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Expansions of o-Minimal Structures
by Iteration Sequences

Chris Miller and James Tyne

Abstract Let P be the ω-orbit of a point under a unary function definable in
an o-minimal expansion R of a densely ordered group. If P is monotonically
cofinal in the group, and the compositional iterates of the function are cofinal
at +∞ in the unary functions definable in R, then the expansion (R, P) has a
number of good properties, in particular, every unary set definable in any ele-
mentarily equivalent structure is a disjoint union of open intervals and finitely
many discrete sets.

The reader is assumed to be familiar with the basics of o-minimality, including the
associated model theory; see, for example, Dries [2]. Throughout, “∅-definable”
means “definable without parameters”, while “definable” means “definable with pa-
rameters”. The set of nonnegative integers is denoted by N; n ranges over N.

Given a set X and a function φ : X → X , let φ0 denote the identity on X and put
φn+1 = φ ◦ φn . For x ∈ X , put φN(x) = {φn(x) : n ∈ N }.

Until further notice, R denotes an o-minimal expansion of a densely ordered
group (R, <,+, 0) and φ denotes a unary function definable in R. We are inter-
ested in expansions of R by sets φN(c) (c ∈ R), particularly when R is an expansion
of the real field. In this note, we deal with a special, but natural, case.

Given c ∈ R such that the sequence (φn(c))n∈N is increasing and unbounded
above (in R), define λ : R → R by

t 7→

{
max

(
(−∞, t] ∩ φN(c)

)
, t ≥ c

c, t < c.

We say that R is φ-bounded if for each definable f : R → R there exists N ∈ N

(depending on f ) such that f (t) ≤ φN (t) as t → +∞, in other words, if the germs
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at +∞ of the compositional iterates of φ are cofinal in the germs at +∞ of the unary
functions definable in R.

Until further notice, assume also that R is φ-bounded and c ∈ R is such that
(φn(c))n∈N is increasing and unbounded above.

Theorem 1 Every n-ary set definable in
(
R, φN(c)

)
is a finite union of sets of the

form

{ x ∈ Rn
: f1(x) = · · · = fM (x) = 0, g1(x) < 0, . . . , gN (x) < 0 },

where the fi and g j are given piecewise by finite compositions of λ and functions
definable in R. Every function definable in

(
R, φN(c)

)
is given piecewise by finite

compositions of λ and functions definable in R.
If R defines a bijection between a bounded interval and an unbounded interval,

then the above holds with M = 1.
If both φ and c are ∅-definable, then all of the above holds with “∅-definable”

in place of “definable”.

There are some interesting consequences, especially if R is an expansion of the field
of real numbers, but we defer discussion.

Proof Let L0 ⊇ {<, +, −, 0, φ, c} be a language such that R is an L0-structure.
We shall not distinguish notationally between φ and c and their representing terms.

It suffices to consider the case that c > 0 and φ is an isomorphism of (R, <) such
that φ(t) > t for all t ∈ R, as we now show. Since (φn(c))n∈N is increasing and
unbounded above, the set { t ∈ R : φ(t) > t } is unbounded above. By o-minimality,
there exists d > 0 such that φ(t) > t for all t ≥ d . By the Monotonicity Theo-
rem, we may further assume that the restriction of φ to [d, ∞) is strictly increasing
and continuous. Since φN(c) is unbounded above, there exists N ∈ N such that
φN (c) ≥ d . Since there are only finitely many x ∈ φN(c) with x < φN (c), we may
assume that N = 0, that is, c ≥ d. By replacing d with c, we may take d = c.
Finally, replace φ with

t 7→

{
t + φ(c) − c, t < c
φ(t), t ≥ c.

Since c is nonzero and ∅-definable, the complete theory Th(R) of R has definable
Skolem functions, so we may reduce to the case that Th(R) admits QE (quantifier
elimination) and is universally axiomatizable, and that L0 has no relation symbols
other than <. Let L be the result of extending L0 by a new unary function symbol
which, for convenience, we denote also by λ. Now, (R, <, λ) is interdefinable with
(R, <, φN(c)), so in order to establish the first paragraph of the theorem, it suffices
(by a routine compactness argument) to show that, as an L-theory, Th(R, λ) admits
QE and is universally axiomatizable. Let T be the L-theory Th(R) together with
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sentences expressing

s ≤ t → λ(s) ≤ λ(t),

t < φ(c) → λ(t) = c,

λ(φ(c)) = φ(c),

t ≥ φ(c) → λ(t) ≤ t < φ(λ(t)),

λ(t) ≤ s < φ(λ(t)) → λ(s) = λ(t),

λ(t) = t ↔ λ(φ(t)) = φ(t).

(These are somewhat redundant, but convenient in their present form.) Since
(P, λ�P) embeds into every model of T , where P is the prime submodel of R and
P its underlying set, it suffices now to show that T admits QE, for then T is also
complete. Let (A, µ), (B, λ) |H T , with (A, µ) a proper submodel of (B, λ), and
let (B∗, λ∗) be a card(B)+-saturated elementary extension of (A, µ). Let A, B, B∗

denote the corresponding underlying sets. Since T is universal, it suffices to show
that, for some b ∈ B \ A, the substructure of (B, λ) generated by b over (A, µ)
embeds into (B∗, λ∗) fixing A pointwise. We have some preliminary work to do.

Given X ⊆ B, let H(X) be the convex hull of X in B, and dcl(X) be the definable
closure of X in B with respect to Th(R). Given b ∈ B, we write 0 � b if b is greater
than every element of dcl(∅). For 0 � b ∈ B, let [b] denote the convex hull in B of
the set of all values f (b), with f ranging over all strictly increasing and unbounded-
above functions B → B that are ∅-definable in R (i.e., [b] is the Th(R)-level of b,
as defined in Tyne [10]). Suppose that A ∩ [b] = ∅. By [10], 3.11,1 we have

{ x ∈ dcl(A ∪ {b}) : 0 � x } ⊆

⋃
0�a∈A

[a] ∪ [b]. (∗)

(This uses only that Th(R) is complete, o-minimal, and has definable Skolem func-
tions.)

Given 0 � b ∈ B, put φZ(b) = φN(b) ∪ { φ−1
n (b) : n ∈ N }. Now, φ is a

∅-definable isomorphism of (R, <), so the same is true of each φn , as well as each
compositional inverse φ−1

n . Hence, φZ(b) ⊆ [b]. By φ-boundedness, φZ(b) is not
only cofinal in [b], but also downward cofinal in [b]. It is now easy to check that
H(φZ(b)) = [b] = [λ(b)] = H(φZ(λ(b))). Hence, by (∗), we have the following
lemma.

Lemma 2 If 0 � b ∈ B and A ∩ H(φZ(b)) = ∅, then

{ x ∈ dcl(A ∪ {b}) : 0 � x } ⊆

⋃
0�a∈A

H(φZ(λ(a))) ∪ H(φZ(b)).

We return to the proof proper.
Suppose that λ(B) 6= µ(A). Fix b ∈ λ(B) \ µ(A). Then 0 � b and

A ∩ H(φZ(b)) = ∅, in particular, b /∈ A. Let C, with underlying set C , be
the substructure of B generated by b over A; then C = dcl(A ∪ {b}). By satu-
ration, there exists b∗

∈ B∗
\ A such that λ∗(b∗) = b∗ and b∗ realizes the same

cut in A as b. Since Th(R) is o-minimal, there is an L0-embedding e : C → B∗

fixing A pointwise such that e(b) = b∗. It follows easily from the lemma (and the
“λ axioms”) that λ(C) ⊆ C and e(λ(x)) = λ∗(e(x)) for every x ∈ C . Hence,
(C, λ�C) is a substructure of (B, λ), and e is an L-embedding as well.
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The case that λ(B) = µ(A) is similar, but easier: Any b ∈ B \ A will do, and
the lemma is not needed. We omit the details. (We have now established the first
paragraph of Theorem 1.)

Suppose now that R defines a bijection between a bounded interval and an un-
bounded interval. We show that we may take M = 1 in the statement of Theo-
rem 1. By definability of Skolem functions, there is a ∅-definable bijection between
a bounded interval and an unbounded interval. By Peterzil and Starchenko [9], there
exist binary operations ⊕, � on R that are ∅-definable in R such that (R, ⊕, �, 0, c)
is a real closed field with additive identity 0 and multiplicative identity c. Hence, for
all r1, . . . , rM ∈ R, we have r1 = · · · = rM = 0 if and only if the sum of the squares
of the rk , taken with respect to ⊕ and �, is equal to 0. The final paragraph of the
theorem is immediate by examination of the proof so far. �

The proof of the theorem is quite similar to that of Miller [8], Proposition 8.6 (which
was inspired by Dries [1], Theorem II), but [10], 3.11, replaces the use of the Wilkie
Inequality from Dries [3], Theorem C.

In general,
(
R, φN(c)

)
does not admit QE (in an extension of L0 by a new

unary predicate): It is easy to check that every unary quantifier-free definable
set in

(
R, φN(c)

)
has either nonempty interior or only finitely many limit points.

If R expands a field, then every x ∈ φN(c) is a limit point of the definable set
{ x + (1/y) : x, y ∈ φN(c), y 6= 0 }.

We now collect some consequences of the theorem.

Corollary 3 (of the proof) Th
(
R, φN(c)

)
is axiomatized relative to Th(R, φ, c) by

axioms expressing that(
φN(c), <, c, φ�φN(c)

)
≡

(
N, <, 0, n 7→ n + 1

)
∀x ≥ c ∃y ∈ φN(c), y ≤ x < φ(y).

A first-order theory extending the theory of dense linear orders without endpoints is
d-minimal (short for “discrete-minimal”) if, in every model, every unary definable
set either has interior or is a finite union of discrete sets, and the underlying set of the
model is definably connected (in the model). An expansion of a dense linear order
without endpoints is d-minimal if its complete theory is d-minimal. (We regard these
definitions as provisional; it is not yet clear that they capture the notion of “the next
best thing to o-minimality” for expansions of densely ordered structures by infinite
discrete sets.) For expansions of the real line, especially of the real field, a number of
interesting properties follow from d-minimality; see [8], §3.4. The situation is less
understood otherwise; indeed, it is not clear how to define the right analogues for
some of the properties that hold when working over the real line (but see also Miller
[7]).

Corollary 4
(
R, φN(c)

)
is d-minimal.

Proof With L as in the proof of the theorem, let LR be the expansion of L by
constants for elements of R. By induction on complexity, for every finite set 6 of
unary LR-terms there exist m ∈ N, f : Rm+1

→ R definable in R, and S ⊆ R such
that

1. S is a finite union of discrete sets definable in
(
R, φN(c)

)
;

2. R \ S is a disjoint union of open intervals with endpoints in S ∪ {±∞};
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3. if −∞ ≤ a < b ≤ +∞ and (a, b)∩ S = ∅, then for each σ ∈ 6 there exists
x ∈ Rm such that σ �(a, b) = f (x, ·)�(a, b).

Let A ⊆ R be definable in
(
R, φN(c)

)
. Since A is quantifier-free definable in (R, λ),

there exist (by the above) S ⊆ R, m ∈ N, and B ⊆ Rm+1 such that

1. S is a finite union of discrete sets definable in (R, λ);
2. R \ S is a disjoint union of open intervals with endpoints in S ∪ {±∞};
3. B is definable in R;
4. if −∞ ≤ a < b ≤ +∞ and (a, b) ∩ S = ∅, then there exists x ∈ Rm such

that (a, b) ∩ A = (a, b) ∩ Bx .

Hence, A is a union of disjoint open intervals and finitely many discrete sets definable
in

(
R, φN(c)

)
. The argument is the same in arbitrary models of Th

(
R, φN(c)

)
, so(

R, φN(c)
)

is d-minimal. �

Remark We analyzed only the unary LR-terms. As the reader might imagine,
something stronger (at least, on the face of it) than d-minimality can be established
by analyzing arbitrary terms, but we shall not pursue this matter here.

Corollary 5 If R = R, then the expansion of R by any collection of subsets of any
Cartesian powers of φN(c) is d-minimal.

Proof See [8], §3.4. �

Now assume that R expands the field of real numbers, and drop the assumption
that R is φ-bounded. Suppose that R is polynomially bounded (equivalently,
x2-bounded) and φ(t)/t is unbounded above as t → +∞. By Miller [6], there
exist a > 0 and r > 1 such that the power function xr is definable in R and
limt→+∞ φ(t)/tr

= a. For each n, we then have

lim
t→+∞

φn(t)/trn
= a(rn

−1)/(r−1),

so R is φ-bounded. By the Monotonicity Theorem, there exists C ∈ R such that,
for each c ≥ C , the sequence (φ(c))n∈N is strictly increasing and unbounded above.
Hence, for every sufficiently large c, Theorem 1 applies to

(
R, φN(c)

)
. Let us exam-

ine the situation further. Write φn(c) = bna(rn
−1)/(r−1)crn

. Note that

φ
1/r
n+1(c)

a1/rφn(c)
=

b1/r
n+1

bn
,

so
(
R, φN(c)

)
defines the set B := { b1/r

n+1/bn : n ∈ N }. By Corollary 4,
(
R, φN(c)

)
is d-minimal, so there are some obvious limitations on the nature of B; for example,
unless it is finite, it is not of the form f (N) for any unary f definable in R (since
otherwise, by monotonicity,

(
R, φN(c)

)
would define N, hence all real projective

sets). For a deeper analysis, see Miller [5].

Remark The assumption that φ(t)/t be unbounded above at +∞ is not necessary,
but the situation is more delicate otherwise. For example, with a > 1, c > 0, and
φ = ax , the conclusion of Theorem 1 holds for

(
R, φN(c)

)
if and only if R defines

no irrational power functions; see [8], §3.4 for details.
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Corollary 6 If R is polynomially bounded, then for each a > 0, c > 1, and r > 1
such that the power function xr is definable in R, the expansion of R by the set{

a(rn
−1)/(r−1)crn

: n ∈ N
}

is d-minimal.

Remark We could analyze similarly the case that R is an o-minimal expansion
of (R, <,+) that does not define multiplication, but the extra generality is illusory
except in the rather degenerate case that every unary function definable in R is ulti-
mately linear; see, for example, the discussion following the statement of Friedman
and Miller [4], Theorem 3. We shall not pursue this matter here.

If R is not polynomially bounded, then it is exponential (i.e., it defines the func-
tion ex ) [6]; we close with an application to this case.

Corollary 7 If R is exponential and exponentially bounded, then for each c > 1,
the expansion of R by the set of towers {c, cc, ccc

, . . . } is d-minimal.

(We use the established terminology “exponentially bounded” rather than
“ex -bounded”.)

The only previously known d-minimal expansions of the real exponential field
were obtained from sequences having much faster growth rates; see [4] for informa-
tion.

Note

1. The second author is currently preparing a manuscript for publication, entitled “T -height
in weakly o-minimal structures,” that includes a generalization of [10], 3.11.
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