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Morley Rank in Homogeneous Models

Alexei Kolesnikov and G. V. N. G. Krishnamurthi

Abstract We define an appropriate analog of the Morley rank in a totally
transcendental homogeneous model with type diagram D. We show that if
RM[p] = α then for some 1 ≤ n < ω the type p has n, but not n + 1, distinct
D-extensions of rank α. This is surprising, because the proof of the statement
in the first-order case depends heavily on compactness. We also show that types
over (D,ℵ0)-homogeneous models have multiplicity (Morley degree) 1.

1 Introduction

In the context of uncountably categorical theories, two ranks play an important role:
Morley’s rank RM[p] and Shelah’s 2-rank. It is known that they are both bounded
by ω1 if and only if the theory is totally transcendental, and either rank can be used
in the proof of Morley’s theorem for countable first-order theories; see, for example,
Grossberg [4] and Baldwin [2]. The use of the 2-rank gives a slightly shorter proof,
and a key advantage of the Morley rank is that its value corresponds to classical
dimension.

By contrast, the studies of categoricity in non-first-order frameworks have used
only the 2-rank R. Shelah developed a 2-rank in the context of models of an Lω1,ω

sentence in [9]; Lessmann defined an analog of that rank for the homogeneous case
in [7].

The main goal of this paper is to introduce a Morley-like rank for totally transcen-
dental homogeneous models. We see this as a first step toward using ranks to measure
complexity of (type-)definable sets in non-first-order contexts in a meaningful way.

In Section 1, we introduce the context and notations. We make an effort to keep
the presentation self-contained, but we assume some familiarity with the basics of
homogeneous model theory. A good treatment of these can be found in Buechler and
Lessmann [3] and Hyttinen and Lessmann [6] (these papers use the homogeneous
model terminology) as well as in [7] (the term finite diagram appearing in that paper
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is not used now; instead one refers to a large, strongly homogeneous model that
realizes only the types in the “diagram” D ⊂ S(∅) as to the homogeneous model).

Section 2 is the main part of the paper. There we define an analog of Morley
rank for the homogeneous context and show that the rank RM is bounded if and
only if the homogeneous model is totally transcendental. We also establish that,
if RM[p] = α < ∞, then p has a maximal finite number of contradictory D-
extensions of RM-rank α; that is, one can meaningfully define multiplicity of a type
in a homogeneous totally transcendental model.

This is accomplished with the help of a different 2-rank R∗ that we also introduce
in Section 2. The main property of R∗ is that R∗

[p] ≥ α+n if p has 2n contradictory
D-extensions of R∗-rank α. This rank is more closely related to the first-order 2-rank
than the rank R introduced by Lessmann. In particular, for any algebraic type p, the
value R[p] is at most 1, whereas R∗ gives the expected answer. The definitions for
the ranks R∗ and RM are similar in flavor to the definition of the rank in [6].

Along the way, we establish the ultrametric property for the rank RM using what
we call a weak ultrametric property for rank R∗, and find a formula that ties the
values of the ranks R∗ and RM. The formula is the same as the one obtained by
Baldwin in [1] for the first-order case, but the argument is substantially different,
since we are not allowed to use compactness.

Section 4 connects stationarity, which is defined using a 2-rank in the homoge-
neous case, with multiplicity 1 in the sense of Morley rank. In essence, stationarity
says that a type p over a (D,ℵ0)-homogeneous model M with R∗

[p] = α has a
unique extension of R∗-rank α to any superset of M (the actual statement is stronger).
By our results from Section 2, showing multiplicity 1 in the sense of Morley rank is
equivalent to proving that the ordinal α cannot be a successor. This is the main result
in Section 3.

In this paper, the main use of homogeneity is via Fact 2.3. We ask whether or
not it is possible to extend the results to the case of totally transcendental classes of
atomic models, perhaps under the additional assumption of excellence.

2 Preliminaries

Fix a first-order theory T and a model M |H T .

Definition 2.1 For a set A ⊂ M , the set of types D(A) := {tp(ā/∅) | ā ∈ A} is
called the diagram of A. The diagram of T is D(T ) := S(∅). For a fixed D ⊂ D(T ),
we call A a D-set if D(A) ⊂ D. If M |H T and D(M) ⊂ D, we call M a D-model.

The object of our study is the class of D-models, with an additional assumption.

Definition 2.2 Denote by Sn
D(A) the collection of all complete types in n variables

such that for all c̄ |H p the set A∪c̄ is a D-set. Accordingly, SD(A) :=
⋃

n<ω Sn
D(A).

Following [7], a D-model M is (D, λ)-homogeneous if M realizes all the types
{p ∈ SD(A) | A ⊂ M, |A| < λ}.

The compactness theorem no longer holds in this context. In particular, it is not
clear if it is possible to realize the D-types over sets in some D-model containing the
set without any additional assumptions on the class of all the D-structures. By the
context of homogeneous models we mean a class of D-models under the assumption
that there exists a monster D-model, that is, (D, χ)-homogeneous model, for some
very large χ . We denote such model C and call it simply a homogeneous model. An
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alternative approach, which does not make a big difference, is to demand C to be
strongly χ -homogeneous for some large χ ; see, for example, [3].

A key property that holds in the homogeneous context is the “weak compactness”;
it was used originally by Shelah in [8] and was explicitly stated in Hyttinen [5] and
later in [3]. We use it freely throughout the paper.

Fact 2.3 A type p ∈ S(A) is realized in C if and only if for every finite ā ∈ A the
type p � ā is realized in C.

To study totally transcendental homogeneous models, a rank was introduced by Less-
mann in [7].

Definition 2.4 Let p be a type over a finite B ⊂ | C |.

1. R[p] ≥ 0 if p is realized in C.
2. For α a limit ordinal, R[p] ≥ α if R[p] ≥ β for all β < α.
3. R[p] ≥ α + 1 if

(a) there are ϕ(x̄, ȳ) and ā ∈ C such that

R[p ∪ ϕ(x̄, ā)] ≥ α and R[p ∪ ¬ϕ(x̄, ā)] ≥ α,

(b) for every b̄ ∈ | C | there is a complete type q(x̄, ȳ) ∈ D such that
R[p ∪ q(x̄, b̄)] ≥ α.

As usual, R[p] = −1 if R[p] 6≥ 0; R[p] = α if R[p] ≥ α and R[p] 6≥ α + 1;
R[p] = ∞ if R[p] ≥ α for all α ∈ On. If q is a type over a subset of C which is not
necessarily finite, we let

R[q] := Min{R[p] | p ⊆ q, dom(p) finite}.

Fact 2.5 (Properties of the rank)

1. Invariance: if f ∈ Aut(C), then R[p] = R[ f (p)].
2. Monotonicity: if p ` q, then R[p] ≤ R[q].
3. Finite character: for any type q, there is p ⊂ q, dom(p) finite such that

R[p] = R[q].

Definition 2.6 A homogeneous model C is totally transcendental if R[p] < ∞

for all D-types p.

Fact 2.7 ([7]) If the homogeneous model C is λ-stable for some ℵ0 ≤ λ < 2ℵ0 ,
then it is totally transcendental.

Whereas the rank R serves well in the proof of the uncountable categoricity result,
its behavior is quite exotic when it comes to measuring complexity of definable sets.
Let us show this on a simple example.

Example 2.8 Let us deal with the simplest first-order case; so D = S(∅). We claim
that for any algebraic type p with more than one realization we have R[p] = 1.
(The classical intuition is of course that the value of a 2-rank should be blog2 nc,
n = |p(C)|.)

Let p(C) = {ai |i < n}. Consider the tuple ā = a0, . . . , an−1. Clearly, any
complete D-type q(x̄, ā) consistent with p will have just one realization; thus for
this particular ā we have R[p ∪ q(x̄, ā)] = 0. By clause (3b) in the definition of R,
necessarily R[p] ≤ 1.
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As we already mentioned, the purpose of clause (3b) is to make sure that unbound-
edness of the rank does lead to the existence of many D-types; this is a key point in
the proof of Fact 2.7. In the following section, we define a variant of the 2-rank, R∗,
that achieves the same goal and is better behaved.

3 The Ranks RM and R∗

We start by defining an analog of Morley rank for the homogeneous model case. It
is easy to see that our definition agrees with the classical one in the first-order case.

Definition 3.1 Let p(x̄) be a type over a finite B ⊂ | C |. Define RM[p] ≥ α by
induction.

1. RM[p] ≥ 0 if p is realized in C.
2. RM[p] ≥ α, where α is a limit ordinal if RM[p] ≥ β for every β < α.
3. RM[p] ≥ α+1, if there exist pairwise contradictory {ψi (x̄, āi ) | i < ω} such

that for each i < ω and each b̄ ∈ C there is qi (x̄, b̄) with

RM[p(x̄) ∪ {ψi (x̄, āi )} ∪ qi (x̄, b̄)] ≥ α.

The agreements for the notation RM[p] = −1, RM[p] = α, and RM[p] = ∞ are
standard; for a type q over a subset of C which is not necessarily finite,

RM[q] := Min{RM[p] | p ⊆ q, dom(p) finite}.

Remark 3.2 Whenever ψ(x̄, ā) is such that for each b̄ ∈ C there is q(x̄, b̄) with
RM[p(x̄) ∪ {ψ(x̄, ā)} ∪ q(x̄, b̄)] ≥ α, we say that ψ(x̄, ā) is a D-extension of p of
RM-rank at least α. This is a slight abuse of the terminology because, technically,
p(x̄) ∪ {ψ(x̄, ā)} is the extension.

Using this terminology, RM[p] ≥ α + 1 if and only if p has ω-many pairwise
contradictory D-extensions of RM-rank at least α.

The usual properties, such as invariance, monotonicity, and finite character are easy
to establish for RM. We now work toward proving the following theorem.

Theorem (3.9) Suppose that RM[p] = α. Then there is a finite number n such that
p has n, but not n + 1, distinct D-extensions of RM-rank α.

In other words, multiplicity for Morley rank makes sense in the homogeneous context
as well, and if there are arbitrarily large finite number of pairwise contradictory D-
extensions of RM-rank α, then we indeed can find an infinite number of pairwise
contradictory D-extensions of RM-rank α. We also prove the following theorem.

Theorem (3.11) The homogeneous model C is totally transcendental if and only if
RM[p] < ∞ for all D-types p.

In particular, if C is ℵ0-stable, the rank RM is bounded.
To prove both results we introduce a version of the 2-rank which we call R∗.

The defining property of R∗ is that R∗
[p] ≥ α + n implies that p has at least 2n

contradictory D-extensions of R∗-rank at least α. We show that R∗ is bounded if
and only if R is and that R∗

[p] ≥ ω · α if and only if RM[p] ≥ α for all α ≥ 0. The
two theorems then follow easily. As a byproduct, we obtain a formula connecting
Morley rank and multiplicity with the values of the rank R∗; it is the same formula
that ties Morley rank and the 2-rank in the first-order case.

We start with the definition of the rank R∗.
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Definition 3.3 For a partial type p(x̄, b̄), where b̄ is finite, define R∗
[p] ≥ α by

induction.
1. R∗

[p] ≥ 0 if p is realized in C.
2. R∗

[p] ≥ α, where α is a limit ordinal, if R∗
[p] ≥ β for every β < α.

3. R∗
[p] ≥ α+ n, where α is a limit ordinal or 0, if there exist pairwise contra-

dictory {ψi (x̄, āi ) | i < 2n
} such that for each i < 2n and each b̄ ∈ C there

is a D-type qi (x̄, b̄) with

R∗
[p(x̄) ∪ {ψi (x̄, āi )} ∪ qi (x̄, b̄)] ≥ α.

As before, for arbitrary type q we let R∗
[q] := Min{R∗

[p] | p ⊆ q, dom(p) finite}.

It is immediate that R∗ has the invariance, monotonicity, and finite character proper-
ties. The following claim shows that for each of the ranks R, RM, and R∗ there is a
“critical value,” that is, an ordinal such that the rank is unbounded if and only if it is
bigger than the ordinal.

Claim 3.4 Let R be any ordinal-valued rank defined on types that satisfies invari-
ance and finite character in the sense of Fact 2.5. Then there is an ordinal αR such
that R[p] ≥ α if and only if R[p] = ∞ for any type p.

Proof By invariance, there are at most |D| + |T | possible values for R[q],
| dom(q)| < ℵ0. So we can let αR := sup{R[q]+1 | | dom(q)| < ℵ0, R[q] < ∞}.
Now, for any type q over a finite set, R[q] ≥ αR implies R[q] = ∞. For an arbitrary
type p, using finite character find q ⊂ p with finite domain such that R[p] = R[q].
Thus R[p] ≥ αR implies R[q] ≥ αR , and so R[p] = R[q] = ∞. �

Now we are ready to show that C is totally transcendental if and only if R∗ is
bounded. A direct comparison between the ranks R and R∗ (inequality or almost
inequality) does not seem feasible.

Lemma 3.5 For any type p, R[p] = ∞ if and only if R∗
[p] = ∞.

Proof The hard direction: we show that for any type p, if R[p] = ∞, then
R∗

[p] ≥ α for all α ∈ On. If α = 0, the statement is obvious; for a limit α the
implication follows from the induction hypothesis.

Suppose now that the statement is true for some α ∈ On and that R[p] = ∞.
Since R has invariance and finite character properties, there is an ordinal αR as in
Claim 3.4. In particular, for any n < ω, we have R[p] ≥ αR + n + 1.

Subclaim 3.6 If R[p] ≥ αR + n + 1, then there are 2n pairwise contradictory
formulas {ψi (x̄, āi ) | i < 2n

} such that for each i < 2n and for any b̄ ∈ C there is a
complete D-type qi (x̄, b̄) with R[p ∪ qi (x̄, b̄) ∪ {ψi (x̄, āi )}] ≥ αR .

Proof of the Subclaim Use induction on n < ω. If n = 0, the statement follows
from clause def1.4itm3 in the definition of R; ψ0 can be taken as x̄ = x̄ .

For the induction step, if R[p] ≥ αR + n + 2, we can find a formula ϕ(x̄, ā) with
R[p ∪ {±ϕ(x̄, ā)}] ≥ αR + n + 1. By induction hypothesis, there are two sets of 2n

pairwise contradictory formulas {ψ`i (x̄, ā`i ) | i < 2n
}, ` = 0, 1 such that for ` = 0, 1

for each i < 2n and for all b̄ ∈ C there is a complete D-type q`i (x̄, b̄) with

R[p ∪ {ϕ(x̄, ā)} ∪ q0
i (x̄, b̄) ∪ {ψ0

i (x̄, ā0
i )}] ≥ αR,

R[p ∪ {¬ϕ(x̄, ā)} ∪ q1
i (x̄, b̄) ∪ {ψ1

i (x̄, ā1
i )}] ≥ αR,
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Now the 2n+1 formulas

{ϕ(x̄, ā) ∧ ψ0
i (x̄, ā0

i ),¬ϕ(x̄, ā) ∧ ψ1
i (x̄, ā1

i ) | i < 2n
}

are as needed. �

By the choice of αR and the induction hypothesis, the subclaim gives that for any
n < ω there are 2n pairwise contradictory formulas {ψi (x̄, ā) | i < 2n

} such that
for any b̄ ∈ C there is a complete D-type q(x̄, b̄) with R∗

[p ∪ qi (x̄, b̄) ∪ {ψi }] ≥ α.
Thus R∗

[p] ≥ α + n for all n < ω.
For the converse, suppose R∗

[p] = ∞, so R∗
[p] ≥ αR∗ + 1. An easy inductive

argument shows R[p] ≥ α for all α. �

We now isolate an important property of the rank R∗.

Proposition 3.7 (Weak ultrametric property) Let α be a limit ordinal or 0.
Then R∗

[p] ≥ α if and only if for any ϕ(x̄; ā) either R∗
[p ∪ {ϕ(x̄; ā)}] ≥ α or

R∗
[p ∪ {¬ϕ(x̄; ā)}] ≥ α.

Proof One direction is clear by monotonicity of the rank R∗. For the other, we
use induction on α. The base case α = 0 is clear. If α is a limit of limit ordinals,
α = sup{β | β < α, β is a limit ordinal}, then the statement follows easily from
induction hypothesis and the pigeonhole principle.

So let α = β + ω, where β is a limit ordinal. It suffices to show that for each
n < ω either R∗

[p ∪ ϕ] ≥ β + n or R∗
[p ∪ ¬ϕ] ≥ β + n.

Fix n < ω. Since R∗
[p] ≥ β + ω, we can choose 2n+1 pairwise contradictory

extensions of p, each of rank at least β. More precisely, there are pairwise contra-
dictory {ψi (x̄, āi ) | i < 2n+1

} such that for each i < 2n+1 and each b̄ ∈ C there is a
D-type q b̄

i (x̄, b̄) with

R∗
[p(x̄) ∪ {ψi (x̄, āi )} ∪ q b̄

i (x̄, b̄)] ≥ β.

By induction hypothesis applied to the type p(x̄)∪{ψi (x̄, āi )}∪q b̄
i (x̄, b̄) and formula

ϕ(x̄, ā), for each i < 2n+1,

either R∗
[p(x̄) ∪ {ϕ(x̄; ā)} ∪ {ψi (x̄, āi )} ∪ q b̄

i (x̄, b̄)] ≥ β

or R∗
[p(x̄) ∪ {¬ϕ(x̄; ā)} ∪ {ψi (x̄, āi )} ∪ q b̄

i (x̄, b̄)] ≥ β.

By pigeonhole principle, for each b̄, either p(x̄)∪{ϕ(x̄; ā)} or p(x̄)∪{¬ϕ(x̄; ā)} have
at least 2n pairwise contradictory extensions of rank β, each containing a complete
D-type over b̄.

Now note that it is impossible to have b̄1, b̄2 such that p(x̄) ∪ {ϕ(x̄; ā)} has less
than 2n contradictory extensions of rank β containing a complete D-type over b̄1,
while p(x̄)∪{¬ϕ(x̄; ā)} has less than 2n contradictory extensions of rank β contain-
ing a complete D-type over b̄2. Indeed, letting b̄ := b̄1ˆb̄2 we see that either ϕ or
its negation will work for both b̄1 and b̄2. So we conclude R∗

[p ∪ ϕ] ≥ β + n or
R∗

[p ∪ ¬ϕ] ≥ β + n. �

We are now ready to prove the key lemma. The argument for the successor step in
the proof of the harder direction shows why (and how) we can find an infinite number
of pairwise contradictory D-extensions of RM-rank α given that there are arbitrarily
large finite number of pairwise contradictory D-extensions of RM-rank α.
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Lemma 3.8 For any type p we have R∗
[p] ≥ ω · α if and only if RM[p] ≥ α.

Proof The proof is by induction on α. If α = 0 or α is a limit ordinal, the statement
is clear. Suppose now R∗

[q] ≥ ω · α if and only if RM[q] ≥ α for all q.

(⇒) Suppose R∗
[p] ≥ ω · α + ω. It is enough to construct {ψi (x̄, āi ) | i < ω}

such that

1. for all i < ω we have ψi (x̄, āi ) `
∧

j<i ¬ψ j (x̄, ā j );
2. for each i < ω and every b̄ ∈ C there is a complete D-type qi (x̄, b̄) such that

R∗
[p(x̄) ∪ {ψi (x̄, āi )} ∪ qi (x̄, b̄)] ≥ ω · α;

3. R∗
[p(x̄) ∪ {

∧
j≤i ¬ψ j (x̄, ā j )}] ≥ ω · α + ω for all i < ω.

Clearly, (1) implies that the formulas are pairwise contradictory, and (2) together
with the induction hypothesis gives RM[p] ≥ α + 1.

Now the construction. Since, in particular, R∗
[p] ≥ ω · α+ 1, there are ϕ0(x̄, c̄0)

and ϕ1(x̄, c̄1) with ϕ1(x̄, c̄1) ` ¬ϕ0(x̄, c̄0) and such that for every b̄ ∈ C there is a
complete D-type q`(x̄, b̄), ` = 0, 1 such that R∗

[p(x̄)∪{ϕ`(x̄, c̄`)}∪q`(x̄, b̄)] ≥ ω·α.
By monotonicity we may assume that ϕ1(x̄, c̄1) = ¬ϕ0(x̄, c̄0).

Since ω ·α+ω is a limit ordinal, by the weak ultrametric property we may assume
that R∗

[p(x̄) ∪ {¬ϕ0(x̄, c̄0)}] ≥ ω · α + ω. Let ψ0(x̄, ā0) := ϕ0(x̄, c̄0).
Now iterate: given {ψ j (x̄, ā j ) | j < i} satisfying (1) – (3), we have

R∗
[p(x̄) ∪ {

∧
j<i¬ψ j (x̄, ā j )}] ≥ ω · α + ω,

so, in particular,

R∗
[p(x̄) ∪ {

∧
j<i¬ψ j (x̄, ā j )}] ≥ ω · α + 1.

As before, this means that the set defined by p(x̄) ∪ {
∧

j<i ¬ψ j (x̄, ā j )} can be split
by some formula ϕi (x̄, c̄i ) in such a way that

(a) for all b̄ ∈ C there is q(x̄, b̄) with

R∗
[p(x̄) ∪ {

∧
j<i¬ψ j (x̄, ā j )} ∪ {ϕi (x̄, c̄i )} ∪ q(x̄, b̄)] ≥ ω · α, and

(b) R∗
[p(x̄) ∪ {

∧
j<i ¬ψ j (x̄, ā j )} ∪ {¬ϕi (x̄, c̄i )}] ≥ ω · α + ω.

Now we let ψ(x̄, āi ) := ϕi (x̄, c̄i ) ∧
∧

j<i ¬ψ j (x̄, ā j ). This meets the conditions
(1) – (3).

(⇐) Suppose RM[p] ≥ α + 1. Then there are contradictory {ψi (x̄, āi ) | i < ω}

such that for each i < ω and each b̄ ∈ C there is qi (x̄, b̄) with

RM[p(x̄) ∪ {ψi (x̄, āi )} ∪ qi (x̄, b̄)] ≥ α.

By induction hypothesis we get for each i < ω

R∗
[p(x̄) ∪ {ψi (x̄, āi )} ∪ qi (x̄, b̄)] ≥ ω · α,

so R∗
[p] ≥ ω · α + n for all n < ω and thus R∗

[p] ≥ ω · α + ω. �

Now the main results follow.

Theorem 3.9 Suppose that RM[p] = α. Then there is a finite number n such that
p has n, but not n + 1, pairwise contradictory D-extensions of RM-rank α.
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Proof Suppose not. Then for each n < ω we have {ψn
i (x̄, ān

i ) | i < 2n
} pairwise

contradictory D-extensions of RM-rank α. By Lemma 3.8, these are D-extensions
of p of R∗-rank ω · α. Thus R∗

[p] ≥ α · ω + n for all n < ω. Therefore
R∗

[p] ≥ ω · (α + 1), and so applying Lemma 3.8 again we get RM[p] ≥ α + 1,
contradiction. �

Notation 3.10 If RM[p] = α, we denote the maximal number n of pairwise con-
tradictory D-extensions of RM-rank α given by Theorem 3.9 by dM[p].

Theorem 3.11 The homogeneous model C is totally transcendental if and only if
RM[p] < ∞ for all D-types p.

Proof By Lemma 3.8, RM is bounded if and only if R∗ is. So we are done by
Lemma 3.5. �

By [7], we immediately get the following corollary.

Corollary 3.12 If C is λ-stable for some ℵ0 ≤ λ < 2ℵ0 , then RM is bounded.

We also obtain the ultrametric property for RM.

Corollary 3.13 Let {ψi (x̄, āi ) | i < l} be such that p `
∨

i<l ψi (x̄, āi ). Then
RM[p] ≥ α if and only if for some i < l we have RM[p ∪ {ψi (x̄, āi )}] ≥ α.

Proof If RM[p ∪ {ψi (x̄, āi )}] ≥ α for some i < l, then RM[p] ≥ α by
monotonicity. For the other direction, without loss of generality l = 2. Since
p ∪ {¬ψ0(x̄, ā0)} ` ψ1(x̄, ā1), by monotonicity of RM it is enough to prove the
statement with ψ1(x̄, ā1) = ¬ψ0(x̄, ā0). By Lemma 3.8, R∗

[p] ≥ ω · α, so Proposi-
tion 3.7 gives R∗

[p ∪ {ψi (x̄, āi )}] ≥ ω · α for i = 0 or i = 1. Applying Lemma 3.8
again, we get RM[p ∪ {ψi (x̄, āi )}] ≥ α for i = 0 or i = 1. �

We finish the section with a formula tying R∗ and RM.

Corollary 3.14 Let C be a homogeneous model. Then for any type p we have

1. RM[p] = ∞ if and only if R∗
[p] = ∞;

2. RM[p] = α < ∞ and 2n
≤ d M[p] < 2n+1 if and only if R∗

[p] = ω ·α+ n.

Proof (1) is immediate by Lemma 3.8, and (2) follows from the definitions,
Lemma 3.8, and Theorem 3.9. �

4 Relating Stationarity and Multiplicity

We address stationarity. Throughout this section, C is a totally transcendental homo-
geneous model.

In the homogeneous context, as well as in the case of classes of atomic models,
the notion of stationarity is defined through the 2-rank. We use our rank R∗, but the
definition comes from [7] and Shelah [10].

Definition 4.1 A type p is called stationary if for every A ⊃ dom(p) there is a
unique complete D-type pA ⊃ p, which is a D-extension of p of rank α := R∗

[p].

We start by showing that the types over (D,ℵ0)-homogeneous models are stationary;
the proof is along the same lines as the corresponding argument in [7].
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Proposition 4.2 Let C be totally transcendental. Let M ≺ C be a (D,ℵ0)-
homogeneous model, pM ∈ SD(M), and b̄ ∈ M such that R∗

[pb̄] = R∗
[pM ] = α,

where pb̄ = p � b̄. Then for every A ⊂ C that contains b̄ there is a unique D-
extension pA ⊃ pb̄ of rank α. In addition, the extension pA does not split over
b̄.

Proof Let pM ∈ SD(M); let d̄ |H p, d̄ ∈ C. By finite character choose b̄ ∈ M such
that R∗

[pM ] = R∗
[pb̄] = α.

Subclaim 4.3 If b̄ ∈ M is a finite subset such that R∗
[pM ] = R∗

[pb̄] = α, then
the type pM does not split over b̄.

Proof Suppose, for contradiction, that there are c̄1, c̄2 ∈ M such that tp(c̄1/b̄) =

tp(c̄2/b̄) and, for some formula ϕ, p contains both ϕ(x̄, c̄1) and ¬ϕ(x̄, c̄2). To get a
contradiction, it is enough to show that ϕ(x̄, c̄1) and ¬ϕ(x̄, c̄1) are D-extensions of
pb̄ of R∗-rank at least α.

Let ā ∈ C. We now find q`(x̄, ā), ` = 1, 2 such that R∗
[pb̄(x̄) ∪ {ϕ(x̄, c̄1)}

∪ q1(x̄, ā)] ≥ α and R∗
[pb̄(x̄) ∪ {¬ϕ(x̄, c̄1)} ∪ q2(x̄, ā)] ≥ α. By (D,ℵ0)-

homogeneity, there is ā1 ∈ M such that tp(āb̄c̄1) = tp(ā1b̄c̄1). Let q1(x̄, ā1) :=

pM � ā1. Since pM ⊃ pb̄(x̄) ∪ {ϕ(x̄, c̄1)} ∪ q1(x̄, ā1), by monotonicity and
invariance,

R∗
[pb̄(x̄) ∪ {ϕ(x̄, c̄1)} ∪ q1(x̄, ā1)] ≥ α.

To find q2, let f ∈ Autb̄(C) be such that f (c̄2) = c̄1. Let M ′
:= f (M). Then

M ′ is (D,ℵ0)-homogeneous, and R∗
[ f (p)] = R∗

[pb̄] by invariance. Take
ā2 ∈ M ′ such that tp(āb̄c̄1) = tp(ā2b̄c̄1). Let q2(x̄, ā2) := f (pM ) � ā2. Since
f (pM ) ⊃ pb̄(x̄) ∪ {¬ϕ(x̄, c̄1)} ∪ q2(x̄, ā2), by monotonicity and invariance, we get
R∗

[pb̄(x̄) ∪ {ϕ(x̄, c̄1)} ∪ q2(x̄, ā2)] ≥ α. �

Now we show existence. Given A ⊂ C, define

pA :=

⋃
ā∈A

{p(x̄, ā) | ∃ ā′
∈ M with tp(ā/b̄) = tp(ā′/b̄) and p(x̄, ā′) ⊂ pM (x̄)}.

Since pM does not split over b̄, the type pA is a well-defined D-type over A. By
finite character and invariance of R∗, we have R∗

[pA] = R∗
[pM ] = α. Since the set

A is arbitrary, the extension pA is a D-extension of pb̄ of rank α. By construction,
the type pA does not split over b̄.

Finally, the uniqueness. If p` ∈ SD(A), ` = 1, 2 are distinct D-extensions of pb̄
of R∗-rank α, then we have R∗

[pb̄] ≥ α + 1, a contradiction. �

We finish by connecting stationarity in the sense of Definition 4.1 with multiplicity 1
for types over (D,ℵ0)-homogeneous models. We already showed that stationary
types have unique D-extensions of the maximal R∗-rank, but this is not enough. We
want to rule out the possibility of, for example, R∗

[p] = ω+ 2, p ∈ SD(M). In that
case, the type p would be stationary of R∗-rank ω + 2 (by Proposition 4.2) but will
have between 4 and 7 D-extensions of RM-rank 1.

To show that this is not possible, we establish the following proposition.

Proposition 4.4 Suppose M is a (D,ℵ0)-homogeneous model, p ∈ SD(M). Then
for no α ≥ 0 we have R∗

[p] = α + 1.
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Proof Suppose not. Let M be a (D,ℵ0)-homogeneous model and let p ∈ SD(M)
be such that R∗

[p] = α + 1 for some α. Then p has at least two (and no more than
three) D-extensions ϕ1(x̄, c1), ¬ϕ1(x̄, c̄1) of R∗-rank α (as before, we may assume
that one D-extension is the negation of the other by monotonicity). By Proposi-
tion 4.2, since R∗

[p] = α + 1, there is a complete type p1 ∈ SD(Mc̄1) which is a
D-extension of p of R∗-rank α + 1. We may assume that ϕ1(x̄, c̄1) ∈ p1(x̄).

By definition of R∗ we can find two more D-extensions of R∗-rank α of the
type p1, ϕ2(x̄, c̄2) and ¬ϕ2(x̄, c̄2). Repeating the steps above, we get a complete
type p2(x) that contains ϕ2(x̄, c̄2) and which is the unique D-extension of p, and
therefore p1, of R∗-rank α + 1.

Finally, we now find two D-extensions, ϕ3(x̄, c̄3) and ¬ϕ3(x̄, c̄3), of R∗-rank α
of the type p2. So now we have constructed four contradictory D-extensions of the
type p, each of R∗-rank α. Namely, we have

¬ϕ1(x̄, c̄1), ϕ1(x̄, c̄1) ∧ ¬ϕ2(x̄, c̄2),

ϕ1(x̄, c̄1) ∧ ϕ2(x̄, c̄2) ∧ ¬ϕ3(x̄, c̄3), and
3∧

i=1

ϕi (x̄, c̄i ).

Thus, R∗
[p] ≥ α + 2, contradiction. �

Thus, for a type p over a (D,ℵ0)-homogeneous model, the value R∗
[p] has to be

either 0 or a limit ordinal. So we obtain the following corollary.

Corollary 4.5 Let C be a totally transcendental homogeneous model; let M ≺ C
be (D,ℵ0)-homogeneous. For any p ∈ S(M), the multiplicity dM[p] is equal to 1.

Proof Immediate by Proposition 4.4 and Corollary 3.14. �
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