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Abstract Tarski defined a way of assigning to each Boolean algebra, B, an in-
variant inv(B) ∈ In, where In is a set of triples from N, such that two Boolean
algebras have the same invariant if and only if they are elementarily equivalent.
Moreover, given the invariant of a Boolean algebra, there is a computable pro-
cedure that decides its elementary theory. If we restrict our attention to dense
Boolean algebras, these invariants determine the algebra up to isomorphism. In
this paper we analyze the complexity of the question “Does B have invariant
x?” For each x ∈ In we define a complexity class 0x that could be either 6n ,
5n , 6n ∧ 5n , or 5ω+1 depending on x , and we prove that the set of indices
for computable Boolean algebras with invariant x is complete for the class 0x .
Analogs of many of these results for computably enumerable Boolean algebras
were proven in earlier works by Selivanov. In a more recent work, he showed
that similar methods can be used to obtain the results for computable ones. Our
methods are quite different and give new results as well. As the algebras we
construct to witness hardness are all dense, we establish new similar results for
the complexity of various isomorphism problems for dense Boolean algebras.

1 Introduction

A common theme in mathematical investigations is the classification of structures
(within a specified class) and the characterization of the (sub)classes delineated. In-
deed, Hodges [8] offers the classification process (along with constructions of spec-
ified types of structures) as the essence of model theory. Of course, the general
endeavor pervades many branches of mathematics. Our topic in this paper has its
origin in such a study of the class of Boolean algebras. It begins with Tarski’s [17]
classification of Boolean algebras into countably many classes each consisting of
the models of a complete extension of the basic theory. (Of course, this classifies
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Boolean algebras up to elementary equivalence.) His motivation was to prove that the
theory of Boolean algebras was decidable and he did this by producing a uniformly
computable list of axioms for (each of) the complete extensions corresponding to his
classification.

Given such a classification (or the prospect of one), one may well want to char-
acterize membership in each subclass in some way and analyze the complexity of
the classes (i.e., of membership in each). The algebraist asks for invariants cor-
responding to structural properties that determine membership in each class. The
model theorist might ask for the (simplest) axioms that insure such membership.
The descriptive set theorist or recursion theorist wants to determine the location of
the classes in some standard hierarchy. The former expresses the results as complete-
ness properties for the classes of countable structures at levels of the Borel hierarchy.
The latter takes the lightface approach of proving completeness of the subclasses of
the computable structures in the arithmetic, hyperarithmetic, or analytic hierarchy.
(Typically, relativization of such lightface characterizations produces the boldface
Borel ones.)

For classification of Boolean algebras up to elementary equivalence, Tarski [17]
(see also Ershov [4], Goncharov [7], Ch. 2, and Monk and Bonnet [9], Ch. 7) pro-
vides the structural information by describing algebraic invariants as well as axiom-
atizations for each class. The determination of the simplest form of such axiom
systems (in the sense syntactic complexity) is given by Wasziewicz [18]. In this
paper, we provide the recursion (and so descriptive set) theoretic characterizations
of these classes as complete at specified levels of the arithmetic hierarchy and a bit
more. The classes provide not only index sets complete at the 6n or 5n level for
each n < ω but also for level 5ω+1 (the sets co-c.e. in 0(ω)) and even more unusu-
ally for the classes 6n ∧5n (the sets which are intersections of one in 6n and one
in 5n) for n ≡ 1, 2 (mod 4). As a by-product of our analysis we reprove the results
of [18] as well.

A standard question related to classifying the complexity of membership in such
subclasses is how to characterize the complexity of the isomorphism problem (when
two structures are isomorphic) for structures in the class or specified subclasses.
Again, there are natural descriptive set theoretic as well as recursion theoretic ver-
sions of this problem. For the class of all Boolean algebras the isomorphism prob-
lem is as complicated as possible, that is, 61

1 complete, and so one typically says
that there is no way to classify all Boolean algebras up to isomorphism or pro-
vide isomorphism invariants. There is, however, an algebraically defined class of
Boolean algebras, the dense Boolean algebras (see Definition 4.2), for which el-
ementary equivalence is the same as isomorphism. (So model theoretically these
are the saturated Boolean algebras.) We construct dense Boolean algebras as wit-
nesses for all the hardness results for membership in each of the elementary classes.
Thus we can deduce analogous results for isomorphism problems on these classes of
Boolean algebras. (Some care needs to be taken as being dense is itself a compli-
cated property.) We present the results in terms of typical strong index set notation,
for example, (6n,5n) ≤m (DBr ,DBs) (where DBr and DBs are classes of
dense Boolean algebras) as in Soare [16], IV.3.1, and explained in Definition 2.9.
This easily translates into the terminology proposed by Knight of the isomorphism
relation being, for example, 5n within some class of dense Boolean algebras. (See
Definition 2.11 and also Calvert [2] for further discussion of this notion.) Thus our
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results also supply examples of classes complete (in a strong way) at the same syn-
tactic levels for a collection of isomorphism problems. (Isomorphism problems at
certain higher levels of the hyperarithmetical hierarchy are provided by classes of
reduced Abelian p-groups as shown in [2].)

While all of these issues are natural in their own right, we should note that we
came to the particular questions addressed here from the problem of classifying the
complexity of related issues in terms of Reverse Mathematics. The question raised in
Shore [15] is the proof theoretic complexity of the existence of invariants for (count-
able) Boolean algebras classifying them up to elementary equivalence. Answers to
such questions are often provided by index set type results. Indeed, as explained in
[15] it seemed plausible, because of the nature of the results and the proof theoretic
issues, that one might need such results in this case. As it turned out, weaker hard-
ness theorems for membership in some of the classes sufficed to reach the desired
proof theoretic system of ACA+

0 (corresponding to the existence of X (ω) for every
set X ). Nonetheless, the recursion theoretic questions remained interesting. In par-
ticular, the class at level 5ω+1 plays no role in the proof theoretic analysis and we
thank Schmerl for raising the corresponding question.

As we were about to submit this paper for publication, we came across Seliv-
anov [14], a survey of positive (i.e., computably enumerable) structures. Selivanov
describes there (Theorems 4.5.5 – 4.5.7) a number of results on index sets for com-
putably enumerable Boolean algebras which, along with many others, appear in Seli-
vanov [12] and [13]. He also states (Remark 1 following Theorem 4.5.7) that analogs
of the results mentioned may be proven for the computable Boolean algebras (with
the index sets one step lower in every case) by straightforwardly generalizing his
proofs for the computably enumerable ones. The analogs of the results mentioned in
[14] and appearing in [13] cover our completeness results for the finitely axiomati-
zable classes of Boolean algebras. Others in [12], Lemma 12, if also generalized to
the computable case, would cover the other cases except for the nonarithmetic class
at level5ω+1. (The explicit results of [12], Lemma 12, give the strong index set form
of the results corresponding to the first four lines of our table in Theorem 2.10. The
general ones for finitely axiomatizable classes as in [13], p. 68, provide completeness
results but do not explicitly give the strong form of the index set results as in the fifth
and sixth lines of our table.) The question corresponding to the nonarithmetic class
of computably enumerable Boolean algebras is explicitly left open in [12]. All of
our proofs, including the nonarithmetic case, immediately supply the corresponding
results for computably enumerable algebras. (The index sets are one level higher
in the arithmetic hierarchy than those for computable Boolean algebras in the arith-
metic cases and at the same level (5ω+1) in the nonarithmetic one. To see this, note
that one can go from computable to computably enumerable at the cost of one level
in the hierarchy by simply relativizing to algebras computable in 0′ as every12 (i.e.,
computable in 0′) Boolean algebra is isomorphic to a uniformly constructed 61, that
is, computably enumerable, one (essentially by Feiner [5] according to Downey [3],
Corollary 3.10, or explicitly by Odintsov and Selivanov [11], Theorem 2). Of course,
5ω+1 relativized to 0′ is still 5ω+1 and so the result is the same for the computably
enumerable algebras as for the computable ones in this case.) Thus we also reprove
some of the results of [12] and [13].
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Our methods are quite different from Selivanov. We use no representations as
tree algebras but extensively exploit the back-and-forth relations and notions of k-
friendliness of Ash and Knight [1] to unify and simplify our analysis in the arith-
metic cases. The nonarithmetic case also needs some specific constructions using
interval algebras. All our results are proven for dense Boolean algebras and so also
provide new results on index sets for the isomorphism problem for these algebras as
mentioned above.

We provide the basic definitions for Boolean algebras needed to define our classes
and state the main index set type theorems in Section 2. We prove the easy, quantifier
counting aspect of our complexity results in Section 3. We define dense Boolean al-
gebras in Section 4 and present some useful lemmas about them. Section 5 introduces
the back-and-forth relations of Ash and Knight [1] and their notion of k-friendly
structures. The remaining sections prove the hardness results for the various classes
of Boolean algebras: 6n or 5n for every n < ω; 6n ∧5n for n ≡ 1, 2(mod 4); and,
finally, 5ω+1.

We refer the reader to [9] (especially Ch. 7) and [7] (especially Ch. 2) for general
background about Boolean algebras. For recursion theory, we suggest [16].

2 Definitions and Theorems

We begin with some basic definitions.

Definition 2.1 Let B be a Boolean algebra. We use the usual notation of constants
0 and 1 and operations ∧, ∨, and ¬. We define the following abbreviations. We
let x ≤ y abbreviate x ∧ y = x ; x − y abbreviate x ∧ ¬y; and x4y abbreviate
(x − y) ∨ (y − x). We say that x ∈ B is an atom if x 6= 0 & ∀z < x(z = 0); x is
atomic if for every nonzero element z < x , there is an atom y ≤ z; x is atomless if it
has no atoms below it.

Let I(B) denote the ideal of all elements x of B such that x = y ∨ z, where y is
atomic and z is atomless. Let B[0]

= B, and B[n+1]
= B[n]/I(B[n]). We now define

the invariant of B to be inv(B) = 〈p, q, r〉, where p ≤ ω, q ≤ ω, r ≤ 1, and

p =

{
min{n : B[n+1]

= 0} if it exists,
ω otherwise,

q =

{
sup{n : B[p] has at least n atoms} if p < ω,
0 if p = ω,

r =

{
1 if p < ω and B[p] contains an atomless element,
0 otherwise.

If inv(B) = 〈p, q, r〉, we write inv1(B) = p, inv2(B) = q, and inv3(B) = r .
We let In be the set of possible invariants. That is, In is the set of triplets
〈p, q, r〉 ∈ (ω + 1)× (ω + 1)× 2 such that if p = ω then q = r = 0 and if p < ω
then q and r are not both 0.

The original theorem showing that these are invariants for elementary equivalence is
Tarski’s.

Theorem 2.2 (Tarski [17]) If A and B are Boolean algebras, then inv(A) = inv(B)
if and only if A and B are elementarily equivalent.
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To simplify our notation we assign names to the classes (of computable algebras)
corresponding to each invariant and an additional level value that will roughly corre-
spond to the level of the associated index sets.

Definition 2.3 Given 〈p, q, r〉 ∈ In, we let B〈p,q,r〉 be the set of indices of com-
putable Boolean algebras with invariant 〈p, q, r〉. To each x ∈ In we assign a level,
l(x) ∈ ω + 1, as follows:

l(x) =



4p + 1 if x ∈ {〈p, q, 0〉 : q < ω},

4p + 2 if x ∈ {〈p, q, 1〉 : q < ω},

4p + 3 if x = 〈p, ω, 0〉,

4p + 4 if x = 〈p, ω, 1〉,

ω if x = 〈ω, 0, 0〉.

For a Boolean algebra B, we let l(B) = l(inv(B)). Given n ∈ ω, we let Bn
be B〈p,1,0〉 if n = 4p + 1, B〈p,0,1〉 if n = 4p + 2, B〈p,ω,0〉 if n = 4p + 3,
and B〈p,ω,1〉 if n = 4p + 4. We let B〈p,q̄,r〉 = ∪{B〈p,q ′,r〉|q ′

6= q, ω} and
B〈 p̄,q,r〉 = ∪{B〈p′,q,r〉|p′

6= p}.

We can now formulate our main results in terms of characterizing the complexity of
these index sets. First, we deal with the standard levels of the arithmetic hierarchy.

Theorem 2.4 For every n, Bn is 6n-complete if 4 divides n and 5n-complete if 4
does not divide n.

Next, we turn to completeness results that fall between some of the 6n and 6n+1
levels.

Definition 2.5 A set S is in 6n ∧ 5n if there are ϕ ∈ 6n and ψ ∈ 5n such that
x ∈ S ↔ ϕ(x) & ψ(x).

Theorem 2.6 For every p < ω, and 1 < q < ω, B〈p,q,0〉 is 5n ∧ 6n-complete,
where n = 4p + 1 = l(〈p, q, 0〉). For every p < ω, and 0 < q < ω, B〈p,q,1〉 is
5n ∧6n-complete, where n = 4p + 2 = l(〈p, q, 1〉).

Finally we reach the level beyond the arithmetic ones.

Definition 2.7 A set S is 6ω+1 if it is c.e. in 0(ω), and it is5ω+1 if its complement
is 6ω+1.

(Note that we here follow the notation used in [16], XII.4. In [1], these classes are
called 6ω and 5ω, respectively.)

It is well known, and not hard to prove, that a set S is 5ω+1 if there is
a computable f such that n ∈ S ⇐⇒ ∀ j ( f (n, j) 6∈ 0( j)). A set S is
6ω+1 if and only if S is 5ω+1, that is, if there is a computable f such that
n ∈ S ⇐⇒ ∃ j ( f (n, j) ∈ 0( j)).

Theorem 2.8 B〈ω,0,0〉 is 5ω+1-complete.

In fact, in every case our proofs will show more.

Definition 2.9 For any class 0 (of subsets of ω) and its complementary class
0̆ = {S̄|S ∈ 0} and for any A, B ⊆ ω, (0, 0̆) ≤m (A, B) means that for every
S ∈ 0 there is a computable function f such that ∀x(x ∈ S → f (x) ∈ A) and
∀x(x /∈ S → f (x) ∈ B).
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Our constructions will control the outcomes required in the proofs of hardness so as
to improve the hardness conclusion. We can summarize our results as follows.

Theorem 2.10 For each x ∈ In, Bx is in 0x where 0x is specified in the second
column of the table below. Moreover, Bx is complete for 0x and, indeed, complete
in the sense of a reduction for (0x , 0̆x ) as given by the third column:

x 0x (0x , 0̆x ) ≤m

〈p, 1, 0〉 54p+1 (B〈p,1,0〉,B〈p,0,1〉)

〈p, 0, 1〉 54p+2 (B〈p,0,1〉,B〈p,ω,0〉)

〈p, ω, 0〉 54p+3 (B〈p,ω,0〉,B〈p,ω,1〉)

〈p, ω, 1〉 64p+4 (B〈p,ω,1〉,B〈p+1,1,0〉)

〈p, q, 0〉, 1 < q < ω 64p+1 ∧54p+1 (B〈p,q,0〉,B〈p,q̄,0〉)

〈p, q, 1〉, 0 < q < ω 64p+2 ∧54p+2 (B〈p,ω,1〉,B〈p,ω̄,1〉)

〈ω, 0, 0〉 5ω+1 (B〈ω,0,0〉,B〈ω̄,ω,0〉)

In addition, in every case we will also be able to restrict the sets of (indices for)
Boolean algebras in the third column to the (indices for) dense ones (Definition 4.2)
in the same classes. (When we say that Bx is in 0x for 〈0, 1, 0〉 and 〈0, 1, 1〉 we mean
that there are formulas of the form specified by 0x such that any Boolean algebra
satisfying them is in Bx . The issue here is that to say that a number is an index of a
Boolean algebra (or even a structure at all) is already 52.)

As Goncharov ([7], 2.3.2) proves that any two countable dense Boolean algebras
with the same invariant are isomorphic, we can restate some of these results in terms
of the terminology introduced by Knight (see [6] and [2], 3.1 and 3.2, and the accom-
panying discussion) for classifying the complexity of the problem of determining if
two structures are isomorphic.

Definition 2.11 Let 0 be a class of subsets of ω (e.g., a complexity class such as
5n), A ⊆ B ⊆ ω (e.g., the sets of indices of some subclass and class, respectively,
of structures). We say that A is 0 complete within B if, for any S ∈ 0, there is a
computable function f : ω → B such that ∀n(n ∈ S ⇔ f (n) ∈ A).

Corollary 2.12 The isomorphism problem for dense Boolean algebras, that is,
the set A = {〈i, j〉| i and j are indices of isomorphic dense computable Boolean
algebras}, is 5ω+1 complete within DB, the set of indices of dense computable
Boolean algebras. Indeed, for x ∈ In, the finer problem of being isomorphic to the
dense Boolean algebra Dx of level l(x), {i |i is an index of a dense Boolean algebra
isomorphic to Dx }, is 0x complete within DB for 0x as specified in the table in
Theorem 2.10.

The results of [18] are also derived along the way and slightly improved. (See Sec-
tion 3 and the final remarks of Section 6 for the proofs.)
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Theorem 2.13 (Wasziewicz [18]) If x ∈ In and l(x) = n < ω, then the class of
Boolean algebras B with inv(B) = x is axiomatized as follows:

x Axioms
〈p, 1, 0〉 one ∀4p+1

〈p, 0, 1〉 one ∀4p+2

〈p, ω, 0〉 one ∀4p+3 and a computable set of ∃4p+2

〈p, ω, 1〉 one ∃4p+4 and a computable set of ∃4p+2

〈p, q, 0〉, 1 < q < ω one ∃4p+1and one ∀4p+1

〈p, q, 1〉, 0 < q < ω one ∃4p+2and one ∀4p+2

〈ω, 0, 0〉 one ∀n for each n

By [17], each class corresponds to a complete theory and so, for any m < ω, if
l(B), l(B ′) ≤ m, and if B and B ′ satisfy the same ∃m sentences, then B ≡ B ′. On
the other hand, if l(B), l(B ′) > m then B and B ′ satisfy the same ∃m sentences.

Corollary 2.14 (Wasziewicz [18]) The class of Boolean algebras B with inv(B) = x
are not axiomatizable by sentences in ∃n−1 and ∀n−1 where n = l(x) < ω. The
classes with invariants 〈p, ω, 0〉 and 〈p, ω, 1〉 are not finitely axiomatizable. The
class of Boolean algebras with invariant 〈ω, 0, 0〉 is not axiomatizable by sentences
at any bounded level of the ∃n hierarchy.

3 Counting Quantifiers

In this section we prove that, for each x ∈ In, Bx is in 0x . In fact, we will also
analyze the complexity of the axioms needed to guarantee that a Boolean algebra is
in Bx . We will prove that Bx is 0x -hard in the following sections.

Definition 3.1 We define unary predicates In , Atomn , Atomlessn , and Atomicn and
the associated formulas in the language of Boolean algebras by induction:

I0(x) ⇐⇒ x = 0;

Atomn(x) ⇐⇒ ¬In(x) & ∀y ≤ x(In(y) or In(x − y));

Atomlessn(x) ⇐⇒ ¬∃y ≤ x(Atomn(y));

Atomicn(x) ⇐⇒ ¬∃y ≤ x(¬In(y) & Atomlessn(y));

In+1(x) ⇐⇒ ∃y, z(Atomlessn(y) & Atomicn(z) & x = y ∨ z).

Let B be a Boolean algebra. Note that In(B)
def
= {x ∈ B : B |H In(x)} is the

ideal of B such that B[n]
= B/In(B). Let [x]n denote the equivalence class of x in

B/In(B); that is, [x]n = {y ∈ B : x4y ∈ In(B)}. Then Atomn(x) holds if and only
if [x]n is an atom of B[n], Atomlessn(x) holds if and only if [x]n is atomless in B[n],
and Atomicn(x) holds if and only if [x]n is atomic in B[n]. Observe that the formulas
In , Atomn , Atomlessn , and Atomicn are ∃4n , ∀4n+1, ∀4n+2, and ∀4n+3, respectively,
in the language of Boolean algebras. (Of course, that a computable Boolean algebra
B satisfies a ∃n or ∀n formula is a 6n or 5n relation, respectively.)

Definition 3.2 For p, q < ω, we let B〈p,≤q,r〉 =
⋃

i≤q B〈p,i,r〉. Also let
l(〈p,≤ q, r〉) = l(〈p, q, r〉).
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Lemma 3.3 For p, q < ω, x equal to either 〈p,≤ q, 0〉, 〈p,≤ q, 1〉, or 〈p, ω, 0〉

and n = l(x), Bx is in5n . Moreover, the corresponding classes of Boolean algebras
are axiomatized by a ∀n sentence, a ∀n sentence, a ∀n sentence, and a computable set
of ∃n−1 sentences (but not by any finite set of axioms), respectively. If x = 〈p, ω, 1〉,
then Bx is in 6n . Moreover, the corresponding class of Boolean algebras is axiom-
atized by a ∃n sentence and a computable set of ∃n−2 sentences but is not finitely
axiomatizable. (Of course, B〈p,1,0〉 = B〈p,≤1,0〉 and B〈p,0,1〉 = B〈p,≤0,1〉.)

Proof Consider x = 〈p,≤ q, 0〉, and let B be a computable Boolean algebra. B
is in Bx if and only if B has first invariant at least p, but no more than q atoms
in B[p], and no atomless members in B[p]. Now, q atoms can generate at most 2q

nonequivalent members, so to say that there are at most q atoms it suffices to say

¬∃x0, . . . , x2q (∀i, j ≤ 2q
¬Ip(xi4x j )),

which is a54p+1 predicate of B and indeed clearly equivalent to the truth of a ∀4p+1
sentence. (Replace the bounded quantification by the corresponding conjunction.)
This sentence also implies there are no atomless elements in B[p]. For B to be in Bx
we still need to say that B has first invariant at least p, that is, ¬Ip(1) which is a ∀4p
sentence.

Now consider x = 〈p,≤ q, 1〉. B is in Bx if and only if B has first invariant at
least p, no more than q atoms in B[p], but more than 2q elements in B[p]. This is
expressed by ¬Ip(1),

¬∃x0, . . . , xq(∀i ≤ q(Atomp(xi )) & ∀i < j ≤ q(¬Ip(x j4xi ))),

and
∃x0, . . . , x2q (∀i, j ≤ 2q

¬Ip(xi4x j )).

Note that this is clearly equivalent to the truth in B of a ∀4p+2 sentence.
Consider now x = 〈p, ω, 0〉. B is in Bx if and only if [1]p is atomic in B[p] and

there are infinitely many atoms:

Atomicp(1) &
∀m∃x1, . . . , xm(∀i ≤ m(Atomp(xi )) & ∀i < j ≤ m(¬Ip(x j4xi ))).

Observe that this is a 54p+3 predicate on B which is equivalent to the truth of a
∀4p+3 sentence and a computable set of 64p+2 sentences (one for each m). If this
class were finitely axiomatizable then, by the completeness of the associated theory,
some finite subset of this list of axioms would suffice to axiomatize the class. This,
however, is obviously impossible since any finite subset has an algebra with invariant
〈p, q, 0〉 for some q .

Finally let x = 〈p, ω, 1〉. Then B ∈ Bx if and only if, in B[p], 1 is the sum of an
atomless element and an atomic element, and there are infinitely many atoms. This
is expressed by

∃y, z(1 = y ∨ z & Atomicp(y) & Atomlessp(z) & ¬Ip(z)) &
∀m∃x1, . . . , xm(∀i ≤ m(Atomp(xi )) & ∀i < j ≤ m(¬Ip(x j4xi ))))

which is a 64p+4 predicate on B which is equivalent to the truth of a ∃4p+4 sentence
and a computable set of 64p+2 sentences. The argument that this class is not finitely
axiomatizable is the same as for 〈p, ω, 0〉. �

It follows that, for all n ∈ ω, Bn is in 6n if 4 divides n and it is in 5n otherwise.
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Lemma 3.4 For x = 〈p, q, r〉 with p < ω and either r = 0 & 1 < q < ω,
or r = 1 & 0 < q < ω, Bx is in 6n ∧ 5n , where n = l(x). Moreover, the
corresponding classes of Boolean algebras are axiomatized by a sentence in ∃n and
one in ∀n .

Proof For r = 0, observe that B〈p,q,0〉 consists of the Boolean algebras B in
B〈p,≤q,0〉 which are not in B〈p,≤q−1,0〉. By Lemma 3.3, B in B〈p,≤q,0〉 is guaranteed
by a ∀4p+1 sentence and B not in B〈p,≤q−1,0〉 is expressible by a ∃4p+1 sentence.
Similarly, for r = 1, observe that B〈p,q,1〉 consists of the Boolean algebras B in
B〈p,≤q,1〉 (guaranteed by a ∀4p+2 sentence) which are not in B〈p,≤q−1,1〉 (express-
ible by a ∃4p+2 sentence). �

Lemma 3.5 B〈ω,0,0〉 is in 5ω+1. The corresponding class of Boolean algebras is
axiomatized by a computable set of ∀n sentences with one for each n.

Proof A computable Boolean algebra B is in B〈ω,0,0〉 if for all p, B[p] is nonempty,
in other words, if

∀p < ω(¬Ip(1)).

Since 0(ω) knows whether Ip(1) for each p uniformly in p, B〈ω,0,0〉 is co-c.e. in
0(ω), or equivalently 5ω+1. �

Note that these lemmas establish the axiomatizabilty of the classes of Boolean alge-
bras by sentences of the complexity required in Theorem 2.13. The second part of
this theorem follows from Theorem 6.1(2).

Now that we have that, for each x , Bx is in 0x , we turn to proving that Bx is
0x -hard. We first need to introduce the concepts of dense Boolean algebras and
back-and-forth relations.

4 Dense Boolean Algebras

We start by defining the Tarski invariants on elements of a Boolean Algebra.

Definition 4.1 Let B be a Boolean algebra and a ∈ B. We let B � a be the Boolean
algebra whose domain is {b ∈ B : b ≤ a}, 1B � a = a, 0B � a = 0, ∨B � a and ∧B � a
are the restrictions of the corresponding operations in B, and the complement of b
in B � a is a − b. We let invB(a) = inv(B � a). When no confusion should arise, we
may might write inv(a) instead of invB(a).

Definition 4.2 A Boolean algebra B is dense if for every b ∈ B,

1. ∀k < inv1(b)(∃a ≤ b(inv(a) = 〈k, ω, 0〉)) and
2. if inv1(b) = ω or inv2(b) = ω, then there is an a ≤ b such that

inv1(a) = inv1(b) = inv1(b − a) and inv2(a) = inv2(b) = inv2(b − a).

Goncharov [7], 2.3.2, proves that any two countable dense Boolean algebras with the
same invariant are isomorphic. Moreover, he proves that every countable Boolean
algebra B has an elementary extension B∗ which is dense. This then shows that any
two countable Boolean algebras with the same invariant are elementarily equivalent
and so establishes Tarski’s theorem.

We let Dx denote the dense Boolean algebra with invariant x . All of them are
computably (even decidably) presentable by Morozov [10].
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Definition 4.3 We define an addition operation on the set In of invariants as fol-
lows: ∑

i≤m

〈pi , qi , ri 〉 = 〈p0, q0, r0〉 + · · · + 〈pm, qm, rm〉 = 〈p, q, r〉,

where

p = max{pi : i ≤ m},

q =

∑
{qi : i ≤ m & pi = p},

r = max{ri : i ≤ m & pi = p}.

We then say that 〈p0, q0, r0〉, . . . , 〈pm, qm, rm〉 is a partition of 〈p, q, r〉. (Here, we
are using the convention that ω + q = q + ω = ω.)

Definition 4.4 We say that a0, . . . , am ∈ B form a partition of a ∈ B if∨
i≤m ai = a and for all i ≤ m,

ai ∧

∨
j≤m, j 6=i

a j = 0.

Observe that if a0, . . . , am form a partition of 1, then B ∼= B � a0 ×· · ·× B � am . We
then say that B � a0, . . . , B � am form a partition of B.

Now consider an arbitrary tuple b̄ = (b0, . . . , bn) of members of B, generating a
partition of B as follows. Let A0 = {b0, 1 − b0}. Let Ai = {a − bi , bi ∩ a : a ∈ Ai }

for 0 ≤ i ≤ n. Then {B � a : a ∈ An, a 6= 0} is the partition of B generated by b̄.

Lemma 4.5 If a0, . . . , am−1 form a partition of a, then inv(a0), . . . , inv(am−1)
form a partition of inv(a).

Proof See [7], Lemma 2.2.4, for a proof of the lemma when m = 2. The general
case follows easily by induction. �

When we are dealing with dense Boolean algebras, the converse of the previous
lemma also holds.

Lemma 4.6 A Boolean algebra B is dense if and only if, for every b ∈ B and every
partition x0, . . . , xm of inv(b), there exists a partition a0, . . . , am of b such that, for
each i ≤ m, inv(ai ) = xi .

Proof The denseness conditions are just special cases of the partition property. To
see that, if B is dense, then B has the partition property, make use of the denseness
conditions along with Lemma 4.7 below. �

Lemma 4.7 (Goncharov [7], Lemma 2.2.6) Let B be a Boolean algebra, b ∈ B,
and x = 〈p, q, r〉 ∈ In.

1. If p < inv1(b), q < ω, and r ≤ 1, then there is an a ≤ b such that
inv(b − a) = inv(b).

2. If p = inv1(b), q ≤ inv2(b), and r ≤ inv3(b), then there is an a ≤ b such
that inv(a) = x. Moreover, if q < inv2(b) or r = 1, then we can also require
that inv1(b − a) = inv1(b), inv2(b − a) = q, and inv3(b − a) = inv3(b),
where we take ω − ω to be 0.

Corollary 4.8 The product of dense Boolean algebras is dense.
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Proof Consider x, y ∈ In. We want to prove that Dx × Dy ∼= Dx+y . The element
1 of Dx+y has invariant x + y. So, by the lemma above, there exists a partition
a, b of 1 such that inv(a) = x and inv(b) = y. Since a, b is a partition of 1,
Dx+y ∼= Dx+y � a × Dx+y � b. Since Dx+y is dense, so are Dx+y � a and Dx+y � b.
Therefore,

Dx × Dy ∼= Dx+y � a × Dx+y � b ∼= Dx+y . �

5 Back-and-Forth Relations

In this section we define back-and-forth relations between structures and state the
properties about them that we need. We refer the reader to [1] for more information
on these relations.

Definition 5.1 Let K be a class of structures for a fixed language. For each n < ω,
we define the standard back-and-forth relation ≤n on pairs (A, ā), where A ∈ K
and ā is a tuple in A. First suppose that ā in A and b̄ in B are tuples of the same
length. Then

1. (A, ā) ≤1 (B, b̄) if and only if all 61 formulas true of b̄ in B are true of ā in
A,

2. for n > 1, (A, ā) ≤n (B, b̄) if and only if for each d̄ in B, and each
1 ≤ k < n, there exists a c̄ in A with |c̄| = |d̄| such that (B, b̄, d̄) ≤k (A, ā, c̄).

Now, we extend the definition of ≤n to tuples of different lengths. For ā in A and
b̄ in B, let (A, ā) ≤n (B, b̄) if and only if |ā| ≤ |b̄| and for the initial segment b̄′

of b̄ of length |b̄|, we have (A, ā) ≤n (B, b̄′). We may write A ≤n B instead of
(A,∅) ≤n (B,∅).

One observation that might give the reader some intuition about the back-and-forth
relation is that (A, ā) ≤n (B, b̄) if and only if all the 5n infinitary formulas true
of ā in A are true of b̄ in B. (See [1], Proposition 15.1; see [1], Chapter 6, for
information on infinitary formulas.) Also observe that if k < n and (A, ā) ≤n (B, b̄)
then (A, ā) ≡k (B, b̄), where (A, ā) ≡k (B, b̄) if and only if (A, ā) ≤k (B, b̄) and
(A, ā) ≥k (B, b̄).

The only structures we will be dealing with are Boolean algebras. The following
lemma gives us a way of computing the back-and-forth relations on Boolean algebras
without having to refer to the definition given above.

Lemma 5.2 (Ash and Knight [1], 15.13) Suppose that A and B are Boolean alge-
bras. Then A ≤1 B if and only if A is infinite or can be split into at least as many
disjoint parts as B (i.e., if A is generated by p atoms, then B is generated by k atoms,
for some k ≤ p). For n > 1, A ≤n B if and only if, for any l with 1 ≤ l < n and
any finite partition of B into B1, . . . , Bk , there is a corresponding partition of A,
A1, . . . , Ak , such that Bi ≤l Ai .

We will be interested in analyzing the back-and-forth relation among the dense
Boolean algebras. Since each isomorphism type of a dense Boolean algebra is deter-
mined by its invariant, we translate the back-and-forth relation to one on the set of
invariants.

Definition 5.3 Given x, x ′
∈ In and n < ω we let x ≤n x ′ if Dx ≤n Dx ′ .

The back-and-forth relations on the set of invariants can be computed using the fol-
lowing lemma.
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Lemma 5.4 Consider x, x ′
∈ In. Then x ≤1 x ′ if and only if either l(x) > 1,

or x = 〈0, q, 0〉, x ′
= 〈0, q ′, 0〉, and q ≥ q ′. For n > 1, x ≤n x ′ if and only if,

for any partition y′

1, . . . , y′

k of x ′, there is a corresponding partition y1, . . . , yk of x
such that y′

i ≤n−1 yi .

Proof Immediate from Lemma 5.2, noting that Dx is infinite if and only if l(x) > 1,
and that if l(x) = 0 then x = 〈0, q, 0〉 for some 1 ≤ q < ω, so for Dx to be such that
it can be split into at least as many disjoint parts as D′

x we must have x ′
= 〈0, q ′, 0〉

for some q ′
≤ q . �

The above considerations reduce computing the back-and-forth relations on In to a
combinatorial task, which we will do in Theorem 6.1. To complete the proofs of our
hardness results we also make use of the concept of k-friendliness, which we now
introduce. Again, we refer the reader to [1], Chapter 15, for more information.

Definition 5.5 A pair of structures {A0, A1} is k-friendly if the structures Ai are
computable, and for n < k, the standard back-and-forth relations ≤n on (Ai , a), for
a ∈ Ai , are c.e., uniformly in n.

Theorem 5.6 (Ash and Knight [1], 18.6) Let A0 and A1 be structures such that
A1 ≤k A0 and {A0, A1} is k-friendly. Then for any 5k set S, there is a uniformly
computable sequence of structures {Cn}n∈ω such that

Cn ∼=

{
A0 if n ∈ S
A1 otherwise.

This theorem can be restated as follows.

Corollary 5.7 Let A0 and A1 be n-friendly structures and BA0 and BA1 be subsets
of ω such that every index of a computable copy of A0 is in BA0 and every index of
a computable copy of A1 is in BA1 . Then

A1 ≤n A0 H⇒ (6n,5n) ≤m (BA1 ,BA0).

6 The 6n and the 5n Cases (Theorem 2.4)

We start by giving a complete analysis of the back-and-forth relations on the set of
invariants, or equivalently, on the dense Boolean algebras. The proof of the following
theorem is purely combinatorial and all it uses about the back-and-forth relations on
In is Lemma 5.4.

Theorem 6.1 Let x = 〈p, q, r〉 and x ′
= 〈p′, q ′, r ′

〉 be invariants with l(x) = l
and l(x ′) = l ′, and let n ≥ 1. The following conditions determine whether x ≤n x ′.

Case 1 If l < n ∨ l ′ < n, then x ≤n x ′ iff x = x ′.
Case 2 If l > n & l ′ > n, then x ≤n x ′ always.
Case 3 If l = n & l ′ = n, then x ≤n x ′ iff q ≥ q ′.
Case 4 If l > n & l ′ = n, then x ≤n x ′ iff n 6= 4p′

+ 4.
Case 5 If l = n & l ′ > n, then x ≤n x ′ iff n = 4p + 4.

Proof The proof is by induction on n. The case n = 1 follows trivially from
Lemma 5.4 (recall l, l ′ ≥ 1 by definition of level). Consider n > 1 and assume
the theorem holds for all m < n.
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Case 1 Suppose that either l < n or l ′ < n. Clearly if x = x ′ then x ≤n x ′. Now
suppose x ≤n x ′. Then x ≡n−1 x ′. By induction hypothesis this can only happen
either if x = x ′ or if l > n − 1 and l ′ > n − 1. Therefore, since either l < n or
l ′ < n, we must have x = x ′.

Case 2 Suppose l > n and l ′ > n. We have to show that given any finite par-
tition y′

1, . . . , y′

k of x ′, there is a corresponding partition y1, . . . , yk of x such that
y′

i ≤n−1 yi . Assume y′

1, . . . , y′

k are ordered such that for some j ≤ k, y′

1, . . . , y′

j
have level ≥ n and y′

j+1, . . . , y′

k have level < n. It is not hard to observe that, what-
ever n is, since l(x) > n, it is always the case that there exists y1, . . . , y j of level
≥ n such that

∑
i≤ j yi = x . Note that by induction hypothesis, since l(yi ) > n − 1

and l(y′

i ) > n − 1, y′

i ≤n−1 yi for all i ≤ j . For i > j let yi = y′

i . Another easy
general observation is that for every y, z ∈ In with l(y) ≤ l(z)−2, z + y = z. Then∑

i≤k yi = x +
∑k

i= j+1 y′

i = x . So y1, . . . , yk is the desired partition of x .

Case 3 Assume l = l ′ = n. Note that p = p′ and r = r ′. Also if n = 4p + 3 or
n = 4p + 4, then q = q ′

= ω and therefore x = x ′. So suppose n is either 4p + 1
or 4p + 2.

First suppose q ≥ q ′; we want to show that x ≤n x ′. Consider a partition
y′

1, . . . , y′

k of x ′ with y′

i = 〈pi , qi , ri 〉. Note that, necessarily, for some i ≤ k,
pi = p and ri = r ; without loss of generality suppose that p1 = p and r1 = r . Let
y1 = 〈p, q1 + (q − q ′), r〉 = 〈p, q − q ′, r〉 + y′

1, and for i > 1 let yi = y′

i . Observe
that ∑

i≤k

yi = 〈p, q − q ′, r〉 +

∑
i≤k

y′

i = 〈p, q − q ′, r〉 + x ′
= x .

Also, since l(y1) = l(y′

1) = n > n − 1, by Case 2 of the inductive hypothesis,
y′

1 ≤n−1 y1. So y1, . . . , yk is the desired partition.
Now suppose q < q ′; we want to show that x 6≤n x ′. If n = 4p+1 or equivalently

r = 0, consider the partition y′

i = 〈p, 1, 0〉 for i ≤ q ′ of x ′
= 〈p, q ′, 0〉. It is not

hard to see that any partition y1, . . . , yq ′ of x cannot have more than q elements at
level n. So, for some i ≤ q ′, l(yi ) < n = l(y′

i ). Then, by either Case 1 or Case 4 of
the induction hypothesis, y′

i 6≤n−1 yi .
If n = 4p+2, consider the partition y′

i = 〈p, 1, 0〉 for i ≤ q ′ and yq ′+1 = 〈p, 0, 1〉

of x ′
= 〈p, q ′, 1〉. Suppose toward a contradiction that there is a partition

y1, . . . , yq ′+1 of x such that for all i ≤ q ′
+ 1, y′

i ≤n−1 yi . By induction hypothesis,
〈p, 1, 0〉 ≤n−1 yi implies that yi = 〈p, 1, 0〉. So, for all i ≤ q ′, yi = 〈p, 1, 0〉. But
then, since q < q ′, it cannot be the case that

∑
i<q ′+1 yi = 〈p, q, 1〉 = x .

Case 4 Suppose now that l > n and l ′ = n. First suppose that n 6= 4p′
+ 4. Then,

any partition y′

1, . . . , y′

k of x ′ must have some member at level n. Assume l(y′

1) = n.
Note that there is a y1 of level l > n such that y1 +

∑
1<i≤k y′

i = x . Also observe
that since l(y1) > n − 1 and l(y′

1) > n − 1, y′

1 ≤n−1 yi . Then, if for 1 < i ≤ k we
let yi = y′

i , we obtain the desired partition of x .
Now suppose that n = 4p′

+ 4 and hence x ′
= 〈p′, ω, 1〉; we want to show

that x 6≤n x ′. Consider the following partition of x ′: let y′

1 = 〈p′, ω, 0〉 and
y′

2 = 〈p′, 0, 1〉. Suppose toward a contradiction that y1, y2 is a partition of x
such that y′

i ≤n−1 yi for i ≤ 2. Then by induction hypothesis we must have
y1 = 〈p′, ω, 0〉 and y2 = 〈p′, 0, 1〉. But then l(y1 + y2) = n < l(x), contradicting
y1 + y2 = x .
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Case 5 The last case is l = n and l ′ > n. Suppose first that n = 4p + 4, so
x = 〈p, ω, 1〉. Let y′

1, . . . , y′

k be a partition of x ′. Let yi = y′

i if l(y′

i ) < n and
yi = 〈p, ω, 1〉 otherwise. Note that

∑
i≤k yk = x , and that for i with l(y′

i ) > n,
since l(yi ) > n − 1, y′

i ≤n−1 yi . So y1, . . . , yk is the desired partition.
Note that if l(x∗) ≥ n + 1 and l(x ′) ≥ n + 1, then x ′

≤n x∗ by Case 2. So to
show x 6≤n x ′ it suffices to show x 6≤n x∗ for any x∗ of level n + 1.

Suppose n = 4p + 1 or n = 4p + 2, so x = 〈p, q, r〉 with q < ω and x ′ has level
n +1; we want to show that x 6≤n x ′. By Case 3, 〈p, q, r〉 6≤n 〈p, q +1, r〉. By Case
4, x ′

≤n 〈p, q + 1, r〉. So we must have 〈p, q, r〉 6≤n x ′.
Last, suppose n = 4p + 3. Then x = 〈p, ω, 0〉 and let x ′

= 〈p, ω, 1〉; we want
to show that x 6≤n x ′. Consider the partition y′

1 = 〈p, ω, 0〉 and y′

2 = 〈p, 0, 1〉

of x ′. Suppose toward a contradiction that there is a partition y1, y2 of x such
that y′

i ≤n−1 yi . Now 〈p, 0, 1〉 ≤n−1 y2 implies, by induction hypothesis, that
y2 = 〈p, 0, 1〉. But then y2 cannot be part of a partition of 〈p, ω, 0〉. Contradic-
tion. �

Corollary 6.2 Let A and B be computable presented Boolean algebras such that
the functions invA and invB are computable. Then {A, B} is n-friendly for every
n < ω.

Proof Let A0 and A1 be in {A, B}, ā0 be a tuple in A0, ā1 be a tuple in A1, and
n < ω. We will show how to decide whether (A0, ā0) ≤n (A1, ā1) computably.
If |a0| > |a1|, then (A0, ā0) 6≤n (A1, ā1). So suppose |a0| ≤ |a1|. By truncating
ā1 if necessary, we can assume without loss of generality that they have the same
length. Each tuple āi generates a partition of Ai . We can then effectively compute the
invariants of the partition, yi,0, . . . , yi,k . By [1], Lemma 15.12, (A0, ā0) ≤n (A1, ā1)
if and only if y0, j ≤n y1, j for 0 ≤ j ≤ k. Then we can use Theorem 6.1 to decide
this. �

In [10], Morozov uniformly constructs dense Boolean algebras of each invariant
which are decidable. While decidability does not quite give the computability of
the inv functions on these algebras, it is not hard to see that they are in fact com-
putable. (The argument is a tedious one by induction with several cases. Enough
of it to give the ideas is carried out in [15], Proposition 6.5, when that proof is spe-
cialized to these algebras.) Therefore, by Corollary 6.2, these Boolean algebras are
n-friendly for each n. Then, from Corollary 5.7, we obtain the following.

Corollary 6.3 For every p < ω,

(64p+1,54p+1) ≤m (DB〈p,0,1〉,DB〈p,1,0〉),

(64p+2,54p+2) ≤m (DB〈p,ω,0〉,DB〈p,0,1〉),

(64p+3,54p+3) ≤m (DB〈p,ω,1〉,DB〈p,ω,0〉),

(64p+4,54p+4) ≤m (DB〈p,ω,1〉,DB〈p+1,1,0〉).

Theorem 2.4 and the corresponding lines of Theorem 2.10 now follow from this
corollary and Lemma 3.3.

We can also now derive the second part of Theorem 2.13 and Corollary 2.14.
As remarked above, Dx ≡n Dx ′ implies that the same ∀n formulas are true in Dx
and Dx ′ ([1], Proposition 15.1). Case 2 of Theorem 6.1 then implies that, for every
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m < ω, if l(B), l(B ′) > m then B ≡m B ′ as required for the second part of Theo-
rem 2.13. As for Corollary 2.14, if Dx were axiomatized by sentences in ∃m and ∀m
for m < l(x) then, by the second part of Theorem 2.13, Dx ′ ≡m Dx for any x ′ with
l(x ′) > n and so we would have Dx ′ ≡ Dx for a contradiction.

7 The 6n ∧ 5n Cases (Theorem 2.6)

Now we prove that, for x = 〈p, q, r〉 with 0 < q + r < ω, DBx is 60
l(x) ∧50

l(x)-
hard. We first prove it for x 6= 〈p, 2, 0〉. Later, using a more complicated proof, we
prove it for x = 〈p, 2, 0〉.

Lemma 7.1 For 2 < q < ω, DB〈p,q,0〉 is (64p+1 ∧54p+1)-hard. For 0 < q < ω,
DB〈p,q,1〉 is (64p+2 ∧ 54p+2)-hard. Moreover, the reductions proving hardness
produce, in the case that n is not in the 64p+1 ∧54p+1 or 64p+2 ∧54p+2 set, an
index in DB〈p,q̄,0〉 or DB〈p,q̄,1〉, respectively, as required in Theorem 2.10.

Proof Let 2 < q < ω. Consider two 64p+1 formulas ϕ(n) and ψ(n). We want
to construct a computable function f such that ∀n(ϕ(n) & ¬ψ(n)) ⇐⇒ f (n) ∈

DB〈p,q,0〉). Since q > 2, by Theorem 6.1, 〈p, q, 0〉 ≤4p+1 〈p, 1, 0〉 and
〈p, q − 1, 0〉 ≤4p+1 〈p, 1, 0〉. So by Corollary 5.7 there are computable g
and h such that ϕ(n) ⇒ g(n) ∈ DB〈p,q−1,0〉, ¬ϕ(n) ⇒ g(n) ∈ DB〈p,1,0〉,
ψ(n) ⇒ h(n) ∈ DB〈p,q,0〉, and ¬ψ(n) ⇒ h(n) ∈ DB〈p,1,0〉. Associating Boolean
algebras with their indices, let f (n) = g(n) × h(n) and note that, by Corollary 4.8,
f (n) is an index for a dense Boolean algebra. Then if ϕ(n) & ¬ψ(n), we have
inv( f (n)) = inv(g(n)) + inv(h(n)) = 〈p, q − 1, 0〉 + 〈p, 1, 0〉 = 〈p, q, 0〉. If
ϕ(n) & ψ(n) then inv( f (n)) = 〈p, q − 1, 0〉 + 〈p, q, 0〉 = 〈p, 2q − 1, 0〉, if
¬ϕ(n) & ψ(n) then inv( f (n)) = 〈p, 1, 0〉 + 〈p, q, 0〉 = 〈p, q + 1, 0〉, and if
¬ϕ(n) & ¬ψ(n) then inv( f (n)) = 〈p, 1, 0〉 + 〈p, 1, 0〉 = 〈p, 2, 0〉. Thus f has the
required properties.

Suppose 0 < q < ω and that ϕ(n) andψ(n) are64p+2. We now wish to construct
a computable function f such that ∀n(ϕ(n) & ¬ψ(n) ⇐⇒ f (n) ∈ DB〈p,q,1〉).
Again, by Theorem 6.1 and Corollary 5.7, there are computable g and h such
that ϕ(n) ⇒ g(n) ∈ DB〈p,q,1〉, ¬ϕ(n) ⇒ g(n) ∈ DB〈p,0,1〉, ψ(n) ⇒ h(n) ∈

DB〈p,q+1,1〉, and ¬ψ(n) ⇒ h(n) ∈ DB〈p,0,1〉. Now let f (n) = g(n) × h(n)
and note that f has the required properties. Indeed, if ϕ(n) & ¬ψ(n), we have
inv( f (n)) = inv(g(n)) + inv(h(n)) = 〈p, q, 1〉 + 〈p, 0, 1〉 = 〈p, q, 1〉. If
ϕ(n) & ψ(n) then inv( f (n)) = 〈p, q, 1〉 + 〈p, q + 1, 1〉 = 〈p, 2q + 1, 1〉, if
¬ϕ(n) & ψ(n) then inv( f (n)) = 〈p, 0, 1〉 + 〈p, q + 1, 1〉 = 〈p, q + 1, 1〉, and if
¬ϕ(n) & ¬ψ(n) then inv( f (n)) = 〈p, 0, 1〉 + 〈p, 0, 1〉 = 〈p, 0, 1〉. �

To finish the proof of Theorem 2.6 and the corresponding parts of Theorem 2.10, we
still need to prove that, for every p, DB〈p,2,0〉 is (64p+1 ∧54p+1)-hard via reduc-
tions with an appropriate outcome in the case that n is not in the given64p+1∧54p+1
set. We need the following definition.

Definition 7.2 Let {Bi }i∈ω be a sequence of Boolean algebras. We define∏ω
i∈ω Bi , the weak product of {Bi }i∈ω, to be the Boolean algebra with domain

the set of infinite strings b̄ = (b0, b1, . . .) such that ∀i(bi ∈ Bi ) and for some i0,
either ∀ j ≥ i0(b j = 0) or ∀ j ≥ i0(b j = 1). The operations and constants of∏ω

i∈ω Bi are defined coordinatewise in the obvious way, with 0 = (0B0 , 0B1 , . . .),
1 = (1B0 , 1B1 , . . .), and so forth.
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Observation 7.3 We make two observations. One is that
ω∏

i∈ω

Bi ∼= B0 ×

ω∏
i∈ω,i>0

Bi ∼= B0 × B1 × · · · × Bn ×

ω∏
i∈ω,i>n

Bi .

The second one is that
ω∏

i∈ω

D〈p,ω,1〉
∼= D〈p+1,1,0〉.

Proof The first observation is clear. To see the second, we will show that
inv

( ∏ω
i∈ω D〈p,ω,1〉

)
= 〈p + 1, 1, 0〉 and that

∏ω
i∈ω D〈p,ω,1〉 is dense. Note that

if 1 = x ∨ y, then we may assume without loss of generality that there exists
i0 such that ∀ j ≥ i0(x j = 1), as either x or y must have this form. Now since
[1]p is neither atomic nor atomless in D[p]

〈p,ω1〉
, [1]p is neither atomic nor atom-

less in
( ∏ω

i∈ω D〈p,ω,1〉

)[p]. Hence inv1(1) > p. Now if b ∈
∏ω

i∈ω D〈p,ω,1〉 is
such that ∃i0∀ j > i0(b j = 0), then b ∈ Ip+1

( ∏ω
i∈ω D〈p,ω,1〉

)
. If b is such that

∃i0∀ j > i0(b j = 1), then 14b ∈ Ip+1
( ∏ω

i∈ω D〈p,ω,1〉

)
. Thus [1]p+1 is an atom

in
( ∏ω

i∈ω D〈p,ω,1〉

)[p+1], and hence inv
( ∏ω

i∈ω D〈p,ω,1〉

)
= 〈p + 1, 1, 0〉. For

denseness, let b ∈
∏ω

i∈ω D〈p,ω,1〉. If b = (b0, . . . , bi0 , 0, 0, . . .) then

( ω∏
i∈ω

D〈p,ω,1〉

)
� b ∼= D〈p,ω,1〉 � b0 × · · · × D〈p,ω,1〉 � bi0 ,

which is dense by Corollary 4.8. The denseness condition for b follows. If
b = (b0, . . . , bi0 , 1, 1, . . .) then, by the first observation,

inv(b) = invD〈p,ω,1〉(b0)+ · · · + invD〈p,ω,1〉(bi0)+ inv
∏ω

i∈ω D〈p,ω,1〉(1) = 〈p + 1, 1, 0〉.

Note that (0, . . . , 0, 1, 0, . . .) < b̄ and has invariant 〈p, ω, 1〉. So the denseness
condition for b̄ follows from denseness below (0, . . . , 0, 1, 0, . . .) and the fact that
below (0, . . . , 0, 1, 0, . . .) there is an element of invariant 〈p, ω, 0〉. �

Lemma 7.4 For every p < ω, DB〈p,2,0〉 is (64p+1 ∧54p+1)-hard. Moreover, the
reductions proving hardness produce, in the case that n is not in the 64p+1 ∧54p+1
set, an index in DB

〈p,2̄,0〉
as required in Theorem 2.10.

Proof Consider two 64p+1 formulas ϕ(n) and ψ(n). We want to construct a com-
putable function f such that for every n

ϕ(n) & ¬ψ(n) ⇐⇒ f (n) ∈ DB〈p,2,0〉.

We start by finding a 54p formula ϕ̂(n, x) such that ϕ(n) ⇐⇒ ∃x ϕ̂(n, x) and
such that if ϕ(n), then there is at most one x such that ϕ̂(n, x). Since ϕ ∈ 64p+1,
ϕ(n) = ∃x∀wϕ̄(n, x, w) for some ϕ̄ ∈ 64p−1. Let ϕ̂(n, x) be the formula

x = 〈y, z〉 & ∀wϕ̄(n, y, w) & ∀y′ < y∃w ≤ z(¬ϕ̄(n, y′, w)) &

∀z′ < z∃y′
≤ y∀w ≤ z′ϕ̄(n, y′, w) (1)

which has the desired properties. Indeed, it is clear that if ∃x ϕ̂(n, x) then ϕ(n). Now
suppose ϕ(n) holds. So ∃x∀wϕ̄(n, x, w). Choose y least such that ∀wϕ̄(n, y, w).
Then for each y′ < y there is a minimal w such that ¬ϕ̄(n, y′, w). Let z be the
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maximum of these w. Then ϕ̂(n, 〈y, z〉) holds. Suppose also ϕ̂(n, 〈ỹ, z̃〉). Then the
third condition in (1) gives y = ỹ and the fourth condition gives z = z̃.

We also define ψ̂(n, x) to be a 54p formula such that for all n, ψ(n)
⇐⇒ ∃xψ̂(n, x), but if ψ(n), then there are exactly two x such that ψ̂(n, x). We
define ψ̂ as we did with ϕ̂ but replace “x = 〈y, z〉” with “x = 〈y, z〉∨x = 〈y, z〉+1”.

Let g be a computable function such that ∀n, x(ϕ̂(n, x)H⇒ g(n, x) ∈ DB〈p,1,0〉)
and ∀n, x(¬ϕ̂(n, x) H⇒ g(n, x) ∈ DB〈p−1,ω,1〉). Such a g exists by Corollary 6.3.
Let h do the same with ψ̂ . Think of g(n, x) and h(n, x) as computable dense Boolean
algebras rather than as indices for such. For each n and x let Bn,x be g(n, x

2 ) if x
is even and h(n, x−1

2 ) if x is odd. Let f (n) =
∏ω

x∈ω Bn,x . If ϕ(n) & ¬ψ(n),
then there is exactly one x such that ϕ̂(n, x), so along the even components of f (n)
there is one copy of D〈p,1,0〉 with all others D〈p−1,ω,1〉. As ∀x(¬ψ̂(n, x)), along the
odd components there are only copies of D〈p−1,ω,1〉. Hence by the two observations
about the product,

inv( f (n)) = inv(D〈p−1,ω,1〉 × · · · × D〈p−1,ω,1〉 × D〈p,1,0〉 ×

ω∏
x∈ω

D〈p−1,ω,1〉)

= 〈p − 1, ω, 1〉 + · · · + 〈p − 1, ω, 1〉 + 〈p, 1, 0〉 + 〈p, 1, 0〉

= 〈p, 2, 0〉.

Moreover, the resulting product is dense by Observation 7.3 and Corollary 4.8.
Similarly, if ¬ϕ(n) & ¬ψ(n), then we get only copies of D〈p−1,ω,1〉, so inv( f (n)) =

〈p, 1, 0〉. If ϕ(n) & ψ(n), then we get three copies of D〈p,1,0〉, the rest D〈p−1,ω,1〉,
so inv( f (n)) = 〈p, 4, 0〉, and if ϕ(n) & ψ(n), then we get two copies of D〈p,1,0〉,
the rest D〈p−1,ω,1〉, so inv( f (n)) = 〈p, 3, 0〉. Again, in every case the resulting
algebra is dense by Observation 7.3 and Corollary 4.8. Thus f has the desired prop-
erties. �

8 The 5ω+1 Case (Theorem 2.8)

We prove that Bω = B〈ω,0,0〉 is 5ω+1-hard. As in the previous section we will need
to define some operations on Boolean Algebras.

In 8.2 we will define a binary operation, ∗ , on presentations of Boolean algebras
that corresponds, via the Interval Algebra operator, to the usual product on linear
orderings. The only properties of ∗ that we will use are the following.

Proposition 8.1 Let B0 and B1 be Boolean algebras.

1. If inv(B0) = 〈p, 1, 0〉 and inv(B1) = 〈p1, q1, r1〉, then inv(B0 ∗ B1) =

〈p + p1, q1, r1〉.
2. If inv(B0) = 〈p, ω, 0〉, then inv(B0 ∗ B1) = 〈p, ω, 0〉.

Moreover,

D〈p,1,0〉 ∗ D〈p1,q1,r1〉
∼= D〈p+p1,q1,r1〉 and D〈p,ω,0〉 ∗ B1 ∼= D〈p,ω,0〉.

We will prove Proposition 8.1 in Subsection 8.2, but use it now to prove Theorem 2.8.
We will also make use of the following uniform version of Theorem 5.6.

Proposition 8.2 (Ash and Knight [1], 18.9) For each k, let Ak and Bk be structures
such that Ak ≤k Bk and {Ak, Bk} is k-friendly, and let Sk be a60

k set, all uniformly in
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k. If f (n, k) is a computable function then there is a uniformly computable sequence
{Cn,k}n∈ω,k∈ω such that

Cn,k ∼=

{
Ak if f (n, k) ∈ Sk

Bk otherwise.

Theorem 8.3 Bω is 5ω+1-hard.

Proof Suppose S ∈ 5ω+1, and f is a computable function such that

n ∈ S ⇐⇒ ∀ j ( f (n, j) 6∈ 0( j)).

We begin with a uniformly computable sequence 〈An,k : n, k ∈ ω〉 of dense Boolean
algebras such that

1. f (n, k) ∈ 0(k) H⇒ An,k = D〈k,ω,0〉, and
2. f (n, k) 6∈ 0(k) H⇒ An,k = D〈k,1,0〉.

Such a sequence exists by Proposition 8.2, Theorem 6.1, and the comment after
Corollary 6.2.

Now define Kn, j by recursion: Kn,1 = An,1 and Kn, j+1 = Kn, j ∗ An, j+1. Let
Kn =

∏ω
j∈ω Kn, j . Let us next compute inv(Kn). First suppose that n ∈ S. Then, for

every k, inv(An,k) = 〈k, 1, 0〉, and then by Proposition 8.1,

inv(Kn, j ) = inv(An,1)+· · ·+inv(An, j ) = 〈1+2+· · ·+ j, 1, 0〉 = 〈
j ( j + 1)

2
, 1, 0〉.

Therefore inv1(Kn) ≥ inv1(Kn, j ) =
j ( j+1)

2 for every j . So inv(Kn) = 〈ω, 0, 0〉. On
the other hand, if n 6∈ S there is a first j0 such that f (n, j0) ∈ 0( j0). Then, again by
Proposition 8.1,

inv(Kn, j0) = inv(An,1)+ · · · + inv(An, j0−1)+ inv(An, j0) = 〈
j0( j0 + 1)

2
, ω, 0〉,

and for j ≥ j0, inv(Kn, j ) is constant and equal to 〈
j0( j0+1)

2 , ω, 0〉. Therefore, for

every j , K
[

j0( j0+1)
2 ]

n, j is atomic. It is not hard to see that then K
[

j0( j0+1)
2 ]

n is also atomic,

and hence inv(Kn) = 〈
j0( j0+1)

2 , ω, 0〉. �

An interesting corollary is the following one about the complexity of deciding
whether two Boolean algebras are elementarily equivalent. White [19], 6.2.4,
showed that for arbitrary structures this problem is as complicated as it can be.
We prove the same when the structures are restricted to be Boolean algebras. Let
E E(B A) be the set of pairs 〈i, j〉 such that the computable Boolean algebras with
indices i and j are elementarily equivalent. It is clear that E E(B A) is5ω+1 because

〈i, j〉 ∈ E E(B A) ⇐⇒ ∀ϕ ∈ LB A(Bi |H ϕ ⇐⇒ B j |H ϕ),

(where Bi and B j are the computable Boolean algebras with indices i and j , respec-
tively, and LB A is the first-order language of Boolean Algebras) and 0(ω) can tell
whether Bi |H ϕ uniformly in i and ϕ.

Corollary 8.4 E E(B A) is 5ω+1 complete.

Proof We already showed that E E(B A) is in 5ω+1. We have to show that
E E(B A) is 5ω+1-hard. Consider S ∈ 5ω+1. Let Kn be as in the proof of the
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theorem above and let kn be a computable index for Kn . Let dω be a computable
index for D〈ω,0,0〉. Then

n ∈ S ⇐⇒ inv(Kn) = 〈ω, 0, 0〉 ⇐⇒ 〈dω, kn〉 ∈ E E(B A). �

8.1
(
6ω+1, 5ω+1

)
≤m

(
DB〈ω̄,ω,0〉, DB〈ω,0,0〉

)
We now complete the proof

of Theorem 2.10. We verify the last line of the table by improving the proof of
Theorem 8.3 in which we showed that, given S ∈ 5ω+1, there are Boolean algebras
Kn such that n ∈ S ⇐⇒ inv1(Kn) = ω. The Kn, j as defined in the proof of
Theorem 8.3 are dense because of Proposition 8.1. But when n ∈ S, Kn is not dense.
We slightly modify the definition of Kn to make it dense.

Proposition 8.5
(
6ω+1,5ω+1

)
≤m (DB〈ω̄,ω,0〉,DB〈ω,0,0〉).

Proof Let S and Kn, j be as in the proof of Theorem 8.3. Now, instead of taking
a product over ω, we define a componentwise product over 2<ω. For σ ∈ 2<ω let
Kn,σ = Kn,|σ |. Let

K̃n =

∏
σ∈2<ω

Kn,σ

where
∏
σ∈2<ω Bσ is the set of 〈bσ : σ ∈ 2<ω〉 ∈ 5σ∈2<ω Bσ such that, for some n0,

we have that for every σ ∈ 2n0 either ∀τ ⊇ σ(bτ = 0) or ∀τ ⊇ σ(bτ = 1). The
operations and constants for

∏
σ∈2<ω Bσ are defined componentwise.

As in the proof of Theorem 8.3, if n 6∈ S, then inv(K̃n) = 〈k, ω, 0〉 for some
k < ω, and if n ∈ S then inv(K̃n) = 〈ω, 0, 0〉. If n 6∈ S, then denseness fol-
lows immediately from componentwise denseness as in Observation 7.3. Suppose
n ∈ S and b ∈ K̃n . Then for each σ , inv(Kn,σ ) = 〈

|σ |(|σ |+1)
2 , 1, 0〉, and hence, as in

the proof of Theorem 8.3, if inv1(b) < ω then for some n0, for every σ ∈ 2n0 ,
∀τ ⊇ σ(bτ = 0), and if inv1(b) = ω then for some σ , ∀τ ⊇ σ(bτ = 1).
If inv1(b) < ω, then the denseness conditions for b are satisfied as in Observa-
tion 7.3. Suppose inv(b) = 〈ω, 0, 0〉. Then there is some σ ∈ 2<ω such that
∀τ ⊇ σ(bτ = 1). Now consider a defined by ∀τ 6⊃ σ(aτ = bτ ), ∀τ ⊇ σ̂ 0(aτ = 0),
and ∀τ ⊇ σ̂ 1(aτ = 1). Observe that a ≤ b and inv(a) = inv(b − a) = 〈ω, 0, 0〉 as
desired to prove the denseness condition for b. �

8.2 Interval Algebras and the ∗ operation In this subsection we will show how to
obtain a Boolean algebra from a linear ordering and vice versa. This will allow us to
use operations on linear orderings on the corresponding Boolean algebras. We refer
the reader to [9], I.6.15, and [7], 1.6 and 3.2, for general information on interval
algebras. The goal of this section is to define a computable operator ∗ satisfying
Proposition 8.1.

Definition 8.6 If L is a linear ordering with a first element, IntAlg(L) is the
Boolean algebra of finite unions of half open intervals [a, b) of L where b can be
∞. (The understanding here is that [a,∞) = {x : x ≥ a}.)

It is clear that if L is computable then so is IntAlg(L). The converse is also true.

Lemma 8.7 (Goncharov [7], 3.2.22) There is a computable operator Lin that, given
a countable Boolean algebra B, returns a linear ordering Lin(B) such that B ∼=

IntAlg(Lin(B)).



20 Csima, Montalbán, and Shore

Definition 8.8 The product of linear orderings, L0 · L1, is gotten by replacing each
element of L1 by a copy of L0 (and so, it is the ordering on pairs 〈x1, y1〉 ∈ L0 × L1
given by 〈x1, y1〉 < 〈x2, y2〉 ⇐⇒ y1 < y2 ∨ (y1 = y2 & x1 < x2)).

Given two Boolean algebras B0 and B1 we let

B0 ∗ B1 = IntAlg(Lin(B0) · Lin(B1)).

Note that B0 ∗ B1 depends on the presentations of B0 and B1 since the operator Lin
does.

Now we show how to describe the analysis of the Tarski invariants of IntAlg(L)
in terms of L .

Definition 8.9 A subset S of L is convex if x, y ∈ S and x < z < y implies that
z ∈ S. An equivalence relation ∼ on L is convex if every one of its equivalence
classes is convex.

Proposition 8.10 ([7], 1.6,3.2; [9], I.6.15) There is a one-one correspondence be-
tween ideals I of IntAlg(L) and convex equivalence relations ∼ on L such that
IntAlg(L)/I ∼= IntAlg(L/ ∼). Here L/ ∼ is the linear ordering of equivalence
classes [x], [y] of ∼ given by [x] < [y] ⇐⇒ ∀w ∼ x∀z ∼ y(w < z). The
convention here is that if a final segment of L is collapsed to a single equivalence
class, then it is removed from L/ ∼ and its role is taken by ∞. For a given ideal I ,
the corresponding equivalence relation ∼ is given by x ∼ y ⇐⇒ [x, y) ∈ I for
x ≤ y ∈ L.

Definition 8.11 We denote L/ ∼T by L [1] where ∼T is the equivalence relation
corresponding to I and so

IntAlg(L [1]) ∼= IntAlg(L)/I(IntAlg(L)) = IntAlg(L)[1].

The following lemma is key for the proof of Proposition 8.1. The sum over M ,∑
i∈M L i , of linear orderings L i , i ∈ M , is gotten by replacing each element i

of M by a copy of L i . Observe that when, for every i , L i ∼= L we have that∑
i∈M L i ∼= L · M .

Lemma 8.12 (Shore [15], 5.8) If, for every i ∈ ω, inv1(L i ) ≥ 1 for every L i and
L =

∑
i∈M L i then L [1]

= 6i∈M L [1]

i .

Corollary 8.13 If inv1(K ) ≥ 1 then (K · M)[1]
= K [1]

· M.

Lemma 8.14 Let B0 and B1 be Boolean algebras.
1. If B0 is the trivial Boolean algebra, that is, inv(B0) = 〈0, 1, 0〉, then

B0 ∗ B1 ∼= B1.

2. If B0 is atomic and has infinitely many atoms, then B0 ∗ B1 is atomic and
inv(B0 ∗ B1) = 〈0, ω, 0〉.

3. If inv(B0) = 〈p, 1, 0〉 and inv(B1) = 〈p1, q1, r1〉, then inv(B0 ∗ B1) =

〈p + p1, q1, r1〉.

4. If inv(B0) = 〈p, ω, 0〉, then inv(B0 ∗ B1) = 〈p, ω, 0〉.

Proof For (1), if inv(B0) = 〈0, 1, 0〉, then Lin(B0) ∼= 1. Hence Lin(B0)·Lin(B1) ∼=

Lin(B1), and so B0 ∗ B1 ∼= B1.
For (2), consider a nonzero [x, y) ⊆ Lin(B0) · Lin(B1). There is some nonzero

[x0, y0) ⊆ [x, y)with [x0, y0) contained in a copy of Lin(B0). As B0 is atomic, there
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is an atom below [x0, y0) and hence below [x, y). Thus B0 ∗ B1 is atomic. Since B0
has infinitely many atoms, so does B0 ∗ B1; hence inv(B0 ∗ B1) = 〈0, ω, 0〉.

For parts (3) and (4) we first make a general observation. If inv1(B0) = p, then

(B0 ∗ B1)
[p]

= IntAlg(Lin(B0) · Lin(B1))
[p]

∼= IntAlg((Lin(B0) · Lin(B1))
[p])

= IntAlg((Lin(B0)
[1]

· Lin(B1))
[p−1]) (by Corollary 8.13)

= IntAlg((Lin(B0)
[2]

· Lin(B1))
[p−2]) (again by Corollary 8.13)

...

= IntAlg(Lin(B0)
[p]

· Lin(B1)).

For (3), we have that Lin(B0)
[p]

= 1, so (B0 ∗ B1)
[p]

= IntAlg(1 · Lin(B1)) ∼= B1.
Hence, inv(B0 ∗ B1) = 〈p + p1, q1, r1〉.

Finally, for (4), we have that (B0 ∗ B1)
[p] ∼= IntAlg(Lin(B0)

[p]
∗ Lin(B1)), and

so, since B[p]

0 is atomic and has infinitely many atoms, Lin(B0)
[p]

∗ Lin(B1) is also
atomic and has infinitely many atoms as in part (2). The result follows. �

The first part of Proposition 8.1 follows from the lemma above. This first part was all
we used in the proof of Theorem 8.3. We now prove the second part, used to prove
Proposition 8.5.

Lemma 8.15

1. D〈p,1,0〉 ∗ D〈p1,q1,r1〉
∼= D〈p+p1,q1,r1〉.

2. D〈p,ω,0〉 ∗ B ∼= D〈p,ω,0〉.

Proof We have seen, by Lemma 8.14, that the invariants are as claimed, so it re-
mains to check denseness. Consider B0 ∗ B1 where B0 is dense and an element of
the interval algebra b = [x, y) for which we want to verify the density conditions. If
x and y belong to the same copy of Lin(B0) in the product Lin(B0) · Lin(B1), then
we are done by the assumed density of B0. If they are in adjacent copies of Lin(B0),
then one of the two subintervals lying within single copies into which b can be de-
composed is responsible for the hypothesis of the density condition holding and an
application of density for that subinterval within its copy supplies the desired witness
for density. Thus we may assume that there is a copy of Lin(B0) between x and y.

For (1), B0 = D〈p,1,0〉, and B1 = D〈p1,q1,r1〉, so Lin(B0)
[p]

= 1 and so
(Lin(B0) · Lin(B1))

[p]
= Lin(B1). We may assume that y is ∞ or the first ele-

ment of some copy of Lin(B0). In either case, inv1(b) ≥ p and the image of b
in (Lin(B0) · Lin(B1))

[p] is the interval of Lin(B1) corresponding to the copies of
Lin(B0) starting with x and ending with y. We now take the witness for density in
Lin(B1) and pull it back to Lin(B0) · Lin(B1).

For (2), B0 = D〈p,ω,0〉, and B1 = B. So Lin(B0)
[p] is atomic and has infinitely

many atoms. Thus inv(b) = 〈p, ω, 0〉 and the required witnesses for the first and
second denseness conditions are found within a copy of Lin(B0) contained in b. �
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