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Some Problems in Singular Cardinals Combinatorics

Matthew Foreman

Abstract This paper attempts to present and organize several problems in the

theory of Singular Cardinals. The most famous problems in the area (bounds

for the i-function at singular cardinals) are well known to all mathematicians

with even a rudimentary interest in set theory. However, it is less well known

that the combinatorics of singular cardinals is a thriving area with results and

problems that do not depend on a solution of the Singular Cardinals Hypothesis.

We present here an annotated collection of representative problems with some

references. Where the problems are novel, attribution is attempted and it is noted

where money is attached to particular problems.

Three closely related themes are represented in these problems: stationary

sets and stationary set reflection, variations of square and approachability, and

the singular cardinals hypothesis. Underlying many of them are ideas from

Shelah’s PCF theory. Important subthemes were mutual stationarity, Aronszajn

trees, and superatomic Boolean Algebras.

The author notes considerable overlap between this paper and the unpub-

lished report submitted to the Banff Center for the Workshop on Singular Cardi-

nals Combinatorics, May 1–5, 2004.

1 The Singular Cardinals Hypothesis and Hilbert’s First Problem

In 1873, Cantor showed that for every cardinal κ the cardinality of the collection of

subsets of κ (which we call 2κ ) is at least the cardinal successor of κ (which we call

κ+). For infinite cardinals, it is independent of the usual assumptions of mathematics

(the axioms “ZFC”) whether 2κ = κ+. Indeed the question of whether cardinality

of all subsets of the natural numbers is equal to the first uncountable cardinal was

the first problem on the famous list of problems presented by Hilbert at the 1900

International Congress of Mathematics. Partial information on this question is given

by König’s Theorem which says that the cofinality of 2κ is at least κ+.
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Gödel showed that in the Constructible Universe L, the Generalized Continuum

Hypothesis holds; namely, for all infinite cardinals κ, 2κ = κ+. For regular cardinals

König’s theorem is all one can say: it is a theorem of Easton that if V |H GCH then

for all monotone functions f : OR → OR such that f (α) ≥ α and cf(ℵ f (α)) > ℵα

there is a generic extension of V where 2ℵα = ℵ f (α) for all α where ℵα is regu-

lar (and moreover, all cardinals in V remain cardinals in the generic extension and

cofinalities are not changed by the forcing).

At singular cardinals the situation turns out to be quite different. Silver [20]

proved that if λ is a singular cardinal of uncountable cofinality and for a station-

ary collection of κ < λ, 2κ = κ+ then 2λ = λ+. This was improved by Galvin and

Hajnal [9] to get general bounds on the power of a singular cardinal of uncountable

cofinality in terms of the behavior of the power of smaller singular cardinals. At the

conference, Gitik [10] announced recent results along this line, which are summa-

rized in his paper for the proceedings.

This left the problem of cardinals with countable cofinality quite open. Magi-

dor [12] showed that Silver’s theorem is false for cardinals of countable cofinality:

assuming large cardinals it is consistent for 2ℵω > ℵω+1 with the GCH holding be-

low ℵω. After this result it was generally thought that the behavior of the power of

singular cardinals of cofinality ω was as arbitrary as that of regular cardinals.

However, in the late 1980s Shelah proved a series of results getting cardinal

bounds on the behavior of the power function at singular cardinals by studying re-

duced products of cardinals below the singular cardinal. This ultimately led to a

powerful general tool known as PCF theory [19]. This theory has had many appli-

cations outside the study of cardinal arithmetic, constructing examples of Jonnson

algebras on successors of singular cardinals, and providing interesting examples in

set theoretic topology and algebra.

1.1 PCF theory problems We will say that a set A is an interval of regular car-

dinals if it is the intersection of an interval of cardinals with the regular cardinals.

A will be called progressive if and only if |A| < min(A). If A is a set of regular

cardinals then PCF(A) is defined to be

{cf(
∏

A/D) : D is an ultrafilter on A}.

Shelah showed that if A is a progressive interval of regular cardinals with supremum

λ then

cf(〈[λ]|A|+ ,⊂〉) = max PCF(A).

In particular max PCF(A) always exists. As an immediate corollary one sees that if

|A| < κ < λ and κ is regular then

[λ]κ = 2κ × max PCF(A).

In particular, if λ is a singular strong limit cardinal of cofinality κ that is not a cardinal

fixed point and we take A to be a progressive tail of the regular cardinals below λ,

then 2λ = 2κ × max PCF(A).

It remains to bound the cardinality of PCF(A). Shelah did this by proving the

remarkable theorem that if A is a progressive interval of cardinals then

(†) |PC F(A) ≤ |A|+3.

Putting these results together we get the following corollary.
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Theorem 1.1 (Shelah) Suppose that λ = ℵα is a singular cardinal of cofinality κ

and is not a cardinal fixed point. Then

λκ < max((2κ)+,ℵα+4).

In particular, if ℵω is a strong limit then 2ℵω < ℵω4 .

Despite significant progress by Gitik, Shelah, Woodin, and others, it is not known

if these bounds are optimal. Our first questions relate to this.

Question 1.2 Is it consistent to have a progressive set A such that |PCF(A)| > |A|?

Question 1.3 Is it consistent that

max PCF{ℵn : 1 ≤ n < ω} > ℵω1?

For the next two problems we need a new definition which expands our scope beyond

the possible cofinalities of intervals. Let κ be a singular cardinal of cofinality λ.

We put a cardinal µ ∈ PP(κ) if and only if there is a sequence 〈κi : i < λ〉 and

ultafilter D on λ such that limD〈κi 〉 = κ and µ = cf(
∏

i<λ κi/D). As in the case of

progressive intervals, PP(κ) is an interval of regular cardinals and pp(κ) is defined

to be its supremum.

Question 1.4 Is it possible that

{κ < λ : pp(κ) ≥ λ}

be uncountable?

Question 1.5 Is it possible that

{κ : cf(κ) > ω and pp(κ) ≥ λ}

be infinite?

The assumption that the answers to Questions 1.4 and 1.5 are “no” is known as the

Shelah weak hypothesis.1

1.2 PCF structures There are several collections of axioms that have been pro-

posed to capture the essence of PCF theory. Indeed Shelah’s original bound (†) was

proved by summarizing results about the behavior of real PCF structures and show-

ing that any structure satisfying his summary had to have small cardinality.

Jech [11] found a very weak collection of axioms that suffice to prove Shelah’s

bound. Here our intention is different. We want to find as strong a collection of

axioms as possible and see if they can prove a better bound.

This project then has two directions: the first is to establish whether a better bound

on the size of PCF structures can be proved. The second is to find a “complete”

axiomatization of PCF structures. We will use here an axiomatization due to Magi-

dor (with aid from Foreman). It appeared in print in 1998 in the Ph.D. thesis of

Ruyle [16].

1.2.1 The PCF topology Inherent in the axiomatization is the PCF topology. The

operation A 7→ PCF(A) is a closure operator and hence there is a natural topology

associated with the PCF operation. For simplicity we will restrict ourselves to sets

A of regular cardinals such that PCF(A) is a progressive set that has no limit points

that are cardinal fixed points. (In particular, these properties hold for progressive

intervals of cardinals.)
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Explicity: A ⊂ PCF(A) and for all B, C ⊂ PCF(A),

1. if B ⊂ C then PCF(B) ⊂ PCF(C),

2. PCF(B ∪ C) = PCF(B) ∪ PCF(C),

3. PCF(PCF(B)) = PCF(B).

The PCF topology is compact Hausdorff, 0-dimensional, and scattered. Via

Stone duality there is a direct connection between locally compact Hausdorff,

0-dimensional, scattered spaces and superatomic Boolean Algebras. Namely, given

such a space X , the clopen sets form a superatomic Boolean algebra whose Stone

space is the original space X .

To review: Let B be a Boolean Algebra. Define a transfinite sequence of ideals in

B by setting

1. J0 to be the ideal generated by the atoms of B ,

2. Jα+1 the ideal generated by the atoms of B/Jα and Jα ,

3. for limit α, Jα =
⋃

β<α Jβ .

B is superatomic if and only if whenever Jα is a proper ideal, B/Jα is atomic. (We

will use the jargon “SBA” for superatomic Boolean algebra.)

If one traces through the proof of Stone duality, it is immediate that the atoms of

B/Jα correspond canonically with the isolated points in the αth Cantor-Bendixson

derivative of the Stone space of B .

We now give some more definitions necessary to formulate the PCF axioms:

1. the height of B is the least α, Jα = B;

2. the rank of b ∈ B is the least α, b ∈ Jα ;

3. cα is defined to be the cardinality of {b ∈ B : rank of b = α};
4. the cardinal sequence of B is 〈cα : α < height of B〉.

There is a standard mechanism for building SBAs involving well-founded partial

orderings. Let <∗ be a well-founded partial ordering on a set T . For t ∈ T , let

bt = {s : s <∗ t}.
An SBA ordering will be a pair (<∗, i) such that <∗ is a well-founded ordering

on a set T and

i : [T ]2 → [T ]<ω

is such that

1. for all s, t, i(s, t) is a minimal set such that

bs ∩ bt =
⋃

u∈i(s,t)

bu

(so if i(s, t) = {u0, . . . un} then

bs ∩ bt = bu0 ∪ · · · ∪ bun .)

2. for all t ∈ T, α less than the <∗-rank of t ,

bt ∩ {s : rank(s) = α}

is infinite.

Other authors call SBA orderings “selectors” or “admissible partial orderings.”

Given an SBA ordering on a set T we can topologize T by taking basic open sets to

be of the form

bt\(bu0 ∪ bu1 ∪ · · · ∪ bun ).

The following proposition is standard.
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Proposition 1.6 Let (<∗, i) be an SBA ordering on a set T and endow T with the

topology above. Then

1. T is locally compact, Hausdorf, 0-dimensional, and scattered,

2. if T ⊂ bu0 ∪ bu1 · · · ∪ bun , for some ui s, then T is compact,

3. the αth Cantor-Bendixson derivative of T is {t : the <∗-rank of t is at least

α},
4. the algebra of clopen subsets of T is an SBA with cardinal sequence

cα = |{t : the rank of t = α}|.

We are now in a position to give the PCF axioms.

Definition 1.7 A δ-PCF structure (or PCF algebra) is an SBA partial ordering <∗

on a successor ordinal θ satisfying

PCF1 ν <∗ µ implies ν ∈ µ;

PCF2 δ = θ;

PCF3 if I ⊂ θ is an interval, then I is also an interval;

PCF4 for each ν < θ of uncountable cofinality, there is a closed unbounded

Cν ⊂ ν such that Cν ⊂ ν + 1;

PCF5 θ is compact with the <∗ topology.

The main point of the axioms is that the work of Shelah shows that the PCF axioms

are true.

Theorem 1.8 (Shelah [19]) Let A be a progressive interval of regular cardinals of

order type δ. Then there is an ordering <∗ on PCF(A) which makes PCF(A) into a

δ-PCF structure.

(Hint: Suppose that PCF(A) = 〈κα : α ≤ α∗〉. To define <∗ on α∗, find a “transitive”

collection of generators 〈bκ : κ ∈ PCF(A)〉 for the PCF ideals on PCF(A) and define

β <∗ α if and only if κβ ∈ bκα .)

We now are in a position to state the main open questions involving PCF struc-

tures.

Question 1.9 (PCF completeness) Do the PCF axioms capture ALL of PCF theory?

Question 1.10 What PCF structures consistently exist?

We need some more background to make these questions explicit. Let (θ,<∗) be a

δ-PCF structure. Let 〈cα : α < ht(<∗)〉 be the cardinal sequence of (θ,<∗). Then

1. (|δ|-tightness/localization) if A ⊂ θ and α ∈ A then there is a B ∈ [A]|δ|

such that α ∈ B (in fact, using results of Todorčević, if δ = ω the topology is

“sequential”);

2. if X is closed then sup X ∈ X ;

3. for ξ < ht(<∗), cξ ≤ |ξ |;
4. if θ = κ +1, then there is a closed unbounded set of ξ < κ such that cξ ≤ |δ|.

These facts show a close connection between PCF structures and the literature about

cardinal sequences for SBAs, especially those that have each cα = ω. Using the work

of Baumgartner and Shelah [1] and extending work of Velickovic, Ruyle proved that

if 〈cα : α < ω2〉 is a cardinal sequence with cα = ω on a closed unbounded set,

then there is a cardinal preserving forcing for adding an SBA on ω2 + 1 with this

cardinal sequence (and a little further). Moreover, if 〈cα : α < γ < ω2〉 is a cardinal
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sequence where cα = ω for α < ω1 and |cα| ≤ ω1, then there is a PCF algebra of

height γ + 1 with this cardinal sequence.

Question 1.11 Is it consistent that there is an ω-PCF algebra of size ω3? (If not,

there is a better bound on 2ℵω .)

This requires some new SBA techniques as there are no known examples of SBAs

of height ω3 + 1 which have each countable level countable, and in which there is a

closed unbounded collection of levels of cardinality ω2 that are countable.

Question 1.12 Is it consistent that there are ω-PCF algebras of height δ for all

δ < ω3? What about δ = ι+ 1 where ι is the first indecomposible ordinal above ω2?

Question 1.12 may not require new SBA techniques, as Martínez, in work exposited

at the workshop [14], has showed it consistent that there are thin SBA algebras of all

heights less than ω3.

The question of “PCF completeness” is a little vaguer and may involve all of the

difficulties of the SCH itself. However, here is a concrete version of the question that

may be somewhat easier.

Question 1.13 Assuming large cardinals, is it true that if A is a PCF structure then

there is a forcing extension which produces a κ such that A is isomorphic to a closed

subset of PCF(κ ∩{regularcardinals})∩{regularcardinals}? This subset should

be of the form PCF(A) where A is a progressive subset of the regular cardinals of κ .

We conclude with a problem of Todorčević about PCF structures. Topological results

of Todorčević can be used to show that PCF structures are sequential. This leads to

the following question.

Question 1.14 What is the sequential rank of PCF({ℵn : n > 1})?

In his talk, Martínez gave a collection of problems about the structure of SBAs that

are not necessarily PCF algebras. These problems will appear in the proceedings of

the conference.

2 Stationary Set Reflection, Variations of Square, Scales, and Aronszajn Trees

In 1989 Woodin and others asked whether the failure of the Singular Cardinals hy-

pothesis at a cardinal κ of cofinality ω implied the existence of an Aronszajn tree

on κ+. The existence of special Aronszajn trees was proved by Jensen in the 1970s

to be equivalent to the existence of a weak square sequence, so Woodin’s question

seems closely related to questions about square sequences of various types. Inves-

tigations of square properties in inner models for large cardinals led to the isolation

of certain square properties weaker than conventional square [17]. These turned out

to have direct relations to previously known combinatorial properties such as weak

square and very weak square [7]. In this section we present some background and

state some problems that remain open.

We begin first by motivating Woodin’s question: As noted in the previous para-

graph, Jensen showed that there is a special Aronszajn tree on κ+ if and only if �∗
κ

holds. Shelah showed that there are no Aronszajn trees on κ+ if κ is a singular limit

of strongly compact cardinals. Using this work, Magidor and Shelah [13] showed

that if it is consistent that there is a 2-huge cardinal then it is consistent that there is

no Aronszajn tree on ℵω+1.
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Lacking any evidence to the contrary these results suggest that the failure of ex-

istence of Aronszajn trees on successors of cofinality ω cardinals is tied to being a

limit of strongly compact cardinals. Since results of Solovay [21] show that the SCH

holds above a strongly compact cardinal Woodin’s question seems quite natural. We

list it in the following form.

Question 2.1 If there are no Aronszajn trees on ℵω+1 and ℵω is a strong limit, is

it true that 2ℵω = ℵω+1?

Cummings, Foreman, and Magidor initiated a program of giving an affirmative an-

swer to Woodin’s question. The philosophy was to try to use PCF theory to construct

Aronszajn trees. It has the following components:

1. isolate PCF properties that are consequences of square,

2. show that they imply the existence of Aronszajn trees,

3. show that they follow from the failure of SCH.

Figure 1 is a summary of the results of this program. This diagram includes results

from [7], [4], [5], and [3]. Some of the arrows and nonarrows in the diagram were

the main contents of the series of talks given by Cummings and Magidor at the

workshop.
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cofinality ω1

- - ¬(κ+, κ) −→ (ℵ1,ℵ0)

κ strong limit of cofinality ω

Figure 1 Known relationships between weak square properties,

scales, and reflection properties.

As an aid to interpreting Figure 1, we note that
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1. �κ,λ is the version of square that allows λ many sets to cofinalize each ordi-

nal, and these sets have to cohere,

2. �κ,κ is the same as weak square, �∗, and is equivalent to the existence of a

special Aronszajn tree,

3. APκ is the approachability property, defined in Section 3,

4. VWS stands for a property called very weak square and NSVWS is not so

very weak square,

5. Refl is the weak reflection property and Refl* is a slight strengthening of the

reflection property.

Recent results of Gitik and Sharon deal a major blow to this program when they

showed the following.

Theorem 2.2 (Gitik, Sharon) From appropriate large cardinals it follows that

1. Con(λ is singular strong limit of cofinality ω, 2λ > λ+ and the approacha-

bility property fails);

2. Con(There is a singular strong limit cardinal λ, and 〈λi : i ∈ ω〉 cofinal in λ

with PCF(λi : i ∈ ω) = {λi : i ∈ ω} ∪ {λ+} but no very good scale on 〈λi 〉
of length λ+);

3. Con(λ is a singular strong limit cardinal, 2λ > λ+ and every stationary

subset of λ+ reflects).

In particular, these results show that one cannot hope to prove (for example) that the

failure of the SCH implies the approachability property or that there is a very good

scale. Both of these latter propositions were viewed as candidates for a property

intermediate between the failure of the SCH and the existence of Aronszajn trees.

There are some potential loopholes in the Gitik/Sharon results though. Their ar-

guments can be improved to make λ into ℵω2 , but are not yet known to apply to

ℵω. Thus, they may not be directly relevant to Question 2.1. There are examples

of properties (such as the equivalent between the approachability property and very

weak square) that hold at ℵω, but not at ℵω2 . A very strong conjecture might be that

the following question has an affirmative answer.

Question 2.3 If ℵω is a strong limit and 2ℵω > ℵω+1, then �∗
ℵω

holds.

We note that Gitik and Sharon have been able to show that there is a model where

pp(ℵω) > ℵω+1, and the approachability property fails at ℵω+1, but in this model

ℵω is not a strong limit.

In the second result, the sequence 〈λi : i ∈ ω〉 is not the generator bλ+ . In

particular, the following remains open.

Question 2.4 If λ has cofinality ω, is it true that there is some sequence 〈λi : i ∈ ω〉
cofinal in λ which has a very good scale of length λ+.

The problem of the relation between scale properties and Aronszajn trees seems

interesting on its own merits. A typical question here might be this.

Question 2.5 If λ has cofinality ω and there is some sequence 〈λi : i ∈ ω〉 cofinal

in λ which has a very good scale of length λ+ is it necessarily true that there is an

Aronszajn tree on λ+?

Affirmative answers to both Questions 2.4 and 2.5 yield a solution to Woodin’s ques-

tion. Here is a variation of Questions 2.4 and 2.5.
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Question 2.6 If λ has cofinality ω and the approachability property holds at λ+,

is it necessarily true that there is an Aronszajn tree on λ+?

We note that the diagram leaves many problems open (and there are “obvious” arrows

that we have not included in the diagram).

3 I[λ] and Partial Squares.

Shelah’s ideal I [λ] was an important topic in the workshop. This ideal can be defined

as follows.

Definition 3.1 Let λ be a regular cardinal. Let EX = 〈aα : α < λ〉 be a sequence of

bounded subsets of λ. Define A( EX) (the ordinals approachable with respect to X) as

the collection of all singular β < λ such that there is a set C ⊂ β such that

1. C is unbounded in β and the order type of C is the cofinality of β,

2. for all γ < β there is an α < β such that C ∩ γ = aα .

The ideal I [λ] is defined to be the ideal generated by all sets of the form A( EX) over

the nonstationary ideal.

This ideal is normal and λ-complete and turns out to have close connections to

forcing, especially for arguments that show (λ,∞)-distributivity.

If λ = κ+ and [κ+]<κ has cardinality κ+, then I [κ+] contains a stationary set

S such that I [κ+] is generated by the nonstationary ideal restricted to κ\S. With-

out the cardinal arithmetic assumption, it was a longstanding open problem whether

I [κ+] contained a stationary subset of κ+ ∩ cof(κ). This was recently settled by

Mitchell [15] who showed that at ω2 this need not be the case. His techniques also

show that it is consistent that I [ω2] is not generated by a single set over the nonsta-

tionary ideal. Mitchell’s results will appear in the proceedings of this conference.

While it appears promising it is not completely clear that Mitchell’s techniques gen-

eralize to ω3. Thus we ask the following question which might not remain open for

long.

Question 3.2 For regular κ ≥ ω2 must I [κ+] contain a stationary subset of

κ+ ∩ cof(κ)?

Because of its close connection to forcing it would be very useful to know the an-

swers to the following questions.

Question 3.3 Can I [ω2] be ω3-saturated? Can I [ω2] ⊂ J for some ω3-saturated

ideal J on ω2?

The approachability property mentioned above is the statement that I [λ] is not a

proper ideal. If square holds, then the square sequence itself is a witness to λ ∈ I [λ].
In general, I [λ] can be viewed as those sets on which there is a defective square

sequence with its timing out of order.

We now define a closely related notion. If S ⊂ λ then a partial square sequence

on S is a sequence of sets 〈Cα : α ∈ S〉 such that

1. Cα is an unbounded subset of α of order type the cofinality of α;

2. if β is a limit point of both Cα and Cγ (α, γ ∈ S) then Cα ∩ β = Cγ ∩ β.

Shelah showed that if µ < κ are regular then κ+ ∩ cof(µ) =
⋃

δ∈κ Sδ where each Sδ

carries a partial square sequence. In particular, κ+ ∩ cof(µ) ∈ I [κ+].
At successors of singular cardinals, this type of question appears quite open. In

particular we would like to know the following.
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Question 3.4 Is it provable in ZFC that there is a partial square sequence on a

stationary subset of ℵω+1 ∩ cof (ω1)? On other cofinalities?

In contrast to the successors of regular cardinals, it is always the case that I [κ+]
contains a stationary set: if κ is singular and µ < κ is regular, then I [κ+] contains

a stationary subset of cof(µ). Indeed in most cofinalities it is not known if I [κ+]
can be a proper ideal. At ℵω+1 it is consistent that there is a stationary subset of

ℵω+1 ∩ cof(ω1) that does not belong to I [ℵω+1], but this is not known at other

cofinalities. This is our next question.

Question 3.5 Does I [ℵω+1] contain a closed unbounded set relative to cofinality

ω2?

Here is a related question.

Question 3.6 At successors of singular cardinals, is I [λ] generated by a single set

over the nonstationary ideal?

In the same vein, it would be interesting to understand the relationship between the

collection of approachable points in successors of singular cardinals and other natural

stationary sets. A typical question here might be described as follows. If bℵω+1 is the

generator for PCF({ℵn : n ∈ ω}) at ℵω+1, then relative to a closed unbounded set any

two continuous scales agree on the collection of good points. Hence the collection

of “good points” forms a well-defined stationary set (modulo the closed unbounded

filter). An extreme form of a question relating canonical structure would be this.

Question 3.7 Is I [ℵω+1] = NS ↾ {Good Points}?

We note that it is known that I [ℵω+1] includes NS ↾ {Good Points} and that if square

holds below ℵω, then the two ideals coincide ([19], [5], and [3]).

At the workshop Eisworth [6] gave a collection of problems involving a “recipe”

for generating ideals from squarelike principles and his contribution to the proceed-

ings will list these questions.

4 Stationary Sets

In [8] Foreman and Magidor began to develop a theory of stationary sets for singular

cardinals of countable cofinality. We work on the ℵns for simplicity. Since a subset

A ⊂ ℵω naturally gives to a sequence of subsets Sn = A∩ωn we deal with sequences

of subsets of the ωns directly.

Let θ be a large regular cardinal and S ⊂ PP (θ). Let 〈Sn : m ≤ n < ω〉 be a

sequence of sets with Sn ⊂ ωn . Then the sequence Sn is S-stationary if and only if

{N : for all n ≥ m, sup N ∩ ωn ∈ Sn} ∈ S.

Define χ N (n) = sup N∩ωn . Then we can restate this as saying that χ N ∈
∏

m≤n Sn .

To illustrate the definition we give two important examples.

Example 4.1 S = {A ⊂ θ : A is stationary}. For this example we call the sequence

mutually stationary.

Example 4.2 S = {A ⊂ θ : A is stationary and consists of tight structures}, where

N is tight if and only if N ∩
∏

ωn is cofinal in
∏

(N ∩ ωn) (i.e., N ∩
∏

ωn is cofinal

below χ N ). This is called tight stationarity.
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We note that there are many other interesting examples taken by varying S. One is

obtained by taking S to be the internally approachable structures.

The theory of mutual stationarity and its variants is still in its infancy despite

some success. In particular, there are a large number of embarassing problems still

completely open. (Welch [22] gives another collection.)

Question 4.3 Is there a ZFC example of a sequence of stationary sets

〈Sn ⊂ ωn : n ∈ ω〉 such that 〈Sn〉 is not mutually stationary? For concrete-

ness we may demand that Sn ⊂ cof(ω1). Find a combinatorial property that implies

the existence of such a set.

Foreman and Magidor showed that such a sequence exists in L and Welch, Schindler,

and others have extended their results to certain inner models for large cardinals. The

question of the existence of such sequences is open even in many well-studied inner

models.

Solovay showed that every stationary subset of a regular cardinal κ can be split

into κ many disjoint stationary subsets. Foreman and Magidor showed that a tightly

stationary sequence of sets consisting of ordinals of a fixed cofinality µ can be split

into µ many disjoint tightly stationary sequences. For mutual stationarity we do not

know if we can split a sequence into even two disjoint mutually stationary sequences.

Question 4.4 Suppose that 〈Sn : n ∈ ω〉 is mutually stationary. Are there

〈S0
n , S1

n : n ∈ ω〉 such that

1. S is the disjoint union of S0
n , S1

n ,

2. 〈Si
n〉 is mutually stationary for i = 0, 1.

A subproblem for Question 4.4 would be to isolate the appropriate Fodor’s Theorem.

We note that the natural conjecture would be that if 〈Sn : m ≤ n ∈ ω〉 is mutually

stationary, then each Sn can be partitioned into ωn disjoint subsets 〈Sα
n : α < ωn〉

such that for every function f ∈
∏

m≤n∈ω ωn the sequence 〈S
f (n)

n : m ≤ n〉 is

mutually stationary.

There are a whole host of related problems. We note the following definitions,

which we give for sets of cardinality ω1, again for concreteness. Let N ≺ H (λ) have

cardinality ω1. Then N is

1. N is internally unbounded iff N ∩ [N]ℵ0 is unbounded in [N]ℵ0 ;

2. N is internally stationary iff N ∩ [N]ℵ0 is stationary in [N]ℵ0 ;

3. N is internally club iff N ∩ [N]ℵ0 contains a closed unbounded set in [N]ℵ0 ;

4. N is internally approachable iff N =
⋃

α<ω1
Nα where each Nα is countable

and for β ∈ ω1, 〈Nα : α < β〉 ∈ N .

Under certain circumstances, such as the CH, these properties are all equivalent. It

is not clear in general what the relation is.

Question 4.5 Give examples separating the properties (1) – (4).

Many properties in set theory propagate through successor cardinals but require spe-

cial hypothesis to pass through limit cardinals. (This is one of the main reasons for

the workshop.) There are, however, some properties where the propagation is not

clear. We give one example that would seem to require useful new ideas.

Question 4.6 Suppose that κ is regular, N ≺ H (θ) and N ∩[N ∩κ]ℵ0 is stationary.

Is N ∩ [N ∩ κ+]ℵ0 stationary?
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5 General Combinatorial Problems

We list here several problems that were asked at the conference. The first is due to

Hajnal who announced a $250 (US) prize for any significant progress on the problem.

Question 5.1 Does ω2 → (α)2
ω for ω1 + 1 < α < ω2?

We note that it is also an interesting problem to determine what happens at successors

of singular cardinals.

Cummings reminded the audience of the following 2 closely related questions,

the first appeared in [2].

Question 5.2 Is it consistent that there is a forcing that makes ℵω+1 into ω2?

Question 5.3 Is it consistent that (ℵω+1,ℵω) →→ (ω2, ω1)?

In the presence of Woodin cardinals a positive answer to Question 5.3 yields a posi-

tive answer to Question 5.2.

Schimmerling (as explicated in his contribution to the Proceedings [18]) noted the

following question.

Question 5.4 Is it consistent to have the GCH, weak square, and no Suslin trees

on ℵω+1? What about �ℵω,ω?

Question 5.5 (Steel) Let M be the canonical minimal iterable extender model with

a Woodin limit of Woodin cardinals λ. Let N be a derived determinacy model ob-

tained by forcing over M with the Levy collapse making λ = ωN
1 . (Thus N satisfies

ADR .) Prove or refute: 2 is regular in N.

Reward: $200

The next two questions were asked with significant cash prizes.

Question 5.6 (Steel) Working in ZFC, either

(a) show that if ZFC plus “there is a singular strong limit κ such that ¬�κ” is

consistent, then so is ZFC plus “there is a superstrong cardinal”, or

(b) show that if there is a superstrong cardinal, then ZFC plus “there is a singular

strong limit κ such that ¬�κ” is consistent.

Reward: For (b), $300. For (a), $4000−500x, where x is the time in years from

May 1, 2004 to the submission of a manuscript with a correct, complete proof. UC

Berkeley faculty are not eligible for the reward.

Question 5.7 (Woodin) Suppose that there is an extendible cardinal. Must HOD

compute the successor correctly for some (uncountable) cardinal?

Prize:

$1000[max(min(n, 10 − n), 1)]

where

n = (calender year of submission) − 2004.

Terms: Collect if a correct proof is given for either “yes”, or if a correct proof is

given that the failure implies the consistency with ZFC of the large cardinal I0 of

Kanamori’s book. (Details: Clay rules)
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Note

1. These questions are well known, but relayed to the author by Gitik.
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