
Notre Dame Journal of Formal Logic
Volume 47, Number 4, 2006

The Embedding Theorem:
Its Further Developments and Consequences. Part 1

Alexei Y. Muravitsky

Abstract We outline the Gödel-McKinsey-Tarski Theorem on embedding of
Intuitionistic Propositional Logic Int into modal logic S4 and further develop-
ments which led to the Generalized Embedding Theorem. The latter in turn
opened a full-scale comparative exploration of lattices of the (normal) exten-
sions of modal propositional logic S4, provability logic GL, proof-intuitionistic
logic KM, and others, including Int. The present paper is a contribution to this
part of the research originated from the Gödel-McKinsey-Tarski Theorem. In
particular, we show that the lattice ExtInt of intermediate logics is likely to be
the only constructing block with which ExtS4, the lattice of the extensions of
S4, can be formed. We, however, advise the reader that our exposition is dif-
ferent from the historical lines along which some of the results discussed below
came to light. Part 1, presented here, deals mostly with structural issues of ex-
tensions of logics, where algebraic semantics, though underlying this approach,
is used merely occasionally. Part 2 will be devoted to algebraic analysis of the
Embedding Theorem.

1 Introduction

The assertion on embedding of the intuitionistic propositional logic Int into modal
logic in order to interpret the former in terms of the classical propositional logic Cl
and the notion of provability was conjectured in 1933 by Gödel in [5]. However, it
gained the status of a theorem only in 1948 after the appearance in print of the paper
[15] by McKinsey and Tarski. In his short note, Gödel proposed an operation which,
applied to an assertoric formula, results in a modal formula so that, as Gödel sug-
gested, the intuitionistic logic can be regarded through this operation as a fragment
of modal logic S4. (See Theorem 2.1, Part 1.)
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In light of this Gödel-McKinsey-Tarski Embedding Theorem, a similar embed-
ding of Int into a proper extension of S4, discovered by Grzegorczyk in the 1960s
(see Theorem 2.1, Part 2), probably was not a big surprise at the time. The important
role of Grzegorczyk’s logic became clear almost a decade later when the attention
of the propositional logic community turned from particular logics to the lattices of
their extensions and especially to the comparative investigation of these lattices. The
first work in this still growing field was the paper by Maksimova and Rybakov [13].

In the present paper we reconstruct the tree that is rooted in the Gödel-McKinsey-
Tarski Embedding Theorem. In our exposition we emphasize logical dependences of
things rather than the chronological order within which they were discovered. Also,
we will not discuss semantics here, to which Part 2 will presumably be devoted. In
particular, we intend to analyze there the algebraic constructions, used in the gen-
eralized theorem on embedding (Theorem 2.2) and bring other constructions into
discussion.

Although having begun with the Gödel-McKinsey-Tarski Embedding Theorem,
our own nonhistorical journey originates in Corollary 2.6 (Blok-Esakia inequality),
which we regard as an indication that any normal extension of modal logic S4 can
be seen as a twofold structure.1 The intention of a better understanding of this view
is the underlying idea of the present work. As a result we get a new picture of the
lattice of all normal extensions of S4.

2 Starting Point

We will be using two languages of propositional logic. One, called assertoric, con-
tains logical connectives: ∧ (conjunction), ∨ (disjunction), ¬ (negation), and →

(material implication). Adding to this language modality �, we get the modal propo-
sitional language. We use letters A, B, . . . to denote unspecified assertoric formulas
and 6 to denote a set (possibly empty) of such formulas, and we use letters α, β, . . .
for unspecified modal formulas and 0 for a set (possibly empty) of modal formu-
las. In both languages we build up formulas over one and the same infinite set of
propositional variables p, q, . . . (with or without indices).

We will need a mapping from the set of assertoric formulas into the set of modal
formulas, defined as follows. Let At be the resulting modal formula by placement of
� in front of every subformula of formula A.2 We denote by 6t the resulting set of
modal formulas when we apply this operation to all formulas in 6.

Now we introduce into consideration the following propositional logics: Int, S4,
and Grz, as well as the sets of their normal extensions, respectively, ExtInt, ExtS4,
and ExtGrz. It is well known (cf., e.g., [2]) that the three last sets of logics are
distributive lattices with respect to set intersection ∩ as the greatest lower bound and
union of two logics, closed under the postulated rules of inference, as their least
upper bound; we denote the latter operation by ⊕. We will be considering here only
consistent normal extensions of a designated logic, that is, those which are closed
under the rules of inference postulated in this logic. We use the following definitions
of the logics mentioned above.

All three have the rule of (simultaneous) substitution and modus ponens, or de-
tachment, as their rules of inference—the only postulated rules for the assertoric
logics in our consideration. In addition, S4 and Grz, as well as their (normal) exten-
sions, have also the rule of necessitation, which derives �α from α.
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The intuitionistic logic Int is defined by the same axiomatic system as in [10] ex-
cept that we use substitution instead of axiom schemes. We will denote by Int + 6
the extension of Int when 6 is added to the axioms of Int.3 For example, the classi-
cal logic Cl is Int+¬¬p → p. The similar definition applies to forming extensions
of modal logics. As usual, we write A + B + C instead of {A, B, C}, and so forth,
as well as α + β + γ instead of {α, β, γ }, and so on.

Now let us consider Cl in the modal language, endowed with the rule of neces-
sitation, and denote this system by mCl. It will play a merely auxiliary part. So,
following Gödel [5], we define

S4 = mCl + �(p → q) → (�p → �q) + �p → p + �p → ��p.

Furthermore, Grz = S4 + �(�(p → �p) → p) → p is known as Grzegorczyk
logic.4 The logic S4 + p → �p is known to be the only maximal consistent ex-
tension of Grz as well as of S4. We use S4 + 0, Grz + 0, and so forth to denote a
consistent extension of S4, Grz, respectively, or that of some other logics.

In [5] Gödel expressed a strong belief that the first equivalence of the following
theorem is true.

Theorem 2.1 (on embedding) For every formula A, the following equivalences
hold:

Part 1 Int ` A ⇐⇒ S4 ` At, (cf. [5], [15]);
Part 2 Int ` A ⇐⇒ Grz ` At (cf. [8]).

This theorem was generalized in the 1970s as follows.

Theorem 2.2 (generalized on embedding, [15] + [12]) Let M be a modal logic
such that S4 ⊆ M ⊆ Grz. Then for any set 6 of assertoric formulas and a formula
A,

Int + 6 ` A ⇐⇒ M + 6t
` At.

The equivalence in Theorem 2.2 gives the grounds for the following definitions:

τ(Int + 6) = S4 + 6t and σ(Int + 6) = Grz + 6t.

By virtue of Theorem 2.2, these definitions are correct. We show, for example, cor-
rectness of τ .

Let us assume that an extension of Int can be axiomatized as Int+6 and Int+61.
According to Theorem 2.1, each formula in 61 is derivable in S4 + 6t and each
formula in 6 is derivable in S4 + 6t

1; that is, S4 + 6t
= S4 + 6t

1. In the same
manner, one can show correctness of σ .

It follows from these definitions that

σ(L) = τ(L) ⊕ Grz (1)

for each assertoric L ∈ ExtInt.
Two years before the general result of Theorem 2.2 on embedding had been es-

tablished, Maksimova and Rybakov [13] had conducted a comparative investigation
of lattices ExtInt and ExtS4. So they were the first to introduce mappings τ and σ ,
as well as the mapping ρ : ExtS4 −→ ExtInt, as follows:

ρ(S4 + 0) = {A |S4 + 0 ` At
}.

Some important characteristics of these mappings can already be seen from the fol-
lowing.
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Theorem 2.3 ([13] + [11]) ρ(S4 + 0) is an extension of Int; in other words, the
equality ρ(S4 + 0) = Int + ρ(S4 + 0) holds. Moreover, ρ is an epimorphism
and both τ and σ are monomorphisms from ExtInt into ExtS4 and from ExtInt into
ExtGrz, respectively.

In terms of τ, σ , and ρ, Theorem 2.2 implies that, for every L ∈ ExtInt,

ρ ◦ τ(L) = L and ρ ◦ σ(L) = L , (2)

which gives rise to the question whether the composites τ ◦ ρ and σ ◦ ρ are the
identity function, too. As to the former, the identity τ ◦ ρ(M) = M is not in general
true. For example, by Theorem 2.2, τ ◦ ρ(Grz) = τ(Int) = S4. The following
theorem explains the situation.

Theorem 2.4 For any M ∈ ExtS4, the equality τ ◦ ρ(M) = M holds if and only if
there is L ∈ ExtInt such that M = τ(L).

Proof It suffices to notice that logic τ(L) satisfies the equality in question. Indeed,
τ ◦ ρ(τ(L)) = τ(L) by virtue of the first equality in (2).

From Theorem 2.4, it follows immediately that Grz cannot be represented as
τ(L). In other words, if we define

L = {τ(L)|L ∈ ExtInt},

then Grz /∈ L. According to Theorem 2.3, L is a sublattice of ExtS4 and isomorphic
to ExtInt. �

The composite σ◦ρ is also in general not the identity function, since σ◦ρ(S4) = Grz.
The interaction between τ , σ , and ρ is quite subtle as one can see from the following.

Theorem 2.5 ([13] + ([1], [3])) The equality ρ−1(Int+6t) = [S4+6t, Grz+6t
]

holds; that is, ρ−1(L) = [τ(L), σ (L)] for any L ∈ ExtInt.

Theorems 2.3 and 2.5 imply immediately the following.

Corollary 2.6 (Blok-Esakia inequality) For every modal logic M ∈ ExtS4,
τ ◦ ρ(M) ⊆ M ⊆ σ ◦ ρ(M).

Since, by Equation (1), σ(L) is an extension of ExtGrz, it is natural to ask whether
σ ◦ ρ(Grz + 0) = Grz + 0. It is well known that the answer is positive.

Theorem 2.7 ([13] + ([1], [3]) + [11]) The equality σ ◦ ρ(Grz + 0) = Grz + 0
holds for all consistent extensions of Grz. Hence ρ, restricted to ExtGrz, and σ are
inverses of one another and, therefore, lattices ExtGrz and ExtInt are isomorphic.

Let us focus for a moment on the lattice L. One can notice that its least element is
S4 and its greatest element equals S4 + �¬�¬�p → �p, that is, S5.5

We conclude this section with the following remark.

Remark 2.8 By Theorem 2.4, logic Grz cannot be defined as S4 + 6t for any set
6. In Section 4, we will prove that it remains to be true for all consistent extensions
of Grz. On the other hand, each extension of Grz can be represented as Grz + 6t

for some 6. (See Theorem 2.7 above.) We leave the question open whether Grz is
the least logic in ExtS4 with this property.
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3 Some Algebraic Requisites

We will be using the notion of an S4-algebra, also known as topological Boolean
algebra,6 interior algebra,7 closure algebra,8 and topoboolean algebra,9 that is, a
universal algebra 〈B; ∧, ∨, ¬, 0, 1, �〉, where 〈B; ∧, ∨, ¬, 0, 1〉 is a Boolean algebra
with the least element 0 and the greatest element 1. The first two operations, ∧ and ∨,
are binary operations of a greatest lower bound and a least upper bound, respectively,
when the partial order x 6 y is understood as x ∧ y = x or x ∨ y = y, and
the operation ¬ is a unary operation of complement. The operation � is called an
interior operation and is subject to the following identities:

�(x ∧ y) = �x ∧ �y, �x ∧ x = �x, ��x = �x, and �1 = 1,

valid for all x and y in B.
Connection with logic arises when one considers varieties of S4-algebras, that is,

such sets of S4-algebras that are determined by identities additional to the identities
above which determine the variety of all S4-algebras. All the varieties of S4-algebras
form a lattice dually isomorphic to ExtS4. The latter, as it follows from Theorem 2
in [13], is a Heyting algebra10 and, hence, is distributive.

In this paper, we deal only with particular S4-algebras and postpone investigation
of varieties to Part 2. We will be using distributivity of ExtS4 in Sections 9 and 10,
referring to the distributivity test: A lattice is distributive if and only if it contains
neither a diamond nor a pentagon as its sublattices. (See Theorem II.1 in [7].)

An element a of an S4-algebra is called open if �a = a. All open elements
of an S4-algebra form a Heyting algebra with respect to the same ≤ relation as in
the original S4-algebra. This Heyting algebra is called the skeleton of the given S4-
algebra. Generating the Boolean subalgebra by the skeleton of an S4-algebra, that is,
using only Boolean operations of the signature of the latter, we get an S4-subalgebra
of it, called Boolean-generated (or simply B-generated). Any B-generated algebra
satisfies the identity

�(¬�(¬x ∨ �x) ∨ x) = �x .

An S4-algebra satisfying the last identity is called a Grzegorczyk algebra, or Grz-
algebra for short. The variety of the Grz-algebras determines logic Grz. Thus, every
B-generated algebra is a Grz-algebra and the converse is true for finite S4-algebras.
Both observations are due to Maksimova [12]. They will be used occasionally with-
out reference.

4 Lattices ExtGrz and L

We can note that, by virtue of Theorem 2.7, any M ∈ ExtGrz can be represented as
σ(L) for some L ∈ ExtInt. However, no M ∈ ExtGrz can be represented as τ(L).

We want to note the following well-known observation.

Proposition 4.1 ([2], p. 93) Logic Grz, which is the least element in ExtGrz, and
logic S4 + �¬�¬�p → �p(= S5), which is the greatest element in L, are incom-
parable. Therefore, ExtGrz and L do not have common elements.11

Our next remark concerns lattice L and seems unimportant, but it allows us to intro-
duce a new character into our discussion. Let us denote M0 = Grz ∩ S5. According
to Theorem 1 in [13], M0 = S4+(�(�(p → �p) → p) → p)∨�¬�¬�q → �q .
On the other hand, Grz ⊕ S5 = Grz + �¬�¬�p → �p = S4 + p → �p. The
last equality is true by virtue of Theorem 2.7.
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Proposition 4.2 M0 /∈ L.

Proof If it were otherwise, that is, M0 = τ(L), then we would have ρ(M0) = Int,
since M0 ∈ [S4, Grz]. On the other hand, ρ(M0) = ρ(τ(L)) = L; that is,
L = Int, which implies M0 = S4. This is a contradiction, for the formula
(�(�(p → �p) → p) → p) ∨ �¬�¬�q → �q is not valid on an 8-element S4-
algebra with only three open elements: an atom, 0, and 1. As a refuting assignment,
we can assign p and q any element that covers the open atom of the algebra. �

According to Corollary 2.6 and Equation (1), for every modal logic M , τ ◦ ρ(M)
⊆ M ⊆ Grz ⊕ τ ◦ ρ(M). In other words, the equation

M = M∗
⊕ τ ◦ ρ(M) (3)

is solvable for M∗
∈ [S4, Grz]. We will be preoccupied with this issue in the next

section.

5 τ -Representation for the Logics in ExtS4

For any logic M , we call the right-hand side of the equality

M = M∗
⊕ τ(L), (4)

where M∗
∈ [S4, Grz] and L ∈ ExtInt, a τ -representation of M with a modal com-

ponent M∗ and an assertoric component L . It is clear that the assertoric component
equals ρ(M), since ρ(M) = ρ(M∗

⊕ τ(L)) = ρ(M∗) ⊕ ρ(τ(L)) = Int ⊕ L = L .
Thus each modal logic has a unique assertoric component of its τ -representation,
but its modal component may vary. However, given M , Equation (3) has always a
solution for M∗.

Given modal logic M , logic M∗
= M ∩ Grz is a solution to Equation (3), since,

by virtue of distributivity of ExtS4, Corollary 2.6, and (1), we get

(M ∩Grz)⊕τ ◦ρ(M) = (M ⊕τ ◦ρ(M))∩(Grz⊕τ ◦ρ(M)) = M ∩σ ◦ρ(M) = M.

We note that Equation (3) can have more than one solution. If, for instance, M = S5,
both M∗

= S4 and M∗
= M0 are solutions to this equation. In general, if M ∈ L,

then any logic in [S4, M ∩Grz] is a solution to (3). It is obvious that, given M , logic
M ∩ Grz is the greatest solution to (3). Thus, if M ∈ L, the interval [S4, M ∩ Grz]
consists of the solutions to (3). Also, we observe that, if M ∈ [S4, Grz], there is the
only solution to (3), which is M itself.

Given M∗
∈ [S4, Grz] and L ∈ ExtInt, we can define modal logic by (4). We

call the τ -representation of M saturated if M∗
= M ∩ Grz.

Proposition 5.1 The set of all modal components of a logic M is a dense sublattice
of ExtS4 with the greatest element M ∩ Grz.

Proof Suppose both M∗

1 and M∗

2 satisfy (4). Then, clearly, M = (M∗

1 ⊕M∗

2 )⊕τ(L)
and also, by distributivity,

(M∗

1 ∩ M∗

2 ) ⊕ τ(L) = (M∗

1 ⊕ τ(L)) ∩ (M∗

2 ⊕ τ(L)) = M ∩ M = M.

�

Now assume, in addition, that M∗

1 ⊆ M∗
⊆ M∗

2 . Obviously, M = M∗

1 ⊕ τ(L)
⊆ M∗

⊕ τ(L) = M∗

2 ⊕ τ(L) = M .
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If the lattice of the modal components of τ -representations of logic M has the
least element M∗, we call the representation M = M∗

⊕ τ(L) minimal. We leave
open the following problem.

Problem 5.2 Does every modal logic M ∈ ExtS4 possess a minimal τ -representa-
tion?

Borrowing notation from [13], we denote a logic S4 + 0 by [0]. The following
property is well known:

[01] ⊕ [02] = [01 ∪ 02]; (5)

see [13] for detail.

Proposition 5.3 Let M∗ be a modal component of logic M given by its τ -
representation M = M∗

⊕ τ(L). Then [M∗
\τ(L)] is also a modal component of M.

Moreover, the process of “subtracting τ(L)” stabilizes after at most one step.

Proof Using (5), we get

[M∗
\τ(L)] ⊕ τ(L) = [(M∗

\τ(L)) ∪ τ(L)] = [M∗
∪ τ(L)] = M∗

⊕ τ(L) = M.

Now we will show that this process stabilizes. Indeed, let M∗

1 = [M∗
\τ(L)]. We

have
[M∗

1 \τ(L)] = (M∗

1 \(τ L)) ∪ 0[M∗

1 \τ(L)] = (M∗

1 \τ(L)) ∪ 0,

for some 0 ⊆ τ(L). Then [M∗

1 \τ(L)]\τ(L) = ((M∗

1 \τ(L))∪0)\τ(L) = M∗

1 \τ(L).
�

Example 5.4 According to Proposition 4.1, [Grz\τ(L)] = Grz for all L .

A τ -representation M = M∗
⊕ τ(L) is called fine if

[M∗
\τ(L)] = M∗. (6)

It is clear that any minimal τ -representation must be fine. It is also clear that the
τ -representation of Grz is fine.

Problem 5.5 Is any τ -representation of any consistent Grz + 0 fine?

Now we want to consider the structure of the modal components in the fine τ -
representations of a logic.

Proposition 5.6 All modal components of a modal logic M satisfying (6) form a
directed downward partially ordered set which is a join semilattice.

Proof Let us first prove that any two modal components of M satisfying (6) have
a lower bound satisfying (6). We remind the reader that the set of all modal compo-
nents of M is a lattice (Proposition 5.1). The conclusion, then, follows from the last
observation and Proposition 5.3.

Now suppose that M∗

1 and M∗

2 are two distinct modal components of M and both
satisfy (6). Then we have

M∗

1 ⊕ M∗

2 = [M∗

1 \τ(L)] ⊕ [M∗

2 \τ(L)]

= [(M∗

1 \τ(L)) ∪ (M∗

2 \τ(L))]

= [(M∗

1 ∪ M∗

2 )\τ(L)]

⊆ [(M∗

1 ⊕ M∗

2 )\τ(L)]

⊆ M∗

1 ⊕ M∗

2 .
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�

Thus M∗

1 ⊕ M∗

2 satisfies (6).

6 τ0-Representations

In this section, we focus exclusively on the extensions of the modal logic
M0 = Grz ∩ S5. For any logic L ∈ ExtInt, we define

τ0(L) = M0 ⊕ τ(L). (7)

It is obvious that
σ(L) = Grz ⊕ τ0(L). (8)

For each logic M ∈ ExtM0, we call a τ0-representation the right side of the equation
M = M∗

⊕ ρ ◦ τ(M), where M∗
∈ ExtM0 ∩ [S4, Grz].

We notice that every modal logic M ∈ ExtM0 has a τ0-representation. In-
deed, let M∗ be a modal component of any τ -representation of M ; that is,
M = M∗

⊕ τ ◦ ρ(M). Then, since M0 ⊆ M , we have M = M0 ⊕ M =

(M0 ⊕ M∗) ⊕ τ ◦ ρ(M) and M0 ⊕ M ∈ ExtM0.
We note here that the saturated τ -representation of any logic from [M0, Grz] is

its τ0-representation, because for every M ∈ ExtM0, M0 ⊆ M ∩ Grz ⊆ Grz. Also,
one can notice that for any L ∈ ExtInt,

ρ ◦ τ0(L) = L , (9)

since ρ(M0 ⊕ τ(L)) = ρ(M0) ⊕ ρ(τ(L)) = Int ⊕ L = L .
Now we intend to show that each logic in ExtM0 possesses a unique τ0-

representation. For this purpose, for any fixed assertoric logic L ∈ ExtInt, we
define two mappings—h : M 7−→ M ⊕ τ(L) for each M ∈ [M0, Grz] and
g : N 7−→ N ∩ Grz for each N ∈ [τ0(L), σ (L)]. We are going to show that h and g
are inverse lattice isomorphisms.

Indeed, by distributivity and Definitions (7) and (1), we get

h(g(N )) = (N ∩ Grz) ⊕ τ(L) = (N ⊕ τ(L)) ∩ (Grz ⊕ τ(L)) = N ∩ σ(L) = N .

On the other hand, since τ is monotone, τ(L) ⊆ τ(Cl) = S5. The last inclusion
implies Grz ∩ τ(L) ⊆ Grz ∩ S5 = M0.

Now by virtue of distributivity and the last inclusion, we get

g(h(M)) = Grz∩(M⊕τ(L)) = (Grz∩M)⊕(Grz∩τ(L)) = M⊕(Grz∩τ(L)) = M.

Finally, we notice that h and g are monotone. Thus we have proved the following
theorem.

Theorem 6.1 For each L ∈ ExtInt, the lattices [M0, Grz] and [τ0(L), σ (L)] are
isomorphic.

What is a structure of the intervals mentioned in Theorem 6.1? The answer gives the
following corollary.

Corollary 6.2 All the intervals [τ(L), σ (L)], as well as [M0, Grz], are linearly
ordered and have type 1 + ω∗.

Proof According to Theorem 6.1, these intervals are isomorphic to [τ0(Cl), σ (Cl)],
that is, to [M0 ⊕S5, Grz⊕S5], which can be read as [S5, S4+ p → �p]. However,
it is well known that the latter is linearly ordered and has type 1 + ω∗ [17]. �
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Corollary 6.3 Every extension of M0 has a unique τ0-representation which is the
saturated τ -representation of this extension.

Proof Let M be in [M0, Grz] and suppose M = M∗

1 ⊕ τ(L1) = M∗

2 ⊕ τ(L2); M1
and M2 lie also in [M0, Grz]. As we noted before, L1 = L2 = ρ(M). On the other
hand, the equality M∗

1 ⊕ τ(ρ(M)) = M∗

2 ⊕ τ(ρ(M)) means that h(M∗

1 ) = h(M∗

2 );
therefore, M∗

1 = M∗

2 . �

Finally, as we noticed above in this section, the saturated τ -representation of any
logic from [M0, Grz] is its τ0-representation.

Let [M0, Grz] be ordered as follows:

M0 ⊂ · · · ⊂ M3 ⊂ M2 ⊂ M1 = Grz.

Corollary 6.4 Let M ∈ [S4, Grz] and n > 1. Then M is a subset of Mn but not a
subset of Mn+1 if and only if M ⊕ M0 = Mn .

Proof Suppose M is included in Mn but not in Mn+1. Obviously, M ⊕ M0 ⊆ Mn .
If this inclusion were proper, then, since M ⊕ M0 ∈ [M0, Grz] and by virtue of
Corollary 2.6, the inclusion M⊕M0 ⊆ Mn+1 would be true, which is a contradiction.

On the other hand, the equality M ⊕ M0 = Mn implies that M ⊆ Mn . If we also
had the inclusion M ⊆ Mn+1, we would conclude that Mn ⊆ M ⊆ Mn+1. This is a
contradiction. �

7 Partitioning Lattice ExtM0 in Slices and Layers

For any Mn ∈ [M0, Grz], we define

τn(L) = Mn ⊕ τ(L)

as a function from ExtInt into ExtM0. Then, for a fixed n, we call the set
{τn(L)|L ∈ ExtInt} the nth slice of ExtM0.

For a fixed Mn ∈ [M0, Grz], we denote

τn(L) = Mn ⊕ τ(L).

Note that τ1(L) = σ(L).
We remind the reader that, according to [17], all the extensions of S5 in ExtS4 are

linearly ordered in type 1 + ω∗ as follows:

S5 = S0 ⊂ · · · ⊂ S3 ⊂ S2 ⊂ S1 = S4 + p → �p.

Proposition 7.1 For each n > 0, Sn = Mn ⊕ S5 and Mn = Sn ∩ Grz.

Proof It is obvious that S0 = S5 = Grz ∩ S5 ⊕ S5 = M0 ⊕ S5. Also, according to
Proposition 4.2, we have S1 = S4 + p → �p = Grz ⊕ S5 = M1 ⊕ S5. �

Next we notice that each Mn ⊕S5 is an extension of S5, a τ0-representation of which
Mk ⊕ S5. Therefore, the proof will be completed when we show that the equality
Mn ⊕S5 =Mk ⊕S5 implies n = k. Since S5 = τ(Cl), this implication follows from
Corollary 6.3.

Now the second equality of the statement follows easily from the first by distribu-
tivity. Indeed, Sn ∩ Grz = (Mn ⊕ S5) ∩ Grz = Mn ⊕ M0 = Mn .

Corollary 7.2
⋂

n>1
Mn = M0.
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Proof The proof follows immediately from the second equality of Proposition 7.1.
�

Proposition 7.3 The mapping τn is a lattice isomorphism from ExtInt onto
[Mn, Sn].

Proof It is clear that τn is a lattice homomorphism. Also, τn is a one-one mapping.
Indeed, Mn ⊕τ(L1) = Mn ⊕τ(L2) implies Mn ⊕τ(L1)⊕Grz = Mn ⊕τ(L2)⊕Grz;
that is, σ(L1) = σ(L2). Therefore, by virtue of Theorem 2.7 L1 = L2. �

Next we notice that τn(Int) = Mn and τn(Cl) = Mn ⊕ S5 = Sn . Now assume
that Mn ⊂ M ⊂ Sn where neither n = 0 nor n = 1. According to Corollary 6.3,
M = Mk ⊕ τ(L), where Mk = M ∩ Grz. Therefore, Mn ⊆ Mk and hence n > k. If
it were the case that n > k, we would have Sk = Mk ⊕ S5 ⊆ Sn , since Mk ⊆ Sn and
Sn ⊂ Sk , that is, a contradiction. Thus n = k; hence, M = τn(L).

Theorem 7.4 All n-slices form a partition of ExtM0.

Proof Let M ∈ ExtM0. If Mi ⊆ M for all i > 0, then M ∈ [M1, S1] =

[Grz, S4+ p → �p]. If Mi * M for all i > 1, then M ∈ [M0, S0] = [M0, S5]. �

Now we assume that Mn ⊆ M and Mi * M for all i < n and i 6= 0. Thus
M ∩ Grz = Mn and, hence, Mn ⊕ τ(ρ(M)) is a τ0-representation of M . In other
words, M = τn(ρ(M)) and, according to Proposition 7.1, M ∈ [Mn, Sn].

Next we prove that any two distinct slices are disjoint. Indeed, suppose
M ∈ [Mn, Sn] ∩ [Mk, Sk] and n < k. If n = 0, then M0 ⊂ Mk ⊆ Grz ∩ S5 = M0.
So we assume that 1 6 n < k. Thus Mk ⊂ Mn and, correspondingly, Sk ⊂ Sn .
However, since Mn ⊆ Sk , Mn ⊕ S5 ⊆ Sk .

Proposition 7.5 For any n > 1, the nth slice and L do not intersect.12

Proof Suppose Mn ⊆ M ⊆ S5. Then Mn ⊕ S5 = S5. This contradicts Proposi-
tion 7.1. �

Problem 7.6 The 0th slice has at least one common logic with L—the logic S5.
Do they have more common elements?

For a fixed L ∈ ExtInt, we call {τn(L)|n > 0} an L-layer. We notice that τn(L)
belongs to the nth slice. Therefore, by Proposition 7.5, each L-layer has a linear
order of type 1 + ω∗ as follows:

τ0(L) ⊂ · · · ⊂ τ3(L) ⊂ τ2(L) ⊂ τ1(L).

We also notice that for every n > 0 and L ∈ ExtInt,

ρ(τn(L)) = L . (10)

Let ρ0 be the restriction of ρ to ExtM0. It is clear that ρ0 is an epimorphism from
ExtM0 onto ExtInt.

Lemma 7.7 For every L ∈ ExtInt,

ρ−1
0 (L) = [τ0(L), τ1(L)].
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Proof Indeed,

ρ−1
0 (L) = {M | M ∈ ExtM0, ρ(M) = L}

= {M | M ∈ ExtS4, M = M0 ⊕ M, ρ(M) = L}

= {M0 ⊕ M | M ∈ ExtS4, ρ(M) = L}

= {M0 ⊕ M | M ∈ ExtS4, M ∈ ρ−1(L)}

= {M0 ⊕ M | M ∈ ExtS4, M ∈ [τ(L), σ (L)]} (by Theorem 2.5)
= {M0 ⊕ M | M ∈ ExtS4, τ (L) ⊆ M ⊆ σ(L)}

= {M | M ∈ ExtM0, τ0(L) ⊆ M ⊆ σ(L)}

= {M | M ∈ ExtM0, τ0(L) ⊆ M ⊆ τ1(L)}.

�

Proposition 7.8 For each L ∈ ExtInt, ρ−1
0 (L) is the L-layer.

Proof It follows from Lemma 7.7 that {τn(L)|n > 0} ⊆ ρ−1
0 (L). On the other

hand, if M ∈ ρ−1
0 (L), that is, τ0(L) ⊆ M ⊆ τ1(L), then, first, by Equation (9),

L ⊆ ρ(M) ⊆ L; that is, ρ(M) = L . Second, according to Corollary 6.3, there is
n > 0 so that M = Mn ⊕ τ(L); that is, M = τn(L). �

One can see with the help of Proposition 7.8 that all the L-layers form a quotient
lattice of ExtM0, isomorphic to ExtInt.

8 Modal Components of τ -Representations of Logics in ExtM0

The following theorem holds.

Theorem 8.1 Let M ∈ ExtM0 and M = M∗
⊕ τ(L) be an arbitrary τ -

representation of M. Then either there is a natural number n > 1 such that
M∗

⊆ Mn but M∗ * Mn+p, for all p > 1, in which case M belongs to the nth
slice, or M∗ is included in all Mn, n > 1, in which case M belongs to the 0th
slice. Conversely, if M belongs the nth slice for some n > 1, then M∗

⊆ Mn but
M∗ * Mn+p for all p > 1. If M lies in the 0th slice, then M∗

⊆ M0.

Proof Let M = Mk ⊕ τ(L) be the τ0-representation of M which, according to
Corollary 6.3, is also its saturated τ -representation. Therefore, we have M∗

⊆ Mk .
Suppose M∗

⊆ Mn but M∗ * Mn+p for all p > 1. It is clear that M ⊆ Mn ⊕ τ(L).
Therefore, Mk ⊕ τ(L) ⊆ Mn ⊕ τ(L). On the other hand, 1 6 k 6 n. Therefore,
Mn ⊆ Mk and, hence, Mn ⊕ τ(L) ⊆ Mk ⊕ τ(L). Thus Mk ⊕ τ(L) = Mn ⊕ τ(L),
which, by Corollary 6.3, implies that Mk = Mn ; that is, M belongs to the nth slice.

It is obvious that if M∗
⊆ Mn for all n > 1, then M∗

⊆ M0 and, hence,
M∗

⊕ τ(L) ⊆ M0 ⊕ τ(L); that is, Mk ⊕ τ(L) ⊆ M0 ⊕ τ(L). On the other hand, the
inclusion M0 ⊕ τ(L) ⊆ Mk ⊕ τ(L) always holds. Therefore, we have Mk = M0;
that is, M belongs to the 0th slice.

Now assume that M belongs to an nth slice where n > 1 and M = M∗
⊕ τ(L)

is its τ -representation. Then also M = Mn ⊕ τ(L) where the latter is the saturated
τ -representation of M . Therefore, M∗

⊆ Mn . At the same time, if the inclusion
M∗

⊆ Mn+1 were true, then according to the first part of the proof, M would belong
either to the 0th slice or to a kth slice with k > n. However, both conclusions would
contradict Theorem 7.4. �
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Corollary 8.2 Let M belong to ExtM0 and lie in the nth slice, n > 1. Also,
let Mn be the modal component of the τ0-representation of M. Then for every
M∗

∈ [S4, Grz] such that M∗
⊆ Mn and M∗ * Mn+1, M∗

⊕ M0 = Mn . On
the other hand, if M∗ is any modal component of the τ -representation of M, then
M∗

⊕ M0 = Mn; that is, M∗
⊕ M0 is the modal component of its saturated τ -

representation.

Proof The first statement follows immediately from Corollary 6.4. To prove the
second statement, we apply Theorem 8.1 and Corollary 6.4 again. �

We conclude this section with an example of a logic having two modal components.

Example 8.3 Logic S4+ p → �p has Grz and S4.1 among its modal components.

We recall that S4 + p → �p = S1 and Grz = M1. According to Proposition 7.1,
S1 = M1 ⊕ S5; that is, S1 = M1 ⊕ τ(Cl).

For another modal component we have to find such a proper sublogic of Grz that
would not be included in M2 or at least not be included in S2—the logic of a 4-
element S4-algebra with only two open elements—0 and 1. For such a candidate we
can try S4 + �♦p → ♦�p, that is, S4.1, since the latter is not valid on that algebra.
However, S4.1 ⊕ S5 = S1. We also know that S4.1 ⊂ Grz.

9 Partitioning the Interval [S4, Grz]

We define the partition of the interval [S4, Grz] as follows. Let E0 be [S4, M0] and
each En, n > 1 consist of the logics that are included in Mn but not in Mn+1. In view
of Corollary 7.2, the family {En}n>0 is a partition of [S4, Grz].

Theorem 9.1 Each En , n > 0 is an interval.

Proof This is obvious for E0. Next we consider an En , where n > 1. First we
show that En is a sublattice. It is clear that En is closed under ⊕. Now we prove by
contradiction that En is closed under ∩.

Let us suppose that there are two incomparable logics M and N in En so that the
inclusion M ∩ N ⊂ Mn+1 holds.13

Case 1 M ⊕ N = Mn . It is clear that both inclusions M ∩ N ⊆ M ∩ Mn+1 and
M ∩ N ⊆ N ∩ Mn+1 hold.

Case 1a In addition, we can assume that M ∩ N = M ∩ Mn+1 = N ∩ Mn+1 in
which case M, N , Mn, Mn+1, and M ∩ N form a diamond. This is a contradiction.

Case 1b Now, in addition, we assume that either M ∩ N ⊂ M ∩ Mn+1 or
M ∩ N ⊂ Mn+1 holds. Let us consider the former. Then M, Mn, N , M ∩ N , and
M ∩ Mn+1 form a pentagon. Again we arrive at a contradiction. In case when the
other inclusion holds, Case 1c can be considered similarly.

Case 2 M ⊕ N ⊂ Mn .

Case 2a In addition, we assume that M ∩ Mn+1 = N ∩ Mn+1 which must be
equal to M ∩ N . Then M, M ⊕ N , Mn, Mn+1, and M ∩ N form a pentagon.

Case 2b In addition, we assume now that M ∩ Mn+1 = M ∩ N but M ∩ N
⊂ N ∩ Mn+1. Then M, M ⊕ N , N , N ∩ Mn+1, and M ∩ N form a pentagon.
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Case 2c When we have N ∩ Mn+1 = M ∩ N but M ∩ N ⊂ M ∩ Mn+1, then
M, M ⊕ N , N , M ∩ N , and M ∩ Mn+1 form a pentagon.

Case 2d In addition, we have M ∩ N ⊂ M ∩ Mn+1 and M ∩ N ⊂ N ∩ Mn+1.
Since

M ⊕ (N ∩ Mn+1) = (M ⊕ N ) ∩ (M ⊕ Mn+1) = (M ⊕ N ) ∩ Mn = M ⊕ N ,

M, M ⊕ N , N , N ∩ Mn+1, and M ∩ N form a pentagon. So we have a contradiction
again. �

Next we show that En satisfies the condition of Zorn’s Lemma with respect to the
inverse of the inclusion relation ⊆.14 First we remind the reader that, by virtue of
[13], Theorem 2, ExtS4 is a Heyting algebra. Let us consider a chain {Ni }i∈I of
logics from En and let N =

⋂
i∈I

Ni . Each logic Ni and N can be regarded as a clopen

in a compact topological space, namely, in Esakia space.15 Thus, if N ⊆ Mn+1,
then Ni ⊆ Mn+1 for some i ∈ I , which is a contradiction. So, according to Zorn’s
Lemma, En has a minimal element with respect to ⊆. Let us call this logic Kn .
However, Kn is not a merely minimal logic in En , but the least one, since En is a
sublattice. Logic Kn is obviously included in Mn but not in Mn+1 and, hence, each
logic in the interval [Kn, Mn] enjoys this property.

Problem 9.2 Is each logic Kn finitely axiomatizable?

Problem 9.3 Is each interval [Kn, Mn] isomorphic to ExtInt?

10 The Common Part of the Modal Component and τ -Component
of an Arbitrary Logic from ExtM0

Let M ∈ ExtM0 and we assume that M = M∗
⊕ τ(L) is a τ -representation of

M . We define 4M = M∗
∩ τ(L)—the common part of the modal component and

τ -component of M . One can notice that S4 ⊆ 4M ⊆ M0; that is, 4M ∈ E0.
In order to prove it we recall that M∗

⊆ Mn for some n > 0 and τ(L) ⊆ S5.
Therefore, 4M ⊆ M1 ∩ S5 = M0. From the definition above we also notice that
4M ⊆ M∗

∩ M0.

Theorem 10.1 Let M in ExtM0 have a τ -representation M = M∗
⊕ τ(L). Then

4M = M∗
∩ M0 if and only if M0 ⊆ τ(L).16

Proof Suppose M0 ⊆τ(L). This implies that 4M ⊆ M∗
∩ M0 ⊆ M∗

∩τ(L) = 4M .
Conversely, assume that 4M = M∗

∩ M0 and M belongs to the nth slice; that is,
Mn is the greatest modal component of M . We know that M∗

⊆ Mn . So we have
two cases to consider.

Case 1 M∗
= Mn . Then Mn ∩ τ(L) = 4M = Mn ∩ M0 = M0. It remains to

notice that
Mn ∩ τ(L) = M0 ⇐⇒ Mn ∩ τ(Cl) ∩ τ(L) = M0 (by monotonicity of τ)

⇐⇒ Mn ∩ S5 ∩ τ(L) = M0

⇐⇒ M0 ∩ τ(L) = M0 (since Mn ⊆ M1 and M1 ∩ S5 = M0)

⇐⇒ M0 ⊆ τ(L).
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Case 2 M∗
⊂ Mn . We first notice that the inclusion τ(L) ⊆ Mn cannot be true,

for we would have, by virtue of monotonicity of ρ and (2), that L = Int. But then
4M = S4 and, hence, M = M∗

⊂ Mn = M , a contradiction. If, on the other hand,
Mn ⊆ τ(L), then, the more so, M0 ⊆ τ(L). Thus, we will count that the logics Mn
and τ(L) are incomparable.

Next we show that M∗ and τ(L) are also incomparable. It is clear that
τ(L) * M∗, since M∗

⊆ Mn . For contradiction, we assume that M∗
⊆ τ(L).

Then we have M = τ(L). But we have just proved that Mn and τ(L) are incompa-
rable, which implies that τ(L) ⊂ Mn ⊕ τ(L) = M , a contradiction.

Next we notice that M∗
∩ τ(L) ⊂ Mn ∩ τ(L), for in case of equality we would

have to conclude that the pentagon with the vertices M∗, Mn, M, τ (L), Mn ∩ τ(L)
is a sublattice of ExtS4. Since Mn ⊆ M1 and τ(L) ⊆ S5, we have Mn ∩ τ(L) ⊆ M0.
Now we intend to prove that this inclusion cannot be proper. Indeed, assume for
contradiction that Mn ∩ τ(L) ⊂ M0. We notice that

M∗
⊕ (Mn ∩ τ(L)) = (M∗

⊕ Mn) ∩ (M∗
⊕ τ(L)) = Mn ∩ M = Mn .

Also, according to Theorem 8.1 and Corollary 6.4, M0 ⊕ M∗
= Mn . Thus, we found

the pentagon with vertices M∗, Mn, M0, Mn ∩ τ(L), and M∗
∩ τ(L). Therefore,

Mn ∩ τ(L) = M0, which, as we have proved above, is equivalent to the inclusion
M0 ⊆ τ(L). �

11 Conclusion

As the reader recalls, we started with the theorem on embedding of the intuitionistic
propositional logic into the modal logic S4. This led us to the lattice L isomorphic
to ExtInt. As we have seen, the last lattice serves as a main constructing block in
forming the lattice ExtS4. We add below several remarks to this conclusion.

Remark 11.1 Consider the interval [M0, Grz] in ExtS4. The filter generated by this
interval equals ExtM0, which in turn consists of the intervals [Mn, Sn] each of which
is a lattice replica of ExtInt. On the other hand, the ideal generated by [M0, Grz]
equals [S4, Grz], which consists of the intervals [Kn, Mn].

Remark 11.2 The lattice L has at least two common points with the filter and
ideal—the logic S5 with the filter and the logic S4 with the ideal.

In conclusion, we formulate the following conjectures.

Conjecture 11.3 The lattice ExtS4 consists of the filter and ideal as well as the
lattice L; there is nothing more in it.

Conjecture 11.4 The lattice L has only two common elements with the filter and
ideal—S5 and S4, respectively.

Conjecture 11.5 Each interval [Kn, Mn] is isomorphic to ExtInt.

Notes

1. This will be explained in Section 5.

2. The operation A 7→ At is often called the McKinsey-Tarski translation.
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3. If 6 is nonempty, it must contain only classical tautologies in order to have Int + 6
consistent.

4. Logic Grz was defined by Grzegorczyk in [8] and was named after him. The origi-
nal definition contained a formula with two variables. The present definition is due to
Maksimova [12].

5. The equality S4 + �¬�¬�p −→ �p = S5 can be traced in [9].

6. See Rasiowa and Sikorski [16].

7. See [2], though Blok was the first to introduce it in his doctoral dissertation [1].

8. See McKinsey and Tarski [14].

9. This term was introduced in [11].

10. Another term for a Heyting algebra is a pseudo Boolean algebra. See Rasiowa and
Sikorski [16].

11. We will prove a stronger statement in Section 7.

12. This proposition is a generalization of Proposition 4.1.

13. We note that the equality M ∩ N = Mn+1 is impossible.

14. Cf. [6], Chapter 0, §4.

15. Esakia showed in [4], Chapter III, that any Heyting algebra can be embedded into the
Heyting algebra of the open sets of a 0-dimensional, Hausdorff, compact topological
space, which is defined as follows: the points are the prime filters of a given Heyting
algebra and the topology is defined through its subbase—the images and their comple-
ments with respect to Stone embedding (Esakia space).

16. By Proposition 4.2, this improper inclusion can be replaced with the proper one.
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