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A Deontic Counterpart of Lewis’s S1

Kam Sing Leung and R. E. Jennings

Abstract In this paper we investigate nonnormal modal systems in the vicinity

of the Lewis system S1. It might be claimed that Lewis’s modal systems (S1,

S2, S3, S4, and S5) are the starting point of modern modal logics. However, our

interests in the Lewis systems and their relatives are not (merely) historical. They

possess certain syntactical features and their frames certain structural properties

that are of interest to us. Our starting point is not S1, but a weaker logic S10

(S1 without the schema [T]). We extend it to S10D, which can be considered as

a deontic counterpart of the alethic S1. Soundness and completeness of these

systems are then demonstrated within a prenormal idiom. We conclude with

some philosophical remarks on the interpretation of our deontic logic.

1 Introduction

It is an unsettled question why we should study deontic logics. Some no doubt study

them seeking illumination of the structure of moral reasoning, though such light as

they shed shifts toward the infrared. Some study them simply as they would study

any modal logic, purely for the technical interest. For such people the label “deontic”

applies simply in virtue of the absence of the principle [T]. Our shared view is that

in the matter of the relationship between deontic logic and moral discourse, these

are early days, too early to settle the question. But there is intrinsic technical inter-

est in better understanding the relationship between alethic and deontic systems, and

such an improved understanding ought to influence any assignment to deontic logic

of a broader conceptual role. One or two illustrations will preview later points. We

obtain the so-called Standard Deontic Logic (SDL) by replacing [T] with [D] in the

system KT of Kripke’s classic paper. The corresponding difference between alethic

accessibility and deontic accessibility is that alethic accessibility is reflexive, deontic

accessibility serial. But as we insist in introductory logic courses, we can existen-

tially generalize on either occurrence of x in Rxx . Certainly seriality (∃y Rxy) is one
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generalization but so is converse seriality (∃y Ryx). Why, if we are merely looking

for a weakening of reflexivity, should we consider the one but not the other? On its

deontic reading the former yields [D], �p → ¬�¬p, which seems to say that there

are no moral conflicts; the second yields the rule of denecessitation (⊢ �α H⇒ ⊢ α),

which seems to say that the only logically obligatory acts are theorems.

A second illustration concerns the very starting point of modal logics. The system

K is nowadays regarded as the base Kripkean system since it is the system corre-

sponding to the class of all relational frames. But it also corresponds post facto to an

interpretive intuition: that the set of necessities constitutes a theory, that is, a deduc-

tively closed set. To that system, we add either an alethic principle or a deontic one

depending upon whether we seek an alethic or a deontic system. But that intuition is

a happy consequence of a convenient semantic idiom rather than a desideratum that

compels the idiom. An algebraically inspired intuition might have suggested to some

that

[Con] ¬�⊥

[N] �⊤

[RM]
⊢ α → β

⊢ �α → �β

ought to form the base system. Such a starting point for alethic modal logic would

have the happy consequence that � and ♦ have precisely the same logic. So this

would yield a genuinely modal system rather than a system of necessity. For systems

specifically of necessity or specifically of possibility, different extensions would be

required. But this system is already deontic in character, and, moreover, a system in

which obligation and permissibility have the same logic.

Now one could find grounds for rejecting all of the principles of either system

except perhaps for the consistency principle [Con]. One might reject K because it

permits no distinction between [Con] and [D]. One could reject [RM] as too strong,

and one could reject [N] on the grounds that all obligations ought to be shirkable.

Of course this last intuition is not adequately satisfied by the elimination of [N]. We

would require a positive principle that states as much, a principle such as

[Anti-N] ¬�⊤.

The point of these remarks is to justify the study of deontic logics in the region of

S1. A first step toward doing so is to establish a base from which to explore gen-

eralizations of these systems and enlargements of the class of model-structures. If

we needed an excuse for such explorations, they need not be that the system itself

has plausible deontic interpretations. By such a standard, there would be no justifi-

cation for studying SDL, all of whose basic principles are deontically implausible.

However, S1 is a system in which an obvious alternative to the standard weakening

of reflexivity is natural. And it is a system for which an intriguing reinterpretation

of nonnormality presents itself, not perhaps for immediate deontic liquidity, but for

experimental modification.

This is the point at which to end our excuse-making. All such explorations are

experimental. It is the notion that the study of deontic logics has got beyond the stage

of primary research that is suspect, and probably illusory.
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2 Lewis Systems and Their Relatives

Lemmon in [6] provides alternative axiomatizations of the Lewis systems S1 – S4

with a propositional logic basis. Before introducing Lemmon’s axiomatizations, we

list the axioms that we need in the following:

[X] �(p → q) → (�(q → r) → �(p → r)),

[K] �(p → q) → (�p → �q),

[K!] �(p → q) → �(�p → �q),

[M] �(p ∧ q) → (�p ∧ �q),

[C] (�p ∧ �q) → �(p ∧ q),

[D] �p → ♦p,

[T] �p → p .

The following rules of inference are also required:

[RN] ⊢ α
⊢ �α

[RNAx] α ∈ Axioms
⊢ �α

[RNPL] α ∈ PL
⊢ �α

[RdN] ⊢ �α
⊢ α

[RM]
⊢ α → β

⊢ �α → �β
[SRM]

⊢ α ≺ β
⊢ �α ≺ �β

[RE]
⊢ α ↔ β

⊢ �α ↔ �β
[SRE]

⊢ α = β
⊢ �α = �β

[REPL]
α ↔ β ∈ PL
⊢ �α ↔ �β

[Eq]
⊢ α ↔ β

⊢ γ ↔ γ [α/β]
[SEq]

⊢ α = β
⊢ γ = γ [α/β]

[EqPL]
α ↔ β ∈ PL

⊢ γ ↔ γ [α/β]

[RRE]
⊢ α ↔ β,⊢ γ

⊢ γ [α/β]
[RRSE]

⊢ α = β, ⊢ γ
⊢ γ [α/β]

[RRTE]
α ↔ β ∈ PL,⊢ γ

⊢ γ [α/β]

[MP]
⊢ α → β,⊢ α

⊢ β
[SMP]

⊢ α ≺ β,⊢ α
⊢ β

.

Notation 2.1

1. α ≺ β abbreviates �(α → β).

2. α = β abbreviates (α ≺ β) ∧ (β ≺ α).

3. γ [α/β] is the well-formed formula resulting from replacing some (possibly

zero) occurrence of α in γ with an occurrence of β.

4. “RN” stands for the rule of necessitation, “RdN” for the rule of denecessita-

tion, “RM” for the rule of monotonicity, “RE” for the rule of extensionality,

“Eq” for equivalents, “RRE” (“RRSE”, “RRTE”) for the rule of replacement

of (strict, tautologous) equivalents, “MP” for modus ponens, the prefix “S”

for strict (it means that the rule is the strict version of the named rule), and

the suffixes “Ax” and “PL” for axioms and propositional logic (it means that

the named rule is restricted to axioms or tautologies).

Definition 2.2 Lewis systems S1 to S5 are as follows: (Non-Lewis systems S0.5,

S0.9, and T are included for comparison.)
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S0.5 : PL, [RNPL], [K], [T]

S0.9 : PL, [RNAx], [SRE], [K], [T]

S1 : PL, [RNAx], [SEq], [X], [T]

S2 : PL, [RNAx], [SRM], [K], [T]

S3 : PL, [RNAx], [K!], [T] T : PL, [RN], [K], [T]

S4 : PL, [RN], [K!], [T] S4 : PL, [RN], [K], [T], [4]

S5 : PL, [RN], [K], [T], [5]

Here PL means the set of all tautologies together with the rules of modus ponens

[MP] and uniform substitution for propositional variables [US]. Note that when listed

as part of a system, tautologies are considered as axioms of the system in question.

In the following we adopt the Chellas and Segerberg axiomatization of S10 in [1]

with some modifications.1

Definition 2.3 The systems S10, S10D, and S10T are as follows.

S10 : PL, [RNAx], [RdN], [SEq], [X]

S10D : PL, [RNAx], [RdN], [SEq], [X], [D]

S10T (S1) : PL, [RNAx], [SEq], [X], [T]

By “10 system”, we mean a system that includes PL and provides [RNAx], [RdN],

[SEq], and [X]. Thus S10 is the smallest 10 system. (Note that S10T is just S1.)

3 Prenormal Idiom

Cresswell in [2] and [3] provides a semantic analysis for S1. The models he uses

combine the Kripkean style binary relational models with the neighborhood models

introduced by Montague and Scott. In Sections 4 and 5, we extend his method to

analyze S10 and its extension S10D. However, we do this within a “prenormal id-

iom” based on a recent recast and generalization of Cresswell’s semantics for S1 by

Chellas and Segerberg [1]. (Chellas and Segerberg develop the semantics to study

a class of logics which they call “prenormal logics”; hence we call their semantics

“prenormal idiom” although the name is not used by them.)

Definition 3.1 A prenormal frame F is an ordered quintuple 〈U, N, Q, R, S〉

where

1. U (the universe of the frame) is a nonempty set of points;

2. N(the set of normal points) and Q (the set of nonnormal or queer points) are

disjoint subsets of U that exhaust it (i.e., N ∩ Q = ∅ and N ∪ Q = U );

3. R is a binary relation in N × U ;

4. S : Q → ℘(℘ (U)) is a neighborhood function subject to the condition that

for every x ∈ Q, U 6∈ S(x).

Definition 3.2 Let F = 〈U, N, Q, R, S〉 be a prenormal frame. A model M on

F is an ordered pair 〈F, V 〉 where V : At → ℘(U) is a function which maps each

atom (of the propositional modal language) to a set of points of U .

Definition 3.3 The prenormal idiom P is the ordered triple 〈L, C, T〉 where L

is the propositional modal language, C is the class of all prenormal frames, and

T (truth in the idiom) is defined recursively on the set of well-formed formulas in
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accordance with the following truth conditions for �α (the truth conditions for atoms

and propositional connectives are as usual):

For x ∈ N : |HM
x �α ⇐⇒ (∀y ∈ U, Rxy H⇒|HM

y α);

For x ∈ Q : |HM
x �α ⇐⇒ ‖α‖M ∈ S(x).

Notation 3.4 ‖α‖M is {x ∈ U | |HM
x α}, the truth set of α in M.

In this paper, we are interested in a restricted sense of validity: a formula is valid (in

our restricted sense) on a prenormal frame if and only if it is true at every normal

point in every model on that frame. Following Chellas and Segerberg in [1], we

call validity relativized to normal points “Lewis-validity”. Formally, we have the

following definitions.

Definition 3.5 Let F = 〈U, N, Q, R, S〉 be a prenormal frame. Then a well-

formed formula α is said to be Lewis-valid on F (F |HLew α) if and only if for every

model M on F and x ∈ N , |HM
x α.

Definition 3.6 Let D be a class of prenormal frames. Then a well-formed formula

α is said to be Lewis-valid on D(D |HLew α) if and only if for every F ∈ D,

F |HLew α.

The notions of soundness, completeness, and determination of a system with respect

to a class of prenormal frames can be defined in terms of Lewis-validity. As in

the case of validity, we label them “Lewis-soundness”, “Lewis-completeness”, and

“Lewis-determination”.

4 A Semantics for S1
0

In this section, we show that the system S10 is Lewis-determined with respect to a

certain class of prenormal frames (which we call “10 frames”).

Definition 4.1 A 10 frame is a prenormal frame F = 〈U, N, Q, R, S〉 which sat-

isfies the following conditions:

1. N 6= ∅;

2. ∀x ∈ U, ∃y ∈ N : Ryx;

3. ∀x ∈ Q,∀a, b ⊆ U, a, b ∈ S(x) H⇒ a ∪ b 6= U.

Theorem 4.2 The system S10 is Lewis-sound with respect to the class C10 of all 10

frames.

Proof Clearly all the tautologies and [X] are true at every normal point in any

model on any 10 frame. Thus they are Lewis-valid in C10 . For the next part of

the proof, observe that they are also true at every queer point in any model on any

10 frame. The case for tautologies is obvious. For [X], note that for any 10 model

M = 〈U, N, Q, R, S, V 〉, ‖p → q‖M ∪ ‖q → r‖M = U . Thus for any x ∈ Q, it is

not the case that both ‖p → q‖M ∈ S(x) and ‖q → r‖M ∈ S(x) (by condition (3)

in Definition 4.1). Thus [X] is trivially true at every queer point.

For [RNAx] Note that any axiom α (a tautology or [X]) is true at every point, nor-

mal or queer, in any model on any 10 frame. Thus its necessitation �α is true at

every normal point in any such model. In other words, C10 |HLew �α.
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For [RdN] Assume that C10 |HLew �α, that is, �α is true at every normal point in

any model on any 10 frame. Then C10 |HLew α since every normal point in any such

model has a normal predecessor (by condition (2) of Definition 4.1).

For [SEq] Assume that C10 |HLew α = β (and show that C10 |HLew γ = γ [α/β]).

Let x be a point (normal or queer) in any model M on any 10 frame. From the

assumption, �(α ↔ β) is true at every normal point, and, by condition (2) of Def-

inition 4.1, x has a normal predecessor. Thus |HM
x α ↔ β. Then the following

hold:
|HM

x ¬α ↔ ¬β |HM
x (α → δ) ↔ (β → δ)

|HM
x �α ↔ �β |HM

x (δ → α) ↔ (δ → β).

Thus,

C10 |HLew ¬α = ¬β C10 |HLew (α → δ) = (β → δ)

C10 |HLew �α = �β C10 |HLew (δ → α) = (δ → β).

From the above we can conclude that C10 |HLew γ = γ [α/β]. �

In proving the completeness of 10 systems, we adopt the Henkin style of complete-

ness proof. The strategy is as follows: for any 10 system L, we define a prenormal

frame and model called the L-canonical frame and L-canonical model (the set of

normal points of the frame and model is the set of all the maximal L-consistent sets

of well-formed formulas), and show that

(A) a well-formed formula is true at a point in the canonical model if and only if

it is a member of that point (the fundamental theorem for 10 systems), and

(B) the canonical frame is in a class C of prenormal frames.

From the above results we can argue that any non-L-theorem is Lewis-invalid in

class C (since any such well-formed formula is absent from some normal point of

the L-canonical model), and so any well-formed formula Lewis-valid in C is an L-

theorem. To demonstrate (A) and (B), we initially derive several theorems and rules

of inference for a 10 system and demonstrate several general propositions about 10

canonical frames.

Lemma 4.3 Let L be a system including PL. Then the following hold:

1. in the presence of [RdN], if L has [SEq], then it also has [RRSE];

2. in the presence of [RNPL], if L has [RRSE], then it also has [RRTE];

3. in the presence of [RRTE], if L has [X], then it also has [K];

4. in the presence of [RNPL], if L has [K], then it also has [M] and [C].

Proof We assume that in each case L has the rule(s) and/or schema stipulated.

For (1) To show that L has [RRSE], assume that ⊢ α = β and ⊢ γ . By [SEq],

⊢ γ = γ [α/β], and so by PL, ⊢ �(γ → γ [α/β]). Then by [RdN], ⊢ γ → γ [α/β].

Then by [MP], ⊢ γ [α/β].

For (2) To show that L has [RRTE], assume that α ↔ β ∈ PL and ⊢ γ . Then by

[RNPL], ⊢ α = β. Then by [RRSE], ⊢ γ [α/β].

For (3) To show that L has [K], note that ⊢ �(p → q) → (�(q → r) →

�(p → r)). Then by [US], ⊢ �(⊤ → p) → (�(p → q) → �(⊤ → q)). But

the well-formed formulas (⊤ → p) and p are tautologous equivalents, and so are

(⊤ → q) and q . Thus by [RRTE], ⊢ �p → (�(p → q) → �q).
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For (4) By PL and [RNPL], ⊢ �(p ∧ q → p). Then by [K], ⊢ �(p ∧ q) → �p.

Similarly, ⊢ �(p ∧ q) → �q . Thus by PL, we have [M] �(p ∧ q) → �p ∧ �q as

an L-theorem.

To obtain [C], note that by PL and [RNPL], ⊢ �(p → (q → p ∧ q)). Then by

successive use of [K], ⊢ �p → (�q → �(p ∧ q)), that is, the schema [C] is an

L-theorem. �

Since any 10 system includes PL and provides the rules [RdN], [SEq], [RNAx] (hence

[RNPL]), and the schema [X], we can help ourselves to all of the rules and schemata

mentioned in Lemma 4.3 when proving rules and theorems for any such system.

Lemma 4.4 A 10 system has the following rules:

(1)
⊢ �α

⊢ �⊤ ≺ α
;

(2)
⊢ �α

⊢ �⊤ ≺ �α
;

(3)
⊢ α

⊢ �⊤ ≺ α
;

(4)
⊢ α,⊢ ¬�⊤ ≺ α

⊢ �α
.

Proof For (1) Assume that ⊢ �α. Note that α ↔ (⊤ → α) ∈ PL. Thus

by [RNPL], ⊢ α = (⊤ → α). Then by [SEq], ⊢ �α = �(⊤ → α), and so

⊢ �(�α → �(⊤ → α)). Then by [RdN], ⊢ �α → �(⊤ → α), and so by assump-

tion together with [MP], ⊢ �(⊤ → α). But ⊢ �(�⊤ → ⊤) (by applying [RNPL]

to the tautology �⊤ → ⊤). Thus by [X], ⊢ �(�⊤ → α), that is, ⊢ �⊤ ≺ α.

For (2) Assume that ⊢ �α. Then ⊢ �(⊤ → α) (as we have shown when proving

(1)). But ⊢ �(α → ⊤) (by applying [RNPL] to the tautology α → ⊤). Thus

⊢ ⊤ = α, and so by [SEq], ⊢ �⊤ = �α, whence we conclude that ⊢ �⊤ ≺ �α.

For (3) Assume that ⊢ α, that is, α has a proof. We show by induction on the lines

of the proof of α that ⊢ �⊤ ≺ αk , for every line αk of the proof.

For α1, it is an axiom. Thus by [RNAx], ⊢ �α1. Then by (1), ⊢ �⊤ ≺ α1.

For the induction step, the case of αk being an axiom is the same as α1. The other

cases are αk being obtained from previous line(s) by an application of one of the

following rules: [RNAx], [RdN], [SEq], [MP]. In the following we show each case in

turn.

Case 1 If [RNAx], αk is �αi (i < k) and αi is an axiom. Then by [RNAx], ⊢ �αi ,

and so by (2), ⊢ �⊤ ≺ �αi , that is, ⊢ �⊤ ≺ αk .

Case 2 If [RdN], there is a previous line �αk . By I.H., ⊢ �⊤ ≺ �αk . Then by

[RdN], ⊢ �⊤ → �αk . Since ⊢ �⊤ (by [RNPL]), ⊢ �αk . Then by (1), ⊢ �⊤ ≺ αk .

Case 3 If [SEq], αk is β = β[γ /δ] where there is a previous line γ = δ.

Note that ⊢ �(β ↔ β) (by applying [RNPL] to the tautology β ↔ β). Then

by (2), ⊢ �⊤ ≺ �(β ↔ β), that is, ⊢ �⊤ ≺ (β = β). Then by [RRSE],

⊢ (�⊤ ≺ (β = β))[γ /δ], and so ⊢ �⊤ ≺ (β = β[γ /δ]), that is, ⊢ �⊤ ≺ αk .

Case 4 If [MP], there are two previous lines αi and αi → αk . From I.H.,

⊢ �⊤ ≺ αi and ⊢ �⊤ ≺ (αi → αk). Then ⊢ �⊤ ≺ αk . (Note that
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(α ≺ β) ∧ (α ≺ (β → γ )) → (α ≺ γ ) is provable from the tautology

(p → q) ∧ (p → (q → r)) → (p → r) by using [RNPL], [K], and [C].)

For (4) Assume that ⊢ α and ⊢ ¬�⊤ ≺ α. From [X], ⊢ �(¬q → p)∧�(p → q)

→ �(¬q → q). Then by [RRTE], ⊢ �(¬p → q) ∧ �(p → q) → �q , that is,

⊢ (¬p ≺ q) ∧ (p ≺ q) → �q . Then by [US], ⊢ (¬�⊤ ≺ α) ∧ (�⊤ ≺ α) → �α.

Then by assumptions, together with (3) and [MP], we have ⊢ �α. �

Lemma 4.5 A 10 system has the following theorem and rule:

1. ♦(p ∧ q) → (♦p ∧ ♦q);

2.
⊢ ♦α → �β

⊢ α → β
.

Proof For (1) p → p ∨ q is a tautology. Thus by [RNPL] and [K], ⊢ �p →

�(p∨q). Similarly, ⊢ �q → �(p∨q). Then by PL, ⊢ �p∨�q → �(p∨q), and so

⊢ ♦¬(p∨q) → (♦¬p∧♦¬q). Finally by [RRTE], ⊢ ♦(¬p∧¬q) → (♦¬p∧♦¬q).

For (2) Assume that ⊢ ♦α → �β. By (1), ⊢ ♦(α ∧¬β) → (♦α ∧♦¬β). Then by

PL and [RRTE]: ⊢ (¬♦α∨¬♦¬β) → ¬♦¬(α → β); ⊢ (¬♦α∨�β) → �(α → β);

⊢ (♦α → �β) → �(α → β). Then by assumption and [MP], ⊢ �(α → β), and

by [RdN], ⊢ α → β. �

Lemma 4.6 A 10 system has the following theorem:

�α ∧ �(α → β) ≺ �⊤.

Proof From [X] and [RNAx], ⊢ �(¬α → α) ∧ �(α → (α → β)) ≺

�(¬α → (α → β)). Then by [RRTE], ⊢ �α ∧ �(α → β) ≺ �⊤. �

We are now in a position to prove the fundamental theorem for 10 systems (after

defining the canonical frames and models for such systems). However, to facili-

tate the presentation of the proofs of the fundamental theorem and subsequent com-

pleteness theorems, we will, after defining the canonical frames and models for 10

systems, demonstrate two more lemmas about their canonical frames.

Definition 4.7 Let L be a 10 system. Then the canonical frame for L is the prenor-

mal frame FL = 〈UL, NL, QL, RL, SL〉 where

1. x ∈ NL if and only if x is a maximal L-consistent set of well-formed formu-

las;

2. x ∈ QL if and only if x is a maximal PL-consistent set of well-formed for-

mulas satisfying both of the following conditions:

(a) the set {¬�α|α /∈ x} of well-formed formulas is L-consistent,

(b) �⊤ /∈ x;

3. ∀x ∈ NL,∀y ∈ UL, RLxy ⇐⇒ �(x) ⊆ y;

4. ∀x ∈ QL,∀a ⊆ UL, a ∈ SL(x) ⇐⇒ ∃α : a = |α|L & �α ∈ x .

Notation 4.8 �(x) is {α|�α ∈ x}, and |α|L is {x ∈ UL|α ∈ x}.

We note that FL as defined above is indeed a prenormal frame since NL and QL are

disjoint (�⊤, being a theorem of L, is in every normal point but it is not in any queer

point.)

Definition 4.9 Let L be a 10 system. Then the canonical model for L is the prenor-

mal model ML = 〈FL, VL〉 where
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1. FL = 〈UL, NL, QL, RL, SL〉 is the L-canonical frame;

2. for every p ∈ At, VL(p) = |p|L.

Lemma 4.10 Let FL = 〈UL, NL, QL, RL, SL〉 be the canonical frame for a 10

system L. Then for every x ∈ NL and well-formed formula α,

�α /∈ x H⇒ ∃y ∈ UL : RLxy & α /∈ y.

Proof Let x be a normal point. Assume that �α /∈ x . It is sufficient to show that

the set 6 = �(x)∪{¬α} has an extension in NL or QL. For reductio assume neither.

That is, assume that

(1) 6 is not L-consistent and

(2) if y is a maximal PL-consistent extension of 6, then y contains �⊤.

(For the second point, note that if y is a maximal PL-consistent extension of 6, then

the set {¬�α|α 6∈ y} is already L-consistent since it is a subset of x .) From (1) and

(2) above, we can infer the following:

∃β1, . . . , βn ∈ �(x) : {β1, . . . , βn,¬α} ⊢L ⊥

⊢L β1 ∧ · · · ∧ βn → α;

∃γ1, . . . , γm ∈ �(x) : {γ1, . . . , γm ,¬α,¬�⊤} ⊢PL ⊥

⊢PL ¬�⊤ → ((γ1 ∧ · · · ∧ γm) → α).

Let δ = β1 ∧ · · · ∧ βn ∧ γ1, . . . , γm . Then from the above, we have

(i) ⊢L δ → α and

(ii) ⊢PL ¬�⊤ → (δ → α).

From (ii) and by [RNPL], ⊢L ¬�⊤ ≺ (δ → α). Then by (i) and Lemma 4.4(4),

⊢L �(δ → α). Then by [K], ⊢L �δ → �α and so �δ → �α ∈ x (note that every

L-theorem is in x). However, �δ ∈ x since �β1, . . . ,�βn,�γ1, . . . ,�γm ∈ x

and L provides [C]. Thus by the deductive closure of maximal L-consistent sets,

�α ∈ x . But this is contrary to the initial assumption that �α /∈ x . Thus by reductio,

�(x) ∪ {¬α} has an extension in NL or QL. �

Lemma 4.11 Let L be a 10 system. Then for any well-formed formulas α and β,

|α|L = |β|L H⇒ ⊢L α = β.

Proof Let α and β be arbitrary well-formed formulas. Assume that |α|L = |β|L,

that is, for any x ∈ UL, α ∈ x if and only if β ∈ x . In other words, α ↔ β ∈ x , for

every x ∈ UL. Assume, for reductio, that 6⊢L α = β. Then there exists an x ′ ∈ NL

such that �(α ↔ β) /∈ x ′. Then by Lemma 4.10, there exists a y ∈ UL such that

RLx ′y and α ↔ β /∈ y. But this is contrary to what can be inferred from the initial

assumption. Thus, by reductio, ⊢L α = β. �

Theorem 4.12 (Fundamental Theorem for 1
0 Systems) Let ML = 〈UL, NL, QL,

RL, SL, VL〉 be the canonical model for a 10 system L. Then, for every x ∈ UL and

well-formed formula α,

|HML
x α ⇐⇒ α ∈ x .

Proof The proof is by induction on the structure of α. The only interesting case is

the modal one. Assume that for every x ∈ UL, |H
ML
x α ⇐⇒ α ∈ x (I.H.), and

show that for every x ∈ UL, |H
ML
x �α ⇐⇒ �α ∈ x . We show only the difficult

direction, namely, H⇒. Either x ∈ NL or x ∈ QL.
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For x ∈ NL Assume, for contraposition, that �α /∈ x . Then by Lemma 4.10, there

exists a y ∈ UL such that RLxy and α /∈ y, that is, 6|H
ML
y α (I.H.). Thus 6|H

ML
x �α.

For x ∈ QL Assume that |H
ML
x �α. Then ‖α‖ML ∈ SL, that is, |α|L ∈ SL (by I.H.).

Then for some well-formed formula β, |α|L = |β|L & �β ∈ x . By Lemma 4.11,

we can infer that ⊢L α = β, and by [SEq], ⊢L �α = �β. Then the well-formed

formula �α = �β is in every normal point. Moreover, it is evident that every queer

point (say x ′) has a normal predecessor (since the set {¬�α|α /∈ x ′} is L-consistent

and so has an extension y in NL such that �(y) ⊆ x ′). Thus �α ↔ �β is in every

queer point. Thus �α is in x since �β is. �

Theorem 4.13 The canonical frame for the system S10 is in the class C10 of

frames.

Proof Let FS10 = 〈US10 , NS10 , QS10 , RS10, SS10〉 be the canonical frame for S10.

We show that it is a 10 frame, that is, it satisfies the conditions stipulated in Defi-

nition 4.1. Clearly NS10 is nonempty since S10 is consistent. The more interesting

conditions are the requirements

(1) that every point in US10 has a normal predecessor and

(2) that no two neighborhoods of a queer point “cover” the universe.

For (1) If x ∈ QS10 , it is evident that it has a normal predecessor since the set

{¬�α|α /∈ x} is S10-consistent (as we have already argued when proving Theo-

rem 4.12). It remains to show that the same holds for every normal point. Thus

let x ∈ NS10 be arbitrary. Assume, for reductio, that the set {¬�α|α /∈ x} is not

S10-consistent. Then, for some β1, . . . , βn /∈ x ,

{¬�β1, . . . ,¬�βn} ⊢S10 ⊥;

⊢S10 (¬�β1 ∧ · · · ∧ ¬�βn−1) → �βn;

⊢S10 (♦¬β1 ∧ · · · ∧ ♦¬βn−1) → �βn;

⊢S10 ♦(¬β1 ∧ · · · ∧ ¬βn−1) → �βn by Lemma 4.5(1);

⊢S10 (¬β1 ∧ · · · ∧ ¬βn−1) → βn by Lemma 4.5(2).

Then (¬β1∧· · ·∧¬βn−1) → βn ∈ x . But ¬β1, . . . ,¬βn−1 ∈ x . Then βn ∈ x , which

is absurd since βn /∈ x . Thus, by reductio, the set {¬�α|α /∈ x} is S10-consistent,

whence we can argue that x has a normal predecessor.

For (2) Let x be a queer point, a and b subsets of US10 . Assume that a, b ∈ SS10(x).

Further assume for reductio that a ∪ b = US10 . Then for some well-formed formulas

�α,�β ∈ x , a = |α|S10 and b = |β|S10 . It is evident that |α → β|S10 ⊆ |β|S10

(since |α|S10 ∪ |β|S10 = US10), and so |α → β|S10 = |β|S10 . Then

⊢S10 (α → β) = β by Lemma 4.11,

⊢S10 �(α → β) = �β by [SEq],

⊢S10 �β ≺ �(α → β).

Then �β → �(α → β) ∈ x (since every queer point has a normal predecessor).

Then �(α → β) ∈ x (since �β ∈ x). But �α ∧ �(α → β) → �⊤ ∈ x (by

Lemma 4.6 and x having a normal predecessor). Since �α,�(α → β) ∈ x , we

have �⊤ ∈ x , which is absurd. Thus, by reductio, a ∪ b 6= US10 . �
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Theorem 4.14 The system S10 is Lewis-complete with respect to the class C10 of

frames.

Proof The Lewis-completeness of the system S10 with respect to the class C10 of

frames follows directly from the Fundamental Theorem for S10 systems and the

theorem that the canonical frame for S10 is in the class C10 of frames (Theorems 4.12

and 4.13, respectively). �

Theorem 4.15 The system S10 is Lewis-determined by the class C10 of frames.

Proof Since S10 is both Lewis-sound and Lewis-complete with respect to the class

C10 of frames, it is Lewis-determined by the class C10 of frames. �

5 A Semantics for S1
0D

Definition 5.1 A 10D frame is a 10 frame whose relational component R satisfies

the condition of seriality,

∀x ∈ N, ∃y ∈ U : Rxy.

Theorem 5.2 The system S10D is Lewis-sound with respect to the class C10D of

frames.

Proof It suffices to note that [D] is true at every point, normal or queer, in any

model on any 10D frame. �

Theorem 5.3 The canonical frame for the system S10D is in the class C10D of

frames.

Proof Let FS10D = 〈US10D, NS10D, QS10D, RS10D, SS10D〉 be the canonical frame

for S10D. It suffices to show that RS10D is serial. Let x ∈ NS10D be arbitrary. We

show that the set �(x) of well-formed formulas has an extension either in NS10D or

QS10D. For reductio, assume neither. That is to say, assume that (1) �(x) is not

S10D-consistent and (2) if y is a maximal PL-consistent extension of �(x), then it

contains �⊤. (Note that the set {¬�α|α /∈ y} is already S10D-consistent since it is

included in x .) From the above, we can infer the following:

∃α1, . . . , αn ∈ �(x) : {α1, . . . , αn} ⊢S10D ⊥

⊢S10D α1 ∧ · · · ∧ αn−1 → ¬αn;

∃β1, . . . , βm ∈ �(x) : {β1, . . . , βm,¬�⊤} ⊢PL ⊥

{β1, . . . , βm,¬�⊤, αn} ⊢PL ⊥

⊢PL ¬�⊤ → ((β1 ∧ · · · ∧ βm) → ¬αn).

Let γ = α1 ∧ · · · ∧ αn−1 ∧ β1 ∧ · · · ∧ βm . Then from the above, we have

(i) ⊢S10D γ → ¬αn and

(ii) ⊢PL ¬�⊤ → (γ → ¬αn).

From (ii) and by [RNPL], ⊢S10D ¬�⊤ ≺ (γ → ¬αn). Then by (i) and

Lemma 4.4(4), ⊢S10D �(γ → ¬αn). Then by [K], ⊢S10D �γ → �¬αn . But

every S10D-theorem is in x . Thus �γ → �¬αn ∈ x . However �γ ∈ x . (Note

that �α1, . . . ,�αn−1,�β1, . . . ,�βm ∈ x , and so is [C].) Thus by the deductive

closure of maximal S10D-consistent sets, �¬αn is in x . But this is absurd, since

αn ∈ �(x), that is, �αn ∈ x and so ¬�¬αn ∈ x (for [D] is a theorem of S10D and
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it is in x). Thus, by reductio, �(x) has an extension in NS10D or QS10D, whence we

can conclude that x has a successor in US10D. �

Theorem 5.4 The system S10D is Lewis-complete with respect to the class C10D of

frames.

Proof The Lewis-completeness of the system S10D with respect to the class C10D

of frames follows directly from the Fundamental Theorem for S10 systems and the

theorem that the canonical frame for S10D is in the class C10D of frames. (Theo-

rems 4.12 and 5.3, respectively). �

Theorem 5.5 The system S10D is Lewis-determined by the class C10D of frames.

Proof Since S10D is both Lewis-sound and Lewis-complete with respect to the

class C10D of frames, it is Lewis-determined by the class C10D of frames. �

6 Philosophical Remarks: From Alethic to Deontic Systems

If we were to drop the condition that R be reflexive, this would be equiva-

lent to abandoning the modal axiom �A ⊃ A. In this way we could obtain

systems of the type required for deontic logic. (Kripke [5])

Thus states Kripke at the conclusion of his seminal paper. If we interpret �α as “It

is a necessary truth that α”, then the principle [T] �p → p and its substitutional

instances would be unavoidable. We may call systems that have the principle [T]

alethic systems. However as Kripke suggests in the passage quoted above, [T] would

be inappropriate for some other readings of the modal operator �, for example, if we

interpret it as “It is obligatory that . . . ” (deontic logic) or “An agent believes that

. . . ” (doxastic logic). For such readings, [T] had better be dropped or replaced

by some weaker principle such as [D] �p → ♦p, though other weaker principles

might do as well or better. We may call such systems “T-less” systems (or we can

adopt the name “deontic logics” while bearing in mind that the term has a stricter

meaning, namely, logics of obligation). In this paper, we have followed a similar

path in choosing the systems S10 and S10D for analysis. For comparison, we list in

the following three trios of logics, including the normal system K, the regular system

R, and their deontic and alethic extensions:

K KD KT

R RD RT

S10 S10D S10T (or S1).

Notation 6.1 The system K can be axiomatized by PL, [RN], and [K], and the

system R by PL, [RM], and [C]. The systems RD and RT are equivalent to Lemmon’s

D2 and E2 in [6].

Before we comment on the interpretation of the deontic systems KD, RD, and S10D,

we note a formal similarity in the above trios of systems. Syntactically [D] is weaker

than [T] (in the sense that [D] is derivable from [T] but not the reverse in the ab-

sence of further axioms). This relation between [D] and [T] is reflected by a similar

relation between the classes of frames to which the two principles correspond in the

binary relational idiom: [D] corresponds to seriality, which is weaker than reflex-

ivity to which [T] corresponds. However, the last trio brings out another point of

interest: the systems S10, S10D, and S10T have the rule of denecessitation [RdN]
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⊢ �α H⇒ ⊢ α, which can be considered as another weak principle with which one

could replace [T] in moving from alethic systems to a T-less system. Whether [RdN]

could be given a plausible deontic reading (or some other reading) is another mat-

ter. At least it is formally interesting to note that the rule corresponds to converse

seriality (every point has a predecessor), the converse of seriality (every point has a

successor).2 Both versions of seriality are weaker than reflexivity, a relation echoing

the derivability of [RdN] and [D] from [T] in a formal system.

We do not give a detailed interpretation of the systems KD, RD, and S10D here,

but rather comment on a few points on their suitableness as a minimal deontic logic

(the smallest logic that would preserve our intuitions about obligation). One of the

(many) objections to the normal system KD as a deontic logic is its use of the rule

of necessitation [RN] ⊢ α H⇒ ⊢ �α. What the rule effectively says (in deontic

terms) is that it is a logical law that any law of logic is obligatory. But this seems

to be contrary to our intuition that logic by itself cannot give rise to obligations and

that only obligations can give rise to obligations. It is because of this objection that

we consider nonnormal logics RD and S10D rather than the normal KD as plausible

candidates for the minimal deontic logic. Neither RD nor S10D provides the rule

[RN] (although the latter system has [RNAx], which is a weakened version of [RN]).

Semantically, they avoid the rule [RN] by the presence of queer worlds at which there

are no obligations whatsoever (in nonnormal frames) or no tautologous obligations

(in prenormal frames). Whether this is a satisfactory way to drop the rule [RN] is

controversial, for it may be objected that there are still logical obligations or tautol-

ogous obligations at normal worlds. However we will pursue this point no further

here, for there is another objection to proposing RD and S10D as candidates for the

minimal deontic logic.

An objection to RD and S10D (and also KD) as being the minimal deontic logic is

related to their commitment to nonconflicting obligations (in virtue of [D]). Whether

there are genuinely conflicting obligations or not will not be adjudicated here. How-

ever, if our project is to find the minimal deontic logic, the smallest logic that would

preserve our intuitions about obligation, then RD and S10D do not qualify as the min-

imal deontic logic (at least not without controversy). If so, we may ask whether [D]

could be replaced by a weaker and less controversial principle such as [Con] ¬�⊥

(which is a weak version of the Kantian principle that ought implies can). Unfortu-

nately the answer is no, for given the bases R and S10 of these systems, any extension

of these bases that has [Con] also provides [D]. Schotch and Jennings point out in [7]

that the minimal deontic logic should preserve important deontic distinctions such as

[D] and [Con]. If this is correct, then the systems formed by adding [Con] to R or

S10 would not be the minimal deontic logic we are looking for. What that logic is

must remain an open question.

Notes

1. Chellas and Segerberg give two axiomatizations of S10, both of which are somewhat

different from the one we provide here. For example, their first axiomatization, using the

symbols of this paper, is PL, [RNAx], [SMP], [RRSE], and [X]. It can easily be shown

that it is equivalent to the axiomatization of S10 we adopt here. For the purpose of this

paper, taking [RdN] instead of [SMP] as primitive has the advantage of showing how S10

can be obtained from S1 by replacing [T] with its weaker rule counterpart [RdN].
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2. The idea of rule correspondence (or defining a class of frames by a rule of inference) is

based on Kapron’s notion of modal sequent-axiomatic classes of frames in [4]. That the

rule of denecessitation [RdN] corresponds to converse seriality has first been noticed by

Schotch in communication with Jennings.
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