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Level Compactness

Gillman Payette and Blaine d’Entremont

Abstract The concept of compactness is a necessary condition of any system
that is going to call itself a finitary method of proof. However, it can also apply to
predicates of sets of formulas in general and in that manner it can be used in rela-
tion to level functions, a flavor of measure functions. In what follows we will tie
these concepts of measure and compactness together and expand some concepts
which appear in the author’s master’s thesis, “Inference and Level.” We will also
provide some applications of the concept of level to the “preservationist” pro-
gram of paraconsistent logic. We apply the finite level compactness theorem in
this paper to get a Lindenbaum flavor extension lemma and a maximal “forcibil-
ity” theorem. Each of these is based on an abstract deductive system X which
satisfies minimal conditions of inference and has generalizations of ‘and’ and
‘not’ as logical words.

1 Introduction

The concept of compactness is a necessary condition of any system that is going
to call itself a finitary method of proof. However, it can also apply to predicates
of sets of formulas in general and in that guise it can be applied to level functions.
Level functions are set functions akin to measure functions. In what follows we will
tie measure and compactness together (via level) and expand some concepts which
appear in the author’s master’s thesis, “Inference and Level.” We will also provide
some applications of level to paraconsistent logic. One such inference relation, in
particular, is forcing, a la Schotch and Jennings [4] and [5].

2 Measure to Level

A measure is a function µ : B(E) −→ R ∪ {∞} defined on a σ -algebra B(E) over
a set E .

Definition 2.1 A σ -algebra on E is a collection of subsets of E , B(E) such that
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1. ∅ ∈ B(E),
2. any countable union of elements of B(E) is an element of B(E), and
3. the complement of any element of B(E) in E is an element of B(E).

For any set A the power set P (A) is a σ -algebra.1

Measure functions are required to have the following properties:

1. µ(A) ≥ 0 for A ∈ B(E), with equality if A = ∅;
2. µ(

⋃
∞

i=0 Ai ) =
∑

∞

i=0 µ(Ai ) for any sequence of disjoint sets Ai ∈ B(E)
(Jao [3]).

The additive property above is a very strong condition and will not survive general-
ization to a notion that we shall call level. We will, however, maintain the convention
that all sets will have at least level 0, and the empty set will have level 0.

Like measure, level is represented by a function called, what else, a level function,
indicated by some notation like ‘`’. Level is also defined over a field of sets, but
our inspiration comes not from point sets this time, but rather from formula sets.
What we mean by a field of formula sets is the collection of all sets of formulas of
some language L, which we will call P (F)—the power set of the set of formulas F.
Relative to certain systems of inference, there are properties which a given set of
formulas might enjoy or not. Properties of that kind were used to define the concept
of level in the first instance (see [4]). Such properties will serve us as useful examples
in the present essay, but we shall take level functions to be defined more generally in
terms of abstract properties of sets of formulas.

The original property of interest to the “preservationist” program of paraconsis-
tent logic was classical consistency, indicated by con` (where ` is classical provabil-
ity). What the level function does in that case is measure the level of inconsistency
of the set of sentences in a sense that will be made clear. But before we get to level,
we must take a detour through the concept of a cover.

2.1 A tale of two covers We consider two concepts of cover: one—the more
common one, topological, and one—of our own devising, specific to logic. The
general topological conception is a family of sets Fξ = {1i : 1 ≤ i ≤ ξ} such that
for every β ≤ ξ , Q(1β) and 0 ⊆

⋃
Fξ , where Q is some property of formula sets.

The ξ subscript here is to say that F is a family over the ordinal ξ . The Fξ is called
a (Q)-cover. If 0 =

⋃
F and for each 1i ,1 j ∈ F, i 6= j , 1i ∩ 1 j = ∅, then we

say that F partitions 0.
The notion of a logical cover, on the other hand, is one of a family of sets, in-

dexed as before, although perhaps with a distinguished element (the earliest typi-
cally) which appears in every such family.2 Once again each element of the family
must have some property Q, but rather than the covered set being a subset of the
union of the family, we require that the covered set be included in the union of the
deductive closures (relative to some specified inference relation) of the elements of
the cover.

We can bring the two notions into conformity by appeal to the topological notion
of an open set. When the points on which the topology is constructed form a lattice,
then what corresponds to the usual notion of openness is, ironically, virtually the
same as deductive closure under the appropriate inference relation. With this in
mind, a logical cover becomes a species of open cover which is the very meat and
drink of topology.
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We refer to the deductive closure of a set 0 relative to a logic X as CX (0). The Q
which is important in the context of logical cover will be the consistency predicate
of the logic X , conX . Thus we can give our logic relevant definition of cover.

Definition 2.2 A logical cover F = {10, . . . ,1ξ } of 0, where ξ is as before, is
such that

1. conX (1i ) for each i ≤ ξ ,
2. 10 = ∅, and
3. 0 ⊆

⋃
i≤ξ CX (1i ).

Thus, for each ψ ∈ 0 there is some 1i such that 1i `X ψ . If the logic in question
has the structural rule of inference [R], that is, ifψ ∈ 0 then 0 `X ψ , then a partition
of 0 may serve as a logical cover (this will be of use later).

2.2 The road to level To define level we first define a predicate which holds be-
tween sets and ordinals. In relation to a property Q we define COVQ(0, ξ) if and
only if there exists an F which is a Q-cover of 0 and |F − {10}| = ξ . Each 1i is
referred to as a ‘cell’. The ξ is referred to as the ‘width’ of the cover.3 Now we can
define level.

Definition 2.3 (General Level Function) A level function ` is an ordinal or {∞}-
valued function that “measures” the level of Q-ness of a set of formulas 0 where Q
is a predicate of sets of formulas. The function is defined as

`(0) =

{
min{ξ | COVQ(0, ξ)} if it exists,
∞ othewise.

The value of ` is the minimum value of the widths of the Q-covers. The definition
of the level function can be used with respect to either definition of cover. However,
there is a rationale for choosing one definition of cover over the other. We want to
keep the convention that the empty set has measure, or rather level, 0. But there
are nonempty sets of measure 0 which have special properties and we would like to
maintain that.

Suppose that 0 is a set of classical tautologies. Such sets as 0 are consistent but
in a special way. Given any other classically consistent set 1, we know that 1 ∪ 0
is also consistent. A general consistent set does not have this property. It is easy to
see that the level of 1 ∪ 0 is just the level of 1. If we use logical covers, for any
0 ⊆ CX (∅), F = {∅} (the cover consisting of just the empty set) is a cover of 0
and |F − {∅}| = 0. So sets of X -tautologies and the empty set have level 0. The
definition of logical cover allows nonempty sets of “measure” (i.e., level) 0! The
topological cover, on the other hand, only allows ∅ to have level 0 since the union
of the cells must contain the set being covered.

3 Level Functions

The restrictions which we impose on Q are applicable to either definition of cover.
We require the property Q to be two things:

1. Q must be downward monotonic; that is, if 0 ⊆ 0′ and Q(0′), then Q(0),
and

2. the extension of Q must be nonempty.
The second requirement is trivial, but the first is to ensure the downward monotonic-
ity of the level function relative to Q.
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Proposition 3.1 If Q is downward monotonic, then ` is monotonic; that is, if
0 ⊆ 0′, then `(0) ≤ `(0′).

Proof Suppose there were a subset with a larger level than the whole set. If there
were a cover of the whole set of size, say ξ , then there would be a cover of the subset
of size ξ by the downward monotonicity of Q, which contradicts the assumption that
the subset has a larger level. �

We shall assume in the sequel that Q is a downward monotonic property of sets of
formulas; so level functions are monotonic.

What are the further properties of measure functions that should be preserved?
Level functions are defined over the σ -algebra of the power set of formulas. The
empty set has level 0 and there are nonempty sets of level 0 in certain contexts. Next
we would like to see if level functions are countably additive. Level is not countably
additive in general. One can see that it is not countably additive by considering the
case of classical consistency. Assume the set 0 = {ψ, ϕ} is consistent; but neither
formula is a tautology and they are not equivalent. Then the unit sets {ϕ} and {ψ}

are both subsets of 0 and disjoint. These sets have level 1 since they can be covered
by {∅, {ψ}} and {∅, {ϕ}}, respectively, but neither by {∅} alone. Then each subset
of 0 is also consistent. But 1 = `(0) = `({ϕ} ∪ {ψ}) 6= `({ϕ})+ `({ψ}) = 2.

The next phase is to prove a compactness theorem for level. First we must con-
sider what compactness means in the context of level. In terms of consistency, com-
pactness means 0 is consistent if and only if every finite subset of 0 is consistent.
Thinking of level as a generalization of consistency, we say the level of the whole
set is less than or equal to a certain number if and only if each finite subset’s level is
also less than or equal to that number. However, as we shall show, we can only make
sense of this when two things obtain: the level is finite and Q is compact.

Let us first distinguish the case where `(0) = ω and `(0) = ∞. To say `(0) = ω
means the width of the “smallest” possible (Q)-covers of 0 is ω. This does not mean
that `(0) = ∞; that level is reserved for certain types of sets. For example, self-
inconsistent sets like {ψ ∧ ¬ψ}, where Q is classical consistency, have level ∞.
In the general case `(0) = ∞ means there are no Q-covers of 0. There being no
Q-covers just means that at least one of the unit subsets is not a Q set.

Classical logic provides an example of a set with level ω. Consider, for example,
{(

∧
i<n)∧ Pn|n ∈ ω}, where each Pn is an atomic sentence. This set has ω unit sets,

each inconsistent with any other unit set, but each unit set is consistent. Thus, the
minimal width of a cover is ω.

Now we can explain why the level must be finite. Suppose we want ‘level com-
pactness’ to mean ‘if `(0) = ξ then there is a finite subset of 0 with level ξ ’. If
this is our intent we will have a problem if the set in question has level ω. Any finite
set, which does not have level ∞, must have a finite level; since all of the unit sets
are Q-sets, the largest its level could be is the cardinality of the set. Thus, if a set
0 has level ω, no finite subset of 0 can have level ω. Therefore, our attempt at a
description of level compactness at the beginning of the paragraph cannot succeed
for infinite levels (and we want it to succeed).

The reason we want level compactness to be characterized by ‘if `(0) = n then
there is a finite subset of 0 with level n’ is because we want it to be equivalent to
‘`(0) ≤ n ⇐⇒ ∀0′

⊆ 0 that are finite, `(0′) ≤ n for all n ∈ ω’. This can only
occur if the level is finite (as we saw above) and when Q is compact. Thus we assert
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(1) Q must be compact and (2) we must restrict our application of level compactness
to the finite values of the level function. So the level function is only compact on a
subset of P (F).

Using finite levels we can make the following assumption about level.

Proposition 3.2 If m ∈ ω, `(6) = m < `(6∪0), and Q(0), then `(0∪6) = m+1.

Proof If m = `(6) < `(6 ∪ 0), and Q(0) then suppose Fm = {10,11, . . . ,1m}

is a minimal cover for 6. The cover F′
m = {10,11, . . . ,1m, 0} will be a minimal

cover for 6 ∪ 0 of width m + 1. Hence `(6 ∪ 0) = m + 1. �

Thus, one may assume, without loss of generality, that the set being added is con-
sistent because if the level goes up at all, shy of ∞, it must go up by at least 1, and
there will always be a Q-set contained in the set being added. Not only does the
above proposition hold, but if 0 is a 0 set and 5 has some finite level, then 0 ∪ 5
will have the level of 5. This is left as an exercise. Now we will show our re-
strictions to be worthwhile since with them the previously mentioned descriptions of
level compactness are equivalent.

4 Level Compactness

Theorem 4.1 (d’Entremont [2], Theorem 10) The following are equivalent when
`(0) < ω and Q is compact:

1. `(0) ≤ n ⇐⇒ ∀0′
⊆ 0 which are finite, `(0′) ≤ n;

2. if `(0) = n, then ∃0′
⊆ 0 which is finite, such that `(0′) = n;

3. if there is a finite subset 0∗ of 0 such that for any other finite 0′
⊆ 0,

`(0′) ≤ `(0∗), then `(0∗) = `(0).

Proof We proceed by showing the equivalence in a triangle. All n,m, k, and so on,
are elements of ω.

1 ⇒ 2 Assume (1) and assume for reductio that `(0) = n and that there is no
finite subset of 0 which has level n. We know by monotonicity of level that all of
the subsets of 0 must have level less than that of 0, so there is an upper bound. This
upper bound will also apply to finite sets. Call this upper bound m. This m is strictly
less than n because otherwise there would be a finite subset of level n which there
isn’t. With (1) we get `(0) ≤ m < n, which is a contradiction.

2 ⇒ 3 Assume (2) and the existence of a 0∗ as in the antecedent of (3). There
must be, by (2), a finite 0′

⊆ 0 with `(0′) = `(0), but then `(0) = `(0′) ≤ `(0∗).
By monotonicity of ` we get `(0∗) ≤ `(0); hence, `(0∗) = `(0).

3 ⇒ 1 Assume (3). The only if direction of (1) follows from monotonicity of `;
thus, assume that for every finite 0′

⊆ 0 `(0′) ≤ n. Let m = max{k|`(0′) = k & 0′

⊆ 0 finite}. This must exist since there is an upper bound, namely, n. Let
0∗

= 0′ such that `(0′) = m. Then we have satisfied the conditions for (3);
thus, `(0∗) = `(0) = m ≤ n. �

Using these equivalences we can actually prove that, for finite level, the level func-
tion is compact in the way mentioned as equivalence (1) in Theorem 4.1. In the
case of logical covers we will make the assumption that the consistency of 0 means
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that CX (0) 6= F. The compactness theorem holds for either notion of cover we use,
topological or logical.4

Theorem 4.2 (d’Entremont, Theorem 9 [2], Finite Level Compactness) If 0 is a set
of formulas with `(0) < ω and Q is compact, then `(0) ≤ n if and only if for every
finite subset 0′ of 0, `(0′) ≤ n.

Proof Theorem 4.1 says that the following are equivalent for all n ∈ ω. (We will
use these at various stages.)

1. `(0) ≤ n ⇐⇒ ∀0′
⊆ 0 which are finite, `(0′) ≤ n.

2. If `(0) = n then ∃0′
⊆ 0 which is finite, such that `(0′) = n.

3. When `(0) = n, if there is a finite subset 0∗ of 0 such that, for any other
finite 0′

⊆ 0, `(0′) ≤ `(0∗), then `(0∗) = `(0).

We will proceed by induction on the level of 0. For `(0) = 0, we know that 0 = ∅
or 0 ⊂ CQ(∅),5 so ∅ ⊆ 0 and is finite with `(∅) = 0, and by the monotonicity of
Q, any nonempty subset of a nonempty 0 will have level 0. Thus we get the result for
the basis step by showing (2). Assume that `(0) ≤ k if and only if, for every finite
subset 0′ of 0, `(0′) ≤ k for k ≤ n. Assume that `(0) = n + 1. We will show that
(3) holds to get the result for this stage. Assume as in the antecedent of (3) that there
is a finite 0∗

⊆ 0 and for any finite 0′
⊆ 0, `(0′) ≤ `(0∗). Clearly, `(0∗) ≤ `(0).

If `(0∗) = `(0) then we are done. So assume `(0∗) < `(0) = n + 1. Thus,
`(0∗) ≤ n. This means that every finite subset of 0 has level ≤ n, but by inductive
hypothesis, and using (1), we get that `(0) ≤ n < n + 1 = `(0). But that is a
contradiction. Hence, `(0∗) = `(0), which is what we wanted. So we have shown
(3) for `(0) = n + 1, which is equivalent to `(0) ≤ n + 1 if and only if, for every
finite subset 0′ of 0, `(0′) ≤ n + 1. Therefore, for all n ∈ ω, `(0) ≤ n if and only
if, for every finite subset 0′ of 0, `(0′) ≤ n. �

The compactness of the predicate Q will carry over to make the level function defined
on it compact. Thus, we can look at some applications of the finite level compactness
theorem.

5 Applications

These concepts were developed in the context of logic, so of course they find their
application there. From here on let X be some logic over a countable language L.
Then we have the logic’s syntactic consistency predicate and inference relation as
was defined earlier. We take the extensional meaning of ‘logic’ so that a logic is the
set of pairs 〈0,ψ〉 such that 0 `X ψ . Taking the syntactic consistency predicate of
X as Q we can force Q to be compact since it is common to consider proofs finite.
Concerning X we will allow `X to be reflexive, monotonic, and transitive, that is,
allow the rules [R], [M], and [T] a la Scott [6]. As a corollary to the compactness
theorem we can get an extension lemma. For this we need a definition.

Definition 5.1 0+ is a maximal level preserving extension (mlpe) of 0 if and only
if

1. 0 ⊆ 0+,
2. `(0+) = `(0), and
3. for any formula ψ , if `(0+

∪ {ψ}) = `(0+), then ψ ∈ 0+.
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The “absolute” definition, one not relative to any 0, just satisfies the third clause.
Such sets are maximal with respect to level; that is, you can’t add anything to them
without raising the level. As one would expect we can produce one of these 0+

sets by the following construction. Recall that the language that we are using is
countable.

Lemma 5.2 (Lindenbaum Level Lemma) Let 0 have level m ∈ ω; then it can be
extended to a 0+.

Proof Let 0 have level m ∈ ω. Then let ψ0, ψ1, . . . , ψk, . . . be such that k ∈ ω is
an enumeration of the formulas of the language. Form sets 6n for n ∈ ω by

60 = 0

6n =

{
6n−1 ∪ {ψn} if `(6n−1 ∪ {ψn}) = `(0),
6n−1 otherwise.

Let 0+
=

⋃
n∈ω 6n .

Claim This set is a level preserving maximal extension of 0. By the recursive
construction and compactness `(0+) = `(0). There are three cases:

1. `(0+) = ∞.
2. `(0+) ≥ ω.
3. ω > `(0+) > `(0).

If (1), then a formula was added which cannot be covered, but that is impossible. If
(2), then for any n ∈ ω there is a finite subset of 0+ of level n. If there were a finite
upper bound on the levels of the finite subsets of 0+, then the compactness theorem
says the whole set would have that finite level, which is contrary to assumption.
So choose n > `(0); the finite subset of level n will be contained in some 6k so
`(6k) > `(0) which is impossible. Finally, if (3), there was a finite set which was
the culprit, and it would be contained in some 6n , which is also impossible. Thus
`(0+) = `(0).

Lastly, suppose `(0+
∪{ϕ}) = `(0+); then either (a) ϕ ∈ 0 or, if not, (b) ϕ = ψn

for some n ∈ ω. If (a) then ϕ ∈ 0+ a fortiori. If (b) then ϕ was considered for
membership at stage n, and since adding it to 0+ does not change its level, adding ϕ
to 6n−1 does not change the level of 6n−1 since `(6n) = `(0) = `(0+). Thus, ϕ
was added at stage n. Therefore, ϕ ∈ 0+. �

So we can always extend sets with finite level to an mlpe.
To make level applicable to inference we consider the general concept of “Forc-

ing.” Given a logic X we can define a forcing relation ([
X ) on the provability
predicate `X . We do this using the definition of logical cover and level where Q is
conX .

Definition 5.3 0 X -Forces ψ , 0[
X ψ if and only if every logical cover of 0 of
width `X (0) contains a cell, 1i ∈ F, such that 1i `X ψ .

So we can rephrase this to say 0 X-Forces ψ if and only if all the ‘narrowest’ covers
contain a cell which X -proves ψ . We will abbreviate the class of narrow covers of 0
as NAR(0). The level function `X defined with respect to conX is implicit.

An important feature of forcing is that it is an inference relation which preserves
X -level. The following result proves this.
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Lemma 5.4 `X (C[
X (0)) = `X (0); that is, the X-Forcing closure of 0 has the
same level as 0.

From here on we will omit the subscripts in the proofs, since we take it to be under-
stood which X we are working with.

Proof Assume `(0) = n finite. So then ψ ∈ C[
(0) if and only if 0[
 ψ . Let
F ∈ NAR(0). Then, by definition of forcing, for each ψ ∈ C[
(0), there is 1i ∈ F
such that 1i ` ψ . Thus, F is a cover of C[
(0). Further, it is easy to see that [

has [R], so 0 ⊆ C[
(0). So by monotonicity of level `(0) ≤ `(C[
(0)), but F is a
cover of C[
(0) of width `(0); therefore, `X (C[
X (0)) = `X (0). �

As a corollary to this lemma we have the following.

Corollary 5.5 If 0[
X ψ , then `X (0 ∪ {ψ}) = `X (0).

One can see in this context that level is a generalization of consistency. The first
two levels, 0 and 1, use conX but ‘after’ that, to say that a set 0 is inconsistent with
another set 5 is to say that `(0) < `(0 ∪5). To say that a set is universally incon-
sistent is to say that the set has level ∞. And forcing is a relation which preserves
this new type of consistency.

Our goal is to derive something like a maximal provability theorem like we have
for classical logic. We want that a set 0 forces a formula if and only if every ‘maxi-
mal extension’ of 0 forces the formula. The maximal extensions in our case are the
mlpes. One can see from Corollary 5.5 that mlpes only force those formulas which
they contain; so they are clearly a generalization of classical maximally consistent
sets. However, to do this we need to impose a bit of structure on the logic in question.
We must consider a certain class of logics with some special properties.

Recall the discussion of self inconsistent formulas or unit sets with level ∞. These
‘absurd’ formulas make an appearance in our next definition.

Definition 5.6 (Denial) A logic X has Nontrivial Denial if and only if for each non-
absurd formulaψ there is another nonabsurd formulaψ ′—such that conX (

{
ψ,ψ ′

}
),

where the overline indicates predicate negation.

The two formulas in this definition are said to deny each other. Without the restriction
to nonabsurd formulas, the above defines what it is for a logic X to have denial
simplicater.

We require that denial commutes in the right way with consistency and `X . This
is to say that we impose the condition

[Den] 0 `X ψ ⇐⇒ conX (
{
0,ψ ′

}
) where ψ ′ denies ψ .

There does not have to be a unique denial nor is denial necessarily functional in the
way that classical negation is. However, denial must be symmetric, so ψ denies ϕ if
and only if ϕ denies ψ . We need a much stronger property to get to our final desti-
nation. This property is shared by many logics such as intuitionistic logic, quantum
logic, and so forth. We call logics with this property ‘productival’.

Definition 5.7 A logic X is productival if and only if, given any finite set 0, there
is a formula ϕ such that ϕ `X ψ for each ψ ∈ 0, and 0 `X ϕ.

We can now use our extension lemma to prove a maximal forcibility theorem for the
class of logics which satisfy the two properties above.
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Theorem 5.8 (Maximal Forcibility Theorem) Let X be a productival logic which
has denial and `(0) ∈ ω. Then 0[
X ψ if and only if, for each mlpe 0+ of 0,
0+

[
X ψ .

Proof (only if) Suppose 0[
 ψ . Then let 0+ be an mlpe of 0. So, `(0) = `(0+)
by definition. Suppose that F ∈ NAR(0+); then F is also a cover of 0 because
0 ⊆ 0+. But the width of F is also the level of 0, so F ∈ NAR(0). Thus by
definition of Forcing there must be1i ∈ F such that1i ` ψ . Since F was arbitrary,
0+

[
 ψ .

(if) By contrapositive. Assume 0[6
 ψ and `(0) = m. Then there is an
F ∈ NAR(0) which is a partition of 0 where no 1i ∈ F is such that 1i ` ψ .
Thus, by [Den] con(1i ∪ {ψ ′

}) for each i , ψ ′ a denial of ψ . For each 1i 6= 1 j ,
1i ∩1 j = ∅. And con(1i ∪1 j ). By compactness of con we have for each pair of
cells finite sets 1′

i and 1′

j , contained in 1i ,1 j , respectively, which are inconsistent
with one another. Thus we form their respective products and get ϕi j and ϕ j i . So we
have con({ϕi j } ∪ {ϕ j i }). Since there are only finitely many of these ϕi j s for each i
we can get a product for each i , call it ϕi , such that ϕi ` ϕi j for each j 6= i . The ϕi s
are clearly consistent with the 1i s and any two distinct ϕi s are inconsistent. Since
con(1i ∪ {ψ ′

}) we can form the product of {ϕi , ψ
′
} to get ϕ∗

i for each i , which will
also be consistent with each 1i . Form the cover,

F′
= {∅,1i ∪ {ϕ∗

i } : 1i ∈ F, & 1 ≤ i ≤ m}.

F′ is a cover of 0 ∪ {ψ ′
} of width m. By monotonicity of level we get that

`(0∗) = `(0 ∪ {ϕ∗

i : 1 ≤ i ≤ m}) = `(0). Extend this new set 0∗ to a 0+ as in
the extension lemma. This 0+ will have level m and since each ϕ∗

i proves ψ ′ and
must be contained in a different cell, ψ cannot be added to 0+ without increasing
its level, which is to say that 0+

[6
 ψ with 0 ⊆ 0+. �

Where to go from here? It would be nice to know where the X -Forcing relation fits
with respect to other inference relations that preserve X -level.

As we mentioned above, all of the logics X that we consider have [R], [T], and
[M]. However, forcing does not have [M] but a variation of it. It is well known in the
literature6 that classical forcing is monotonic in a restricted sense. The ‘restricted
sense’ is as follows: if 0[
 ϕ and `(0 ∪ 1) = `(0), then 0 ∪ 1[
 ϕ. Thus, if
a set can be added without changing the level, then the forcing consequences are
preserved by the union. We will call this restricted sense of monotonicity [LM].
(Level-Monotonicity, and relative to X , X -[LM].) The generalization from classical-
[LM] to X -[LM] follows.

Proposition 5.9 If 0[
X ϕ, 0 has finite level and `X (0) = `X (0 ∪ 1), then
0 ∪1[
X ϕ.

Proof This is a corollary to the first direction in Theorem 5.8 since any level pre-
serving extension will be contained in some mlpe. So, a fortiori, 0 ∪1[
 ϕ. �

Since we wanted the “base” logics such as X to have [R], [T], and [M] we will
demand that inference relations which preserve X -level must have [R], [T], and X -
[LM]. These restrictions give enough information to see where X -forcing fits into
the picture.
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Theorem 5.10 (Level Preservation) If X is a logic as in Theorem 5.8 and Y is
another logic which preserves X-level, obeys [R], [T], and is monotonic with respect
to X-level preserving extensions, then for all 0, CY (0) ⊆ C[
X (0). Thus, X-Forcing
is the largest relation which preserves X-level and has X-[LM].

This is not always the case when X is not as in Theorem 5.8. The biggest relation
which is like forcing is defined by

0 `mlpe ϕ ⇔ ϕ ∈

⋂
0+∈mlpe

0+

where mlpe stands for the class of maximal level preserving extensions of 0. We
abbreviate the right-hand side as

⋂
0+.

Proposition 5.11 Given a logic X and a relation Y like the relation Y in Theo-
rem 5.10, then, for all 0, CY (0) ⊆

⋂
0+.

Proof Assume for reductio that ϕ ∈ CY (0) but ϕ 6∈
⋂
0+. Then there is an mlpe

of 0, call it 0+
ϕ , such that ϕ 6∈ 0+

ϕ . By definition `(0+
ϕ ∪{ϕ}) > `(0+

ϕ ) = `(0). And
since 0 ⊆ 0+

ϕ we have by hypothesis on Y , CY (0) ⊆ CY (0
+
ϕ ). Thus ϕ ∈ CY (0

+
ϕ )

and so `(CY (0
+
ϕ )) > `(0+

ϕ ). Therefore Y does not preserve X -level contrary to
hypothesis. �

Proof of Theorem 5.10 Given a logic X , and Y is as required, we know that
CY (0) ⊆

⋂
0+. But Theorem 5.8 says that for productival logicsC[
X (0) =

⋂
0+.

Hence, by Proposition 5.11, we get CY (0) ⊆ C[
X (0). �

Notes

1. In measure theory of the unit interval the σ -algebra is some proper subset of P ([0, 1]).
Using the axiom of choice one can prove that not all subsets of [0,1] are, in fact, measur-
able. However, our generalization will not suffer this problem, with or without choice.

2. In the work of Brown and Schotch [1], the empty set serves as such an element.

3. However, ξ can be transfinite, but in that case, |ξ − 1| = ξ , which is what we want.

4. However, we provide the proof for the logical version since it is inclusive of the topologi-
cal version. The only difference is in the basis step of the induction.

5. This assertion of a Q-closure is for the case where we use logical covers and Q is conX ;
to consider the topological covers we restrict the basis case to ∅ and just use Q and no
closure operator.

6. See [5], p. 312 and [1], p. 275.
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