrieve τ
from π in polytime, so certainly |τ | ≤ p′(π) for some polynomial p′. Consequently,
|πaτ | ≤ p(π) for some polynomial p and P ′

≥ P . �

We shall often identify a pps and its 1b
1(S

1
2) definition in bounded arithmetic. The

following definition is central to the rest of this paper.

Definition 2.6 A pps P is an optimal propositional proof system, an opps for short,
if P ≥ Q for any propositional proof system Q.

It is easy to see that a pps is optimal whenever it is super. Thus via Cook and Reck-
how’s theorem (Theorem 2.3) we get that

NP = coNP ⇒ there exists an opps.

It is an open question whether the converse implication holds.

3 Fast Consistency Provers and Optimal Propositional Proof Systems

Krajíček and Pudlák proved that the existence of an opps is equivalent to the exis-
tence of a facop. In this section we shall give a self-contained version of this proof.
The next section will then build on this proof to obtain a similar result.

Theorem 3.1 ∃ facop ⇐⇒ ∃ opps.

Before we can present a proof of this theorem, we should first mention some results
involving length of proofs and discuss some coding machinery.

Definition 3.2 A relation R is polynomially numerable in a theory T if for some
polynomial p and some formula ρ we have that

R(x) ⇔ T ` ρ(x) ⇔ T `p(|x |) ρ(x).

It is good to stress here that x denotes the efficient numeral of x so that the length of
x is logarithmic in x .

Theorem 3.3 The following are equivalent.
1. R ∈ NP;
2. R is polynomially numerable in Robinson’s arithmetic R.

Proof A proof of this theorem can be found in Pudlák [8]. The ⇐ is easy and
actually holds for any polytime axiomatized theory T . The ⇒ direction goes by
coding of computations on Turing machines. To get really as low as R here, some
additional tricks with definable cuts are needed. �

If R ∈ NP, it is definable by a 6 (even 6b
1 ) formula ρ and thus, for any (sound,

polytime axiomatized) theory T extending Q, we have that

R is polynomially numerable by ρ in Q ⇔

R is polynomially numerable by ρ in T .

Having this in mind, we can consider provable 6b
1 -completeness as expressed in the

next theorem as a formalization of the above (Theorem 3.3 plus remark).

Theorem 3.4 Let T be a1b
1(S

1
2) theory extending S1

2 . For every 6b
1 formula σ(x),

there is a polynomial p such that

S1
2 ` ∀x (σ (x) → PrT (p(|x |), pσ(ẋ)q)).
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Coding of syntax for propositional logic in arithmetic can be done in a standard way.
If ã is a sequence of zeroes and ones and ϕ( Ep) a propositional formula, there is a
1b

1(S
1
2) formula saying that ϕ(pi/(ã)i ) evaluates to one. We shall write

ã |H ϕ.

There is a5b
1 formula Taut(τ ) saying that τ(p0, . . . , pn) is a tautology. This formula

is defined as
Taut(τ ) := ∀ |a|≤(n+1) ã |H τ.

If Q is a pps, we shall denote by RFN(Q) the formalized reflection over Q, that is,
the following ∀5b

1 formula saying that all provable formulas are true.

RFN(Q) := ∀τ (∃π Q(π, τ ) → Taut(τ )).

In a sense, we can even code arithmetic (and a fortiori syntax) into propositional
logic. This is expressed in the following lemma.

Lemma 3.5 There exists a translation of 5b
1-formulas ϕ(x) in the language of

bounded arithmetic into series of propositional formulas ||ϕ||
m such that

1. the translation preserves the structure of ϕ; for example, ||χ ∧ ψ ||
m

=

||χ ||
m

∧ ||ψ ||
m , where χ and ψ are subformulas of ϕ;

2. the translation ||ϕ||
m contains variables Eq and p0, . . . , pm; instead of writ-

ing in the arithmetically correct way that ϕ is a tautology when the binary
representation ã is substituted for the pi , that is,

Taut(||ϕ||
m(Eq, Ep/ã)),

we shall use the following shorthand notation,

ã |H ||ϕ||
m
;

3. the translation is provably adequate in the following sense,

S1
2 ` ∀ |a|≤(m+1) (ϕ(a) ↔ ã |H ||ϕ||

m);

4. the translation is short in the following sense: for each ϕ there exists a poly-
nomial p such that

|(||ϕ||
m)| ≤ p(m).

Note that ||ϕ||
m and ||ϕ||T denote two completely different things. Recall that the

||ϕ||T denotes the length of the shortest proof of ϕ in T . We are confident that the
reader can keep these two notations apart. Now that all coding machinery has been
discussed, we are ready to present a proof of Theorem 3.1.

Theorem 3.1 In this proof, we shall denote by T `? ϕ the statement that ϕ is
provable in T by a proof whose length is bounded by some polynomial on the (length
of) the parameters of ϕ. Sometimes we shall have to specify the parameters to keep
the intended reading clear.

(⇒) We repeat the proof from [5] and Krajíček [4] (Theorem 14.1.4). Let S be a
facop. We define P and show that P is an opps.

P(π, τ ) := ProofS(π,Taut(τ )) or
(τ = 1 and π is not a proof in S of Taut(τ ′) for any τ ′).
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To see that P is an opps we fix some arbitrary Q and consider some π and τ such
that Q(π, τ ). By Theorem 3.3 we get that

S1
2 `? Q(π, τ ). (1)

We now define TQ := S1
2 + RFN(Q). Clearly, by (1) and by RFN(Q), we get

TQ `? Taut(τ ). Here the ? is still dependent on |π |. Once more, by Theorem 3.3,
we get for some polynomial p that

S `? PrTQ (p(|π |), pTaut(τ )q). (2)

By Theorem 3.4, for some polynomial p′ we have that

S ` ¬Taut(τ ) → PrTQ (p
′(|τ |), p¬Taut(τ )q). (3)

Combining (2) and (3), we get for some polynomial q that

S `? ¬Taut(τ ) → PrTQ (q(|π |), p0 = 1q),

or, equivalently,
S `? ConTQ (q(|π |)) → Taut(τ ).

As S is a facop, we get S `? ConTQ (q(|π |)), whence S `? Taut(τ ) and thus, P ` τ
by a proof whose length is polynomial in |π |.

(⇐) Let P be an opps. We define

S := S1
2 + RFN(P)

and shall prove that S is a facop. So let T be some 1b
1(S

1
2) theory. We should see

that ConT (x) has short proofs in S. For this purpose we define Q as follows.

Q := P + {||ConT (|x |)||m | m < ω}.

Note that, due to the logarithm, ConT (|x |) is indeed a 5b
1 formula. As P is an opps,

we get by item 4 of Lemma 3.5 that

P `? ||ConT (|x |)||m .

Here the ? refers to ‘polynomial in m’. By Theorem 3.3, we get that

S1
2 `? ∃y P(y, ||ConT (|x |)||m),

and, consequently,
S `? Taut(||ConT (|x |)||m).

In particular,
S `? ∀ |a|≤(m+1) ã |H ||ConT (|x |)||m .

For a = 2m we get via item 3 from Lemma 3.5 that

S `? ConT (m).

In other words, for some polynomial p,

||ConT (m)||S ≤ p(m),

and, indeed, S is a facop. �
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4 Unlikely Fast Consistency Provers and Unlikely Propositional Proof Systems

In the previous section we have studied facops. As a direct consequence of Theorem
3.1 we get that

NP = coNP ⇒ there exists a facop.
As mentioned before, the converse implication is an open question. In this section
we shall define an unlikely fast consistency prover, a ufacop for short, which is a par-
ticular sort of facops. We shall then prove that the existence of a ufacop is equivalent
to NP = coNP.

In order to prove this, we shall have to employ a slightly different definition of a
pps. However, in light of Lemma 2.5 this alteration is not really essential.

Definition 4.1 A pps P is a polytime mapping from the set of all strings onto the
set of all tautologies such that P(π, τ ) implies |τ | ≤ |π |.

To the best of our knowledge, there is no theorem concerning pps’s that does not
remain valid under this new definition.

Definition 4.2 An unlikely propositional proof system—an upps for short—is a
pps P such that for some polynomial p we have that

∀
pps Q P ≥p(x) Q.

Theorem 4.3 ∃ upps ⇐⇒ ∃ super pps ⇐⇒ coNP = NP.

Proof By a basic Theorem 2.3 we know that ∃ super pps ⇔ coNP = NP. We
relate the existence of an upps to the existence of a super pps by actually proving
that P is an upps ⇔ P is super.

(⇒) Let P be an upps with corresponding polynomial p. It follows that P is super.
For let τ be some tautology. Then1

P ≥p(x) P + τ, whence P `p(|τ |) τ.

(⇐) Let P be super with corresponding polynomial p. Then P is also an upps.
For let Q be an arbitrary pps. If Q(π, τ ), then, by our assumption on pps’s, we see
that |τ | ≤ |π |. As P is super, we can find π ′ with P(π ′, τ ) and |π ′

| ≤ p(|τ |). By
monotonicity of p, clearly |π ′

| ≤ p(|π |) and we see that P indeed is a ufacop. �

It is only in this proof (proof of Theorem 4.3) that we need the assumption on an
upps P that P(π, τ ) implies |π | ≤ |τ |.

We shall relate uppses to ufacops—unlikely fast consistency provers—which are
an adaptation of facops. Basically, the idea is that a ufacop is a uniform version of a
facop. That is, we swap quantifiers. For a facop S there is, for any polytime theory
T , a polynomial p such that ||ConT (n)||S ≤ p(n).

If we would simply define a ufacop S to be such that there is a polynomial p such
that for any polytime theory T we have ||ConT (n)||S ≤ p(n), it would be easy to
see that there are no ufacops. This is because the axiomatization of T could be very,
very long, so that the length of ConT (n) cannot be bounded. So we define a measure
of the complexity of T that will go into the definition of a ufacop.

Definition 4.4 If R is a relation that is decidable in time O(|x |
l) we shall call l the

decision exponent of R and write l = DecExp(R). If T is a theory with a polytime
decidable set of axioms, we denote by DecExp(T ) the decision exponent of the set
of axioms of T .
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Definition 4.5 An unlikely fast consistency prover, ufacop for short, is a 1b
1(S

1
2)

axiomatizable theory S such that there is a polynomial p such that

∀
1b

1(S
1
2 )T ∀x ||ConT (x)||S ≤ p(x l).

Here l := DecExp(T ).

Before we shall relate uppses to ufacops we first need some additional observations
on coding techniques.

Lemma 4.6 If R is a polytime relation with DecExp(R) = l, then there is a series
of propositional formulas ρn such that for some polynomial independent of R we
have

1. a ∈ R ⇔ ã |H ρn for |a|≤(n+1),
2. |ρn| = O(p(nl)).

Proof It is well known that a relation R which is decidable in time O(nl) has cir-
cuits Cn of size linear in time × space. Clearly, the space is bounded by the time,
yielding O(n2l) = O((nl)2). The circuits can be translated in the standard way to
propositional formulas which are not much larger than the circuits. All this scaling
by coding techniques can be collected in a polynomial p. �

From this lemma it follows that for any 1b
1(S

1
2) relation R, there is an l ′ such that

∀n |ρn| ≤ p(nl ′) for the ρn and p as in the lemma above. For the sake of readability
we shall assume that l = l ′. Alternatively, one could define DecExp(R) to be this
very l ′.

Lemma 4.7 Let T be a theory with a polytime set of axioms with DecExp(T ) = l.
There is a translation 〈| · |〉

m of specific 5b
1 formulas into series of propositional

formulas such that there is a fixed (independent of T ) polynomial q such that

|(〈|ConT (|x |)|〉m)| ≤ q(ml).

Proof The formula ConT (|x |) says ∀ |y|<|x | ¬ProofT (y, p0 = 1q). Here,

ProofT (y, p0 = 1q)

is as always, saying that y is a sequence (a proof) where some entries are axioms of
T . We translate the 1b

1(S
1
2) formula AxiomsT (x) using Lemma 4.6 and the rest in

the structural way as mentioned in Lemma 3.5. �

Note that this translation 〈| · |〉
m still has all the structural properties as mentioned in

Lemma 3.5. We shall in the sequel refrain from distinguishing 〈| · |〉
m and || · ||

m .

Theorem 4.8 The following are equivalent:

1. ∃ ufacop,
2. ∃ upps,
3. ∃ super pps,
4. coNP = NP.

Proof In the light of Theorem 4.3, we only need to concentrate on 1. First we show
that 1 ⇒ 3 and then we shall show that 2 ⇒ 1.
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(1 ⇒ 3) Suppose S is a ufacop. We define PS as follows:

PS(π, τ ) := ProofS(π,Taut(τ )) or
(τ = 1 and π is not a proof in S of Taut(τ ′) for any τ ′).

We shall show that PS is super. Our proof is a simplification of the proof of the
analog of this implication in Theorem 3.1. Moreover, we keep track of the explicit
polynomials here. Via Theorem 3.4 we get a polynomial q(x) such that

S ` ∀x (¬Taut(x) → PrS1
2
(q(|x |), p¬Taut(ẋ)q)) ⇔

S ` ∀x (¬Taut(x) → ∃π (|π |<q(|x |) ∧ ProofS1
2
(π, p¬Taut(ẋ)q))) ⇒

S ` ∀x (¬Taut(x) → ∃π (|π |<q ′(|x |) ∧ ProofS1
2+Taut(ẋ)(π, p0 = 1q)))

for some polynomial q ′ not so different from q ⇒

S ` ∀x (∀π (|π |<q ′(|x |) → ¬ProofS1
2+Taut(ẋ)(π, p0 = 1q)) → Taut(x)) ⇒

S ` ∀x (ConS1
2+Taut(ẋ)(q

′(|x |)) → Taut(x)). (†)

Now, as S is a ufacop, there is a polynomial p such that

||ConS1
2+Taut(τ )(q

′(|τ |))||S ≤ p((q ′(|τ |))l) (††)

where l = DecExp(S1
2 + Taut(τ )). Combining (†) and (††) we get that

S `p′(|τ |l ) Taut(τ )

for some polynomial p′. Note that p′ and q ′ are independent of τ . To conclude our
argument we only need to see that l = DecExp(S1

2 + Taut(τ )) is independent of τ .
However, to check whether x is an axiom of S1

2 + Taut(τ ), we have to check
whether x is an axiom of S1

2 or whether x = Taut(τ ). As, by the finite axiomatiz-
ability of S1

2 , we may assume that S1
2 consists of one single axiom, this procedure is

linear in |x | (and so are the corresponding circuits). So, indeed, l is independent of
τ and PS is super.

(2 ⇒ 1) So we now prove ∃ upps ⇒ ∃ ufacop. Suppose that P is an upps with
corresponding polynomial p. We claim that

S := S1
2 + RFN(P)

is a ufacop. To see this, we consider an arbitrary 1b
1(S

1
2) axiomatized theory T

with l = DecExp and estimate ||ConT (n)||S . The theory T will be related to P by
defining

Q := P + {||ConT (|x |)||m | m < ω}.

Note that, as we have a logarithm, indeed, ConT (|x |) is a5b
1 formula and by Lemma

4.7 we get that
|(||ConT (|x |)||m)| ≤ q(ml)

for some polynomial q independent of T . As P is an upps we get

P `p(q(ml )) ||ConT (|x |)||m .

By Theorem 3.3, we get some polynomial r , independent of T , such that

S `r(ml ) ∃y P(y, ||ConT (|x |)||m).

As S contains RFN(P), we can perform the following reasoning inside S. Note
that the reasoning is uniform and not dependent on particular properties of T other
than l.
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(?)
∃y P(y, ||ConT (|x |)||m) ⇒ by RFN(P)
Taut(||ConT (|x |)||m) ⇒ by definition of Taut
∀ |a|≤(m+1) ã |H ||ConT (|x |)||m ⇒

2̃m |H ||ConT (|x |)||m ⇒ by Lemma 3.5, Item 3
ConT (m)

(??)

As we mentioned, this reasoning is not dependent on T other than via

|(||ConT (|x |)||m)| and |ConT (m)|.

Lemma 4.7 takes care of the first implication. For the second, we shall use an as-
sumption, namely, that |ConT (m)| is not much larger than t (|m|

l) for some polyno-
mial t independent of T . This is not a strange assumption.

When formalizing mathematics, at some stage one should often exclude some
pathological codings. In our case, |ConT (m)| is only dependent on |AxiomsT (x)|.
By coding the small circuit that decides whether a number is a code of an axiom (see
Lemma 4.6) in arithmetic, we get a short way of writing AxiomsT (x).

If we put no restrictions on the way AxiomsT (x) is represented, it might very well
consist of 101099

conjunctions of the short representation. One can even think of
worse pathological codings.

Under our assumption, indeed the reasoning between (?) and (??) can be per-
formed in S in a uniform way; whence for some polynomial p′ independent of T we
get that

S `p′(ml ) ConT (m).

In other words, ||ConT (m)||S ≤ p′(ml) and S is indeed a ufacop. �

Question 4.9 Under the assumption that NP 6= coNP, is there an oracle relativized
to which there is a facop which is not a ufacop?

It is clear that if the answer to this question is positive, then the existence of an opps
really is (conditionally) weaker than NP = coNP. In Buhrman et al. [1] an oracle
is given under which no pps and a fortiori no facop does exist. In Verbitskiı̆ [9] an
oracle is given such that optimal proof systems exist, however; still NE 6= coNE,
whence coNP 6= NP.

5 Lower Bounds for facops

Of course, having an equivalence of NP=coNP to the existence of a ufacop does not
directly help to attack this problem: hard problems are never solved by reformulating
them. As expected, problems related to ufacops and facops are likely to be extremely
difficult.

For example, it is not even known of specific weak theories such as, for example,
S1

2 or even Robinson’s arithmetic Q that they are not a facop. In this section we shall
present and reprove some well-known results which are the best lower bound results
known when it comes to facops. Friedman and Pudlák independently have shown
the following theorem.
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Theorem 5.1 For every polytime axiomatizable theory T extending S1
2 , there is a

number 0 < ε < 1 such that

nε < ||ConT (n)||T .

Proof The proof can also be found in [8]. Our proof is a bit sketchy. More details
shall be given in Lemma 6.1 where the proof is milked further.

The proof proceeds by considering a fixed point δ(x) satisfying the following
equivalence.

T ` δ(x) ↔ ¬PrT (x, pδ(ẋ)q).
Now we reason in T . Suppose T `x δ(x); then, by Theorem 3.4, for some polyno-
mial f we get T ` f (x) PrT (x, pδ(x)q). This yields, combining with properties of the
fixed point, that T `g(x) 0 = 1, for some function g(x)=O( f (x)+ x + log(x)O(1)).
By contraposition we get that

ConT (g(x)) → ¬PrT (x, pδ(ẋ)q). (4)

Here ends our reasoning inside T . Note that, as δ was externally given, the f and g
in this reasoning are actually also externally given.

Now, as T is consistent, we get from (4) that ¬PrT (x, pδ(ẋ)q), whence
||δ(x)||T > x . It is reasonable to assume that x = O( f (x)), whence g(x) = O( f (x)).

Again, using the provable fixed point properties of δ(x) we obtain from (4) that

||ConT (g(x)) → δ(x)||T = log(x)O(1),

whence

||ConT (g(x))||T ≥ ||δ(x)||T − log(x)O(1) ≥ x − log(x)O(1).

As g(x) = O( f (x)) we get that (the inverses of polynomials on positive numbers
exist from a certain point on) for x large enough

||ConT (x)||T ≥ ||ConT (g−1(g(x)))||T
≥ ||ConT ( f −1(g(x)))||T
≥ f −1(x − log(x)O(1))
≥ xε .

Here, 1
ε is about the size of the degree of f , whence 0 < ε < 1. �

5.1 Variations Most likely, it is possible to use any variation of the proof of
Gödel’s second incompleteness theorem to get Theorem 5.1. In particular, one can
consider the proof that uses a fixed point of

δ(x) ↔ PrT (x, p¬δ(ẋ)q).

Again, it is easy to see that T `x ¬δ(x) yields a contradiction. An extra application
of reflection is needed to show that T 0x δ(x).

It is also possible to run the same argument with the following fixed point.

δ(x) ↔ ¬PrT (h(x), pδ(ẋ)q).

Of course, the representation of h should not block the provable completeness for
60

1 (or ∃6b
1 ) sentences which is needed in the argument. The function h must thus

be 60
1 definable. In other words, h should be a recursive function. With such an

h, this fixed point gives rise to true statements with very long proofs. This shall
be exploited later on. Therefore, it is worthwhile to restate some easy properties of
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this fixed point. We shall require that h be some provably unbounded (that is, goes
provably to infinity) recursive function. Note that we do not demand that the function
h be provably total. Even without the totality being provable, one can find a fixed
point and all the reasoning goes through. Thus, for example, PrS(h(x), pδ(ẋ)q) can
be seen as an abbreviation of ∃y (y = h(x) ∧ PrS(y, pδ(ẋ)q)).

Fact 5.2 Let S be a sound theory and δ such that S ` δ(x) ↔ ¬PrS(h(x), pδ(ẋ)q).
Then

1. ||δ(n)||S > h(n),
2. N |H ∀n δ(n),
3. ∀n S ` δ(n),
4. S 0 ∀x δ(x).

These facts are pretty easy to verify. At (4) the provable unboundedness of h is used
to see that S ` ∀x δ(x) ↔ Con(S). Now, using these facts, we can give easy proofs
of the following two well-known propositions.

Proposition 5.3 For any recursive function h, there exists a series of provable
predicate logical tautologies ϕn of which the length of proofs in predicate logic are
not bounded by h(|ϕn|).

Proof Take a strong enough finitely axiomatized arithmetic theory, for example,
I61. Consider

I61 ` δ(x) ↔ ¬PrI61(h(x), pδ(ẋ)q).

Then
∧

I61 → δ(n) suffices. �

Proposition 5.4 There is an explicit series of provable predicate logical tautologies
ψn whose proofs are not bounded by any recursive function.

Proof By diagonalization from Proposition 5.3. �

6 RE facops Do Not Exist

The existence of a facop or a ufacop is very counterintuitive. However, as is to
be expected, every attempt to prove the nonexistence fails. In this section we shall
present such an attempt by dropping the requirement that the theories for which a
facop should have short proofs be polytime decidable.

So, in this section, we consider sound theories with an RE axiomatization. For
this class of theories, we can show that there is no “strongest theory” S having short
proofs for finite consistency statements of any other RE theory. The final result
is stated in Theorem 6.4. Actually, the result is quite strong. It says that for any
theory S, there is a theory T whose proofs in S of its consistency statements have
nonrecursive lengths.

The idea of the proof is by generalizing the proof of Theorem 5.1 and Fact 5.2.
First we state a lemma that articulates some conditions on S and T under which
||ConT (x)||S ≥ h(x). We have chosen S to refer to slow. The next two lemmas tell
us how to construct, given an S, a theory T such that the conditions hold.

Lemma 6.1 Let S and T be consistent RE theories containing S1
2 . Let δ(x) be such

that
S1

2 ` ∀x (δ(x) ↔ ¬PrS(h(x), pδ(ẋ)q))
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for a certain recursive h with h = �(x). Furthermore, let S and T be such that T
has speed-up over S in the following sense.

(i) S `h(x) δ(x) ⇒ T `O(x) PrS(h(x), pδ(x)q),
(ii) S `h(x) δ(x) ⇒ T `O(x) δ(x).

Moreover, let (i) and (ii) be formalizable in S. Then it holds that

||ConT (x)||S ≥ h(O(x)).

Proof Reason in S. Suppose that

S `h(x) δ(x). (5)

Then, by assumption (i), we get

T `O(x) PrS(h(x), δ(x)). (6)

Combining (5) and (ii), we also get

T `O(x) δ(x).

As the fixed point equation is also provable in T , that is,

T `O(1) ∀x (δ(x) ↔ ¬PrS(h(x), pδ(ẋ)q)),

we get

T `O(x)+log(x)O(1) ¬PrS(h(x), pδ(x)q).

Combining this with (6) we obtain

T `O(x)+log(x)O(1) 0 = 1.

We now no longer reason in S. Considering the above reasoning, together with the
fact that S is sound and T is consistent, we see that

||δ(x)||S ≥ h(x). (7)

Also, from the above reasoning, we have

S ` PrS(h(x), δ(x)) → ¬ConT (g(x))

for some function g(x) = O(x + log(x)O(1)). Consequently, also

S ` ConT (g(x)) → δ(x) (↔ ¬PrS(h(x), δ(x))),

and we get that

||ConT (g(x)) → δ(x)||S = log(x)O(1).

This implies

||ConT (g(x))||S ≥ ||δ(x)||S − log(x)O(1).

Because g(x) = O(x) = O(h(x)), by (7) we obtain the required result; that is,

||ConT (x)||S ≥ h(O(x)). �

The next lemma provides an approach so that we can concentrate on item (i).
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Lemma 6.2 Let S and T be (sound and RE) such that (verifiably in S)

{∀Ex (�Sϕ( Ėx) → ϕ(Ex))} ⊆ the axioms of T

and that, moreover, (verifiably in S)

S `h(x) δ(x) ⇒ T `O(x) PrS(h(x), δ(x)), (8)

for some fixed formula δ(x); then it holds (verifiably in S) that

S `h(x) δ(x) ⇒ T `O(x) δ(x).

Proof (Reason in S.) Suppose that S `h(x) δ(x). Because of (8), we get that

T `O(x) PrS(h(x), δ(x)),

hence also
T `O(x) �Sδ(x).

Adding just one more line to the T -proof consisting of the axiom �Sδ(x) → δ(x)
gets us the required

T `O(x) δ(x),

as the number of symbols in �Sδ(x) → δ(x) is just O(log(x)). �

Note that this proof makes no further assumptions on the nature of δ(x). For the
particular δ(x) we are interested in, it would suffice to demand that T ⊇ {Con(S)}.

Lemma 6.3 Let S be a given sound and RE theory. Let S′ be defined so that its
axioms are precisely the theorems of S. Next define T so that its axioms are the
axioms of S′ together with {∀Ex (�Sϕ( Ėx) → ϕ(Ex))}. Then S and T satisfy (i) and (ii)
of Lemma 6.1.

Proof The theory S′ is defined from S via a version of Craig’s trick in the sense that
AxiomS′(x) ⇔ ∃y ProofS(y, x) whence S and S′ are extensionally the same theory.
That is, S = S′, whence S′ and T are also sound RE theories.

Reason in S, and suppose that S `h(x) δ(x). Then also S ` PrS(h(x), δ(x)).
Notice that the length of PrS(h(x), δ(x)) is O(log(x)) so certainly O(x), whence

T `O(x) PrS(h(x), δ(x)).

Lemma 6.2 now yields the desired result. �

Note that the construction in Lemma 6.3 works simultaneously for all recursive func-
tions. Thus, putting things together, we have now shown the following theorem, as
announced at the beginning of this section.

Theorem 6.4 For any sound RE theory S there exists another sound RE theory T
for which for any recursive function h

||ConT (x)||S ≥ h(O(x)).

Proof For any such theory S, apply the construction as in Lemma 6.3 to obtain a
theory T so that Lemma 6.1 yields the required result. �

Question 6.5 Can Theorem 6.4 also be proved for theories with a primitive recur-
sive set of axioms? Which is the weakest class of theories for which Theorem 6.4 can
be proved?
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7 Speculations on Polytime Diagonalizations

Clearly, a theorem such as Theorem 6.4 cannot be proved in full generality for poly-
time theories. This is due to the observation made before that ||ConT (x)||S ≤ f (x)
for some f which is exponential in x . Of course, this observation hinges on the fact
that it is polytime decidable that an axiom of T is indeed an axiom of T . And thus,
by Theorem 3.3, the axiomhood has a short proof in S.

Having this in mind we immediately see why the proof of Theorem 6.4 does
not carry over to the setting of polytime theories: If one starts out with a theory S
with a 1b

1(S
1
2) axiomatization, the trick in Lemma 6.3 will yield a genuinely 60

1
axiomatized theory T . One could think of defining the axioms of S consisting of
those theorems having a proof in some logarithmically short interval [a, b] which is
not too far away from the theorem. However, this is the same problem as we started
with: given a provable formula, look for a short proof.

The conditions in Lemma 6.1 are formulated in quite a general way. A more
promising way to obtain lower bounds for facops would be to look for other fixed
points such that given a theory S, one can define a theory T such that conditions (i)
and (ii) of Lemma 6.1 are satisfied for this fixed point.

The following conjecture does not seem fully unfeasible.

Conjecture 7.1 For every sound 1b
1(S

1
2) theory S and for every l ∈ ω, there exists

a sound 1b
1(S

1
2) theory T such that

||ConT (x)||S > x l .

It is clear that Conjecture 7.1 is a desirable result as it is just one step away from the
required

∃
1b

1(S
1
2 )S ∀

1b
1(S

1
2 )T ∀l ||ConT (x)||S > x l .

And this last step suggests some compactness or diagonalization argument. However,
polytime diagonalization seems to be the hard problem at the core of the P 6= NP-
problem.

We would like to conclude this paper by an easy but interesting observation.
Mathematical practice has proved that it is very hard to find strong lower bounds
for classical propositional logic. Actually, the state of the art is still stuck at a qua-
dratic lower bound. The following observation might be an explanation for this fact.
The observation roughly says that if both optimal proof systems and hard tautologies
exist, then these hard tautologies are intrinsically difficult to describe.

Observation 7.2 If optimal proof systems do exist, then any polytime recog-
nizable sequence of tautologies has polynomially bounded proofs. If, moreover,
coNP 6= NP, any hard tautology is not polytime recognizable.

Note

1. There is a subtle technicality here as to the representation of P +τ . It is tempting to define
the mapping P + τ (remember, a proof system is a mapping) to be the identity on τ . By
definition P was defined on τ too. The value of P(τ ) should now be given on some other
input, etc. We shall not go into the details of this coding here and assume some canonical
representation.



Proof Systems and Consistency Provers 397

References

[1] Buhrman, H., S. Fenner, L. Fortnow, and D. van Melkebeek, “Optimal proof systems and
sparse sets,” pp. 407–18 in Proceedings of the 17th Symposium on Theoretical Aspects
of Computer Science (STACS’2000), vol. 1770 of Lecture Notes in Computer Science,
Springer, Berlin, 2000. MR 1781750. 391

[2] Buss, S. R., “First-order proof theory of arithmetic,” pp. 79–147 in Handbook of Proof
Theory, edited by S. R. Buss, vol. 137 of Studies in Logic and the Foundations of Mathe-
matics, North-Holland, Amsterdam, 1998. MR 1640326. 383

[3] Cook, S. A., and R. A. Reckhow, “The relative efficiency of propositional proof systems,”
The Journal of Symbolic Logic, vol. 44 (1979), pp. 36–50. Zbl 0408.03044. MR 523487.
384
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