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A General Form of Relative Recursion

Jaap van Oosten

Abstract The purpose of this note is to observe a generalization of the concept
“computable in . . . ” to arbitrary partial combinatory algebras. For every partial
combinatory algebra (pca) A and every partial endofunction on A, a pca A[ f ]

is constructed such that in A[ f ], the function f is representable by an element;
a universal property of the construction is formulated in terms of Longley’s 2-
category of pcas and decidable applicative morphisms. It is proved that there is
always a geometric inclusion from the realizability topos on A[ f ] into the one
on A and that there is a meaningful preorder on the partial endofunctions on A
which generalizes Turing reducibility.

1 Introduction

In [5], Longley defined a 2-category of partial combinatory algebras (see 1.1.1 and
1.1.2 for definitions). The morphisms are different from what one might expect:
rather than “algebraic” maps, they are more like simulations (of one world of com-
putation in another). Accordingly, a morphism from A to B is a total relation between
the underlying sets.

Longley’s definition made a lot of sense since there are nice functorial connections
between pcas and their corresponding realizability categories (realizability toposes
and categories of assemblies). However, the 2-category has not been studied in great
detail. It does not appear to have a lot of categorical structure and not much is known.
Fundamental questions, such as which properties of partial combinatory algebras are
stable under isomorphism, or equivalence, have not been answered (indeed, such
questions have hardly been posed).

In this paper, I present a simple construction which is available in this category:
adjoin a partial function. That is, given a pca A and a partial endofunction f on
A, construct a pca A[ f ] in which the function f is “computable.” A[ f ] should, of
course, possess a universal property, and this property is formulated with respect to
what Longley calls “decidable” morphisms.
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Characteristically for the nonalgebraic flavor of the 2-category, A[ f ] is not con-
structed by adding elements but by modifying the application function. We obtain re-
sults generalizing the situation of computing relative to an oracle: a preorder, similar
to (and generalizing) Turing reducibility, can be defined on the partial endofunctions
on A; and there is always a geometric inclusion from the realizability topos on A[ f ]

into the one on A. It is also a surprising corollary of this work that every total pca is
isomorphic to a nontotal one.

1.1 Basic notions and notations

1.1.1 Partial combinatory algebras A partial combinatory algebra (pca) is a set
A together with a partial function A × A ⇀ A called application, which satisfies
a few conditions. We write the application as (a, b) 7→ ab or a·b. ab↓ means that
the application ab is defined. When dealing with compound terms like (ac)(bc),
the definedness of the term is meant to imply the definedness of every subterm. For
terms t and s, the notation t ' s means that t is defined exactly when s is defined
and that they denote the same element when defined. t = s will mean t ' s and
t↓. As usual, we associate to the left; that is, abc means (ab)c. Elements of A are
usually called combinators.

With these conventions, (A, ·) is a pca if and only if there are combinators K and
S in A satisfying, for all a, b, c ∈ A,

1. K ab = a,
2. Sab↓,
3. Sabc ' ac(bc).

For a careful account of the theory of pcas, see [1] or [5]. We recall a few properties.
In a pca A there is a choice of Booleans > and ⊥, and a “definition by cases” com-

binator C such that for all a, b ∈ A, C>ab = a and C⊥ab = b; C is pronounced
(and written) as If . . . then . . . else . . . .

In A there is a choice of elements n for every natural number n such that for
every partial recursive function F of k variables there is a combinator aF such
that for every k-tuple (n1, . . . , nk), aF n1 · · · nk↓ precisely when F(n1, . . . , nk)

is defined, and aF n1 . . . nk = F(n1, . . . , nk) if this is the case. There is a cod-
ing of finite sequences of elements of A, together with combinators which allow
us to manipulate them: if we write [u0, . . . , un−1] for the code of the sequence
(u0, . . . , un−1), there is a combinator lh which gives the length of the coded se-
quence (i.e., lh[u0, . . . , un−1] = n); there are combinators picking the i th element of
the coded sequence (we simply write ui for its effect) and a concatenation operator;
we write [u0, . . . un−1] ∗ [v0, . . . , vm−1] for the effect of this last combinator.

All these facts follow from the existence, in A, of a combinator for primitive
recursion. Moreover, in every pca A there is a fixpoint combinator Y satisfying
Y f ↓ for all f ∈ A and Y f a ' f (Y f )a. We shall refer to this fact as “the recursion
theorem in A.”

Every pca A is “combinatory complete”: for every term t (constructed from
variables, constants from A, and the application function) and every sequence
of variables x1, . . . , xn+1 which contains all variables in t , there is an element
3∗x1 . . . xn+1.t in A which satisfies, for all a1, . . . an+1 in A,

1. (3∗x1 . . . xn+1.t)a1 . . . an↓,
2. (3∗x1 . . . xn+1.t)a1 . . . an+1 ' t (a1, . . . , an+1).
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1.1.2 Longley’s 2-category of pcas, assemblies, decidable maps The following
definition is due to Longley [5].

Definition 1.1 Let A and B be pcas. An applicative morphism from A to B is a
function γ from A to the set P ∗(B) of nonempty subsets of B such that there exists
an element r ∈ B with the property that if aa′

↓ in A, b ∈ γ (a), and b′
∈ γ (a′), then

rbb′
↓ and rbb′

∈ γ (aa′). The element r is said to be a realizer for γ .

Given two applicative morphisms γ : A → B and δ : B → C , the composition
δγ : A → C is the function a 7→

⋃
b∈γ (a) δ(b) from A to P ∗(C). It is easy, using

combinatory completeness, to find a realizer for δγ in terms of realizers for γ and δ.
This composition is evidently associative and has identities a 7→ {a}, so we have a
category of pcas.

This category is preorder-enriched: given two applicative morphisms γ, δ :

A → B, we say γ � δ if there is an s ∈ B such that for all a ∈ A and all b ∈ γ (a),
sb ∈ δ(a). We say that γ and δ are isomorphic if γ � δ and δ � γ both hold.
Two pcas are equivalent if there are γ : A → B and δ : B → A such that both
composites are isomorphic to identities.

An assembly on a pca A is a set X together with a map EX : X → P ∗(A).
If (X, EX ) and (Y, EY ) are assemblies on A, a map of assemblies is a function
f : X → Y such that there is an element r ∈ A such that for all x ∈ X and all
a ∈ EX (x), ra↓ and ra ∈ EY ( f (x)). One says that the element r tracks the func-
tion f . Assemblies on A and maps of assemblies form a category Asm(A). This
category is regular and comes equipped with an adjunction to the category Set of
Sets: the forgetful (or global sections) functor 0 : Asm(A) → Set is left adjoint
to the functor ∇ : Set → Asm(A) which sends a set X to the pair (X, EX ) where
EX (x) = A for all x ∈ X .

An important justification for Definition 1.1 is the following theorem by Lon-
gley: every applicative morphism γ : A → B determines a regular functor
γ ∗

: Asm(A) → Asm(B) which commutes with the functors 0; conversely, ev-
ery such functor is induced by an applicative morphism which is unique up to
isomorphism.

Note that γ : A → B establishes A as an assembly on B.

Definition 1.2 A morphism γ : A → B is decidable if there is an element d ∈ B
(the decider for γ ) such that if >A, ⊥A are the Booleans in A and >B, ⊥B the
Booleans in B, for every b ∈ γ (>A) we have db = >B and for every b ∈ γ (⊥A),
db = ⊥B .

In [5], Longley proved the following proposition.

Proposition 1.3 An applicative morphism γ : A → B is decidable if and only
if the corresponding functor γ ∗

: Asm(A) → Asm(B) preserves finite coproducts.
Moreover, this is equivalent to “γ ∗ preserves the natural numbers object.”

Corollary 1.4 If δ = γ ζ is a commutative triangle of applicative morphisms such
that δ and ζ are decidable, then so is γ .

2 Definition of A[ f ] and Basic Properties

Definition 2.1 Let γ : A → B be an applicative morphism of pcas and f : A ⇀ A
a partial function. We say that f is representable with respect to γ if there is an



314 Jaap van Oosten

element r f ∈ B such that for every a ∈ dom( f ) and every b ∈ γ (a), r f b↓ and
r f b ∈ γ ( f (a)). We say that f is representable in A if f is representable with
respect to the identity morphism on A.

The representability of f with respect to γ can also be seen as follows: let
(dom( f ), γ ) be the regular subassembly of (A, γ ) (as assemblies on B). Then
f is representable with respect to γ if and only if f is a map of assemblies:
(dom( f ), γ ) → (A, γ ).

Theorem 2.2 For every pca A and every partial endofunction f on A there exist a
pca A[ f ] and a decidable applicative morphism ι f : A → A[ f ] with the following
properties:

(i) f is representable with respect to ι f ;
(ii) for every decidable applicative morphism γ : A → B such that f is rep-

resentable with respect to γ , there is a decidable applicative morphism
γ f : A[ f ] → B such that γ f ι f = γ , and γ f is unique with this property.
Moreover, if δ : A[ f ] → B is such that δι f ∼= γ , then δ ∼= γ f .

Proof For the construction of A[ f ], let’s agree on some notation for codes of finite
sequences: if u = [u0, . . . , un−1] and i < n, u<i denotes [u0, . . . , ui−1] and u≥i

denotes [ui , . . . , un−1]; for i ≤ j < n, i≤u< j denotes [ui , . . . , u j−1]. Let p, p0, p1
be pairing and projection combinators in A, that is, satisfying for all a, b ∈ A:
p0(pab) = a and p1(pab) = b. Let Not be a combinator such that Not> = ⊥ and
Not⊥ = >.

The underlying set of A[ f ] will be A. We define a new application ·
f on A as

follows. For a, b ∈ A, an f -dialogue between a and b is a code of a sequence
u = [u0, . . . , un−1] such that for all i < n there is a vi ∈ A such that

a·([b] ∗ u<i ) = p⊥vi and f (vi ) = ui .

We say that a·
f b is defined with value c if there is an f -dialogue u between a and b

such that
a·([b] ∗ u) = p>c.

We show first that (A, · f ) is a pca.
Let K f = 3∗x .p>(3∗y.p>x0). Then clearly K f ·

f a = 3∗y.p>a for all a ∈ A,
so (K f ·

f a)· f b = a for all a, b ∈ A.
For the combinator S f , by primitive recursion, it is possible to construct a term

t (x, y) of A such that for all u, the application t (x, y)·u is given by the following
instructions:
t (x, y)·u =

xu if ∀i ≤ lhu Not(p0(xu<i )).
If i is minimal such that p0(xu<i ), let α = p1(xu<i ) and output
y([u0] ∗ u≥i ) if ∀ j (i ≤ j < lhu → Notp0(y([u0] ∗

i≤ u< j )).

If j is minimal such that p0(y([u0]∗
i≤u< j )), let β = p1(y([u0]∗

i≤u< j ))
and output α([β]∗u≥ j ) if ∀k( j ≤ k < lhu → Not(p0(α([β]∗

j≤u<k)))).

If k is minimal such that (p0(α([β]∗
j≤u<k))), output (p1(α([β]∗

j≤u<k))).

Note that t (a, b)· f c ' (a·
f c)· f (b·

f c) for all a, b, c. Therefore, let

S f = 3∗x .p>(3∗y.p>t (x0, y0)).

Then (S f ·
f a)· f b = t (a, b) for all a and b. This establishes A[ f ] as a pca.
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Note that the combinators K f and S f don’t really depend on f . This is analogous
to the fact that for a coding of Turing machine computations with oracle U , the Sm

n -
functions are primitive recursive and do not depend on U .

The map ι f : A → A[ f ] given by a 7→ {a} is an applicative morphism A →

A[ f ]. Indeed, if ab = c then (3∗x .p>(ax0))·
f b = c; so if r = 3∗yx .p>(y0x0)

then r realizes ι f . The decidability of ι f is left to the reader.
For the universal property, suppose γ : A → B is a decidable applicative mor-

phism which is realized by r and let d be a decider for γ . Moreover, suppose that
f represents f with respect to γ . Let π0, π1 ∈ B be such that if b ∈ γ (a) then
πi b ∈ γ (pi a). Similarly, let C and C ′ in B be such that if b ∈ γ (a) and v ∈ γ (u)
then Cbv ∈ γ ([a] ∗ u) and C ′bv ∈ γ (u ∗ [a]).

Now use the recursion theorem in B to find an element U such that for all b, b′, v,

Ubb′v ' If d(π0(rb(Cb′v)))
then π1(rb(Cb′v))

else Ubb′(C ′( f (π1(rb(Cb′v))))v).

The reader can check the following: suppose u is an f -dialogue between a and a′

in A, b ∈ γ (a), b′
∈ γ (a′), i < lhu, v ∈ γ (u<i ), and w = C ′( f (π1(rb(Cb′v))))v.

Then w ∈ γ (u≤i ) and Ubb′v = Ubb′w. Furthermore, if u is such that a([a′
] ∗ u) =

p>c, then Ubb′v ∈ γ (c).
Therefore, choose e ∈ γ ([ ]) and let

ρ = 3∗xx ′.U xx ′e.

Then ρ realizes γ as applicative morphism: A[ f ] → B. We denote this last mor-
phism by γ f .

Obviously, the diagram

A
ι f //

γ
!!DD

DD
DD

DD
D A[ f ]

γ f

��
B

commutes on the nose. Moreover, since ι f (a) = {a}, if δ : A[ f ] → B were such
that δι f ∼= γ f ι f , then δ ∼= γ f . So γ f is unique with respect to the property that the
diagram commutes on the nose and essentially unique with respect to the property
that it commutes up to isomorphism. The decidability of γ f is a direct consequence
of Corollary 1.4 and can also be verified directly. �

Corollary 2.3

(i) If f is representable in A, then A and A[ f ] are isomorphic pcas.
(ii) If f and g are two partial endofunctions on A, the pcas A[ f ][g] and A[g][ f ]

are isomorphic; we may therefore write A[ f, g].
(iii) If K1 denotes Kleene’s pca of partial recursive application, f : N → N is

a partial function and K
f

1 is the pca of partial recursive application with an
oracle for f , then K

f
1 is isomorphic to K1[ f ].

(iv) There exists a nontotal pca which is isomorphic to a total pca.

Proof The first two statements are immediate from the uniqueness statement in
Theorem 2.2. The third statement is easy. Finally, the fourth statement follows from
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the fact that A[ f ] is never total (the element a = 3∗x .p⊥⊥ is such that a·
f b is

never defined), so if A is total and f is representable in A, then A ∼= A[ f ] by i). �

Example 2.4 In [6], a total combinatory algebra B of partial functions on N is
defined, and it is proved that the representable functions are those functions which are
continuous for the Scott topology and satisfy some “sequentiality” condition. One
might consider what happens if a Scott-continuous “parallel” function is adjoined
to this: for example, let F : B → B be the function such that for all α ∈ B,
F(α)(0) = 0 if and only if dom(α) 6= ∅ (and undefined else), and F(α)(n) is
undefined for all n > 0. What would the representable functions of B[F] be? It is
not hard to see that for every Scott-open subset U of B, the function GU , defined by

GU (α)(n) =

{
0 if n = 0 and α ∈ U

undefined else ,

is representable in B[F]. This is an interesting question: Are there finitely many
Scott-continuous functions G1, . . . , Gn such that in B[G1, . . . , Gn] all Scott-
continuous functions from B to B are representable? My conjecture would be
no.

Remark 2.5 The construction of A[ f ] induces a preorder on the set of partial
endofunctions of A, which generalizes Turing degrees: let f ≤A g if and only if
f is representable in A[g] (with respect to ιg). Since the diagram

A //

��

A[g]

��
A[h] // A[g, h]

commutes, it is easy to see that ≤A is a transitive relation (it is reflexive by Theo-
rem 2.2(i)): suppose f ≤A g and g ≤A h. Then the bottom arrow in the diagram is
an isomorphism and the top arrow factors through ι f : A → A[ f ]. It follows that
also the map A → A[h] factors through ι f ; that is, f ≤A h.

Remark 2.6 There is a universal solution to the problem of “making A decidable”;
adjoin a function f to A where

f (x) =

{
> if p0x = p1x
⊥ else.

Remark 2.7 This seems to be a good point to correct a claim made in [2], Lemma
5.4. It is claimed that no total pca can be equivalent to a pca A in which there is an
element z such that for all x , zx↓ and zx 6= x . However, this is established only if
“equivalent” is replaced by “isomorphic.” Therefore the original claim remains an
open problem. Another open problem, as far as I know, is this: give an example of
two pcas which are equivalent, but not isomorphic.

3 A Geometric Inclusion of Realizability Toposes

The construction of A[ f ] generalizes another aspect of relative recursion, known
from the theory of realizability toposes. It is well known that for every pca A there
exists a realizability topos RT(A). The best studied example is RT(K1), the effective
topos [4]. In [4] and [7] it is explained that RT(K

f
1 ) is a subtopos of RT(K1), in the



Relative Recursion 317

topos-theoretic sense. Here we shall see that this generalizes to geometric inclusions
RT(A[ f ]) → RT(A).

In [2], the authors analyze a generalization of Longley’s 2-category of pcas and
characterize which applicative morphisms give rise to geometric morphisms between
realizability toposes. The key concept is that of a computationally dense morphism.
Unfortunately, the definition given in [2] is not quite adequate; see also [3]. I state
the correct definition here for pcas.

Definition 3.1 Suppose that F : A → B is a function between pcas such that the
map a 7→ {F(a)} is an applicative morphism. F is computationally dense if there is
an m ∈ B with the property that for every b ∈ B one can find an a ∈ A such that for
all a′

∈ A,

if bF(a′)↓ in B, then aa′
↓ in A, and m F(aa′) = bF(a′).

Let P(A) and P(B) denote the realizability triposes on A and B. Then in [2] it is
shown that the map of indexed preorders induced by F∗ (where F∗

: P (A) → P (B)
sends α to F[α]) has an indexed right adjoint if and only if F is computationally
dense.

In that case, the right adjoint is induced by the map F̂ : P (B) → P (A), given by

F̂(β) = {a ∈ A | m F(a) ∈ β},

where m ∈ B witnesses the computational density of F .
It is easily verified then, that if F is computationally dense and m is as in Defi-

nition 3.1, then the geometric morphism (F̂, F∗) is an inclusion precisely when the
following condition holds:

(in) there is a c ∈ B such that for every b ∈ B there is an a ∈ A such that
cb = F(a) and m(cb) = b.

Proposition 3.2 The identity function A → A[ f ] is computationally dense and
satisfies the condition (in).

Proof This is quite simple. Let m be an element of A such that for every y ∈ A and
every code of a sequence v, m([y] ∗ v) ' yv. Given b ∈ A, let a ∈ A be such that
for all a′

∈ A, aa′
' 3∗v.b([a′

] ∗ v). Then aa′ is always defined. Moreover,

m([aa′
] ∗ v) ' (aa′)v ' b([a′

] ∗ v).

It follows that m·
f (aa′) ' b·

f a′ in A[ f ]. This proves that the identity function is
computationally dense.

Moreover, if c = 3∗x .p>(3∗v.p>x0) then for all a, c[a] = p>(3∗v.p>[a]0);
hence, c· f a = 3∗v.p>[a]0 and

m([c· f a]) = (c· f a)[ ] = p>a,

so m·
f (c· f a) = a, which proves (in). �
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