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Intermediate Logics and Visser’s Rules

Rosalie Iemhoff

Abstract Visser’s rules form a basis for the admissible rules of IPC. Here we
show that this result can be generalized to arbitrary intermediate logics: Visser’s
rules form a basis for the admissible rules of any intermediate logic L for which
they are admissible. This implies that if Visser’s rules are derivable for L then L

has no nonderivable admissible rules. We also provide a necessary and sufficient
condition for the admissibility of Visser’s rules. We apply these results to some
specific intermediate logics and obtain that Visser’s rules form a basis for the
admissible rules of, for example, De Morgan logic, and that Dummett’s logic
and the propositional Gödel logics do not have nonderivable admissible rules.

1 Introduction

It is a simple but interesting fact that all admissible rules of classical propositional
logic CPC are derivable. Thus, knowing the theorems of CPC is knowing its rules.
For intermediate logics this is no longer true: there are intermediate logics that have
nonderivable admissible rules, that is, admissible rules that are not derivable. Intu-
itionistic propositional logic IPC is the most famous example of such a logic, but
there are many more. In Iemhoff [10] it was shown that the countably many Gabbay-
de Jongh logics [5] have this property too.

A lot is known about the admissible rules of IPC. Rybakov [14] showed that
admissible derivability for IPC, |∼ , is decidable and Ghilardi [7] presented a trans-
parent algorithm. In Iemhoff [9] a simple syntactical characterization for |∼ was
given. This result implied that Visser’s rules V = {Vn | . . . n = 1, 2, 3, . . .}, where

Vn (

n
∧

i=1

(Ai → Bi ) → An+1 ∨ An+2) ∨ C /

n+2
∨

j=1

(

n
∧

i=1

(Ai → Bi ) → A j ) ∨ C,

form a basis for the admissible rules of IPC. Intuitively, this means that all admissible
rules of IPC can be obtained from Visser’s rules via derivability in IPC.
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In this paper we show that this result is in fact a particular case of a more gen-
eral theorem by showing (Theorem 3.9) that if Visser’s rule are admissible for an
intermediate logic L, they are a basis for the admissible rules of L. In particular, it
follows that if Visser’s rules are derivable, the logic has no nonderivable admissible
rules. As we will see, the latter applies to many well-known intermediate logics, like
Gödel-Dummett logic LC and the Gödel logics Gk. (This last fact was independently
observed, using different methods, by Baaz.)

As for the admissibility of Visser’s rules, it might not always be easy to see
whether this holds or not for a given logic. However, in many cases we can make
use of the necessary and sufficient condition for the admissibility of Visser’s rules
developed in Section 4. Namely, there we show that Visser’s rules are admissible for
a logic L if and only if L is sound and complete with respect to the class of models
that has the so-called offspring property. This characterization enables us to apply
Theorem 3.9 to various intermediate logics and conclude that Visser’s rules form a
basis for the admissible rules of, for example, De Morgan logic KC.

Summarizing, we could say that if Visser’s rules are admissible for L, we have a
complete description of |∼ L once we have one of ⊢L, because in these cases Visser’s
rules form a basis for the admissible rules. As we will see, it is even so that in these
cases there exist formulas 3A, so-called maximal admissible consequences, such
that A |∼ L B ⇔ 3A ⊢L B . Therefore, having 3A, one obtains a description of |∼ L

in terms of ⊢L. In [7] an algorithm to compute the 3A was presented, and based on
this we have developed a proof system to derive 3A [11]. All this provides not only
a complete description of the admissible rules of L, but also one that is computable
once ⊢L is.

What if not all of Visser’s rules are admissible? We know that such logics exist:
the Gabbay-de Jongh logics [10] are an example. We do not know of many general
results about the admissibility relation of such logics.

In short, the general connection between Visser’s rules and admissibility obtained
here is as follows.

1. Visser’s rules are admissible ⇒ Visser’s rules form a basis (Section 3.2).
2. Visser’s rules are derivable ⇒ no nonderivable admissible rules (Section 3.2).
3. Disjunction property ⇒ not all of Visser’s rules are admissible, unless the

logic is IPC (Section 4).

Remark 1.1 Note than when Visser’s rules are admissible, then so are the rules

Vnm (

n
∧

i=1

(Ai → Bi ) →

m
∨

j=n+1

A j ) ∨ C/

m
∨

h=1

(

n
∧

i=1

(Ai → Bi ) → Ah) ∨ C.

As an example we will show that V13 is admissible for any logic for which
V1 is admissible. For simplicity of notation we take C empty. Assume that
⊢L (A1 → B) → A2 ∨ A3 ∨ A4. Then by V1, reading A2 ∨ A3 ∨ A4 as
A2 ∨ (A3 ∨ A4),

⊢L

(

(A1 → B) → A1
)

∨
(

(A1 → B) → A2
)

∨
(

(A1 → B) → A3 ∨ A4
)

.

A second application of V1, with C =
(

(A1 → B) → A1
)

∨
(

(A1 → B) → A2
)

,
gives

⊢L

2
∨

i=1

(

(A1 → B) → Ai

)

∨
∨

i=1,3,4

(

(A1 → B) → Ai

)

.
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Therefore, ⊢L

∨4
i=1

(

(A1 → B) → Ai

)

.

The paper is built up as follows. Section 2 contains the preliminaries. It is somewhat
long, as the necessary and sufficient condition for the admissibility of V needs some
explanation. Section 3 is devoted to the proof that if Visser’s rules are admissible they
form a basis. The proof itself is not complicated, but it uses a lot of machinery, which
is discussed in Subsection 3.1. In Subsection 3.2 the result is derived. Section 4
presents the neccessary and sufficient condition for the admissibility of Visser’s rules.
In Section 5 the results are applied to specific intermediate logics.

2 Preliminaries

In this paper we will only be concerned with intermediate logics L, that is, logics
between (possibly equal to) IPC and CPC. We write ⊢L for derivability in L. The
letters A, B, C, D, E, F, H range over formulas, the letters p, q, r, s, t range over
propositional variables. We assume ⊤ and ⊥ to be present in the language. ¬A is
defined as (A → ⊥). We omit parentheses when possible; ∧ binds stronger than ∨,
which in turn binds stronger than →.

2.1 Admissible rules A substitution σ will in this paper always be a map from
propositional formulas to propositional formulas that commutes with the connec-
tives. A (propositional) admissible rule of a logic L is a rule A/B under which the
logic is closed, that is,

∀σ : ⊢L σ A implies ⊢L σ B.

We write A |∼ L B if A/B is an admissible rule of L. The rule is called derivable if
⊢L A → B and nonderivable if 6⊢L A → B . When R is the rule A/B , we write
R→ for the implication A → B . We say that a collection R of rules, for example,
V , is admissible (derivable) for L if all rules in R are admissible (derivable) for L.
We write A ⊢R

L
B if B is derivable from A in the logic consisting of L extended with

the rules R, that is, if there are A = A1, . . . , An = B such that for all 1 ≤ i < n,
Ai ⊢L Ai+1 or there exists a σ such that σ Bi/σ Bi+1 = Ai/Ai+1 and Bi/Bi+1 ∈ R.
If X and R are sets of admissible rules of L, then R is a basis for X if for every rule
A/B in X we have A ⊢R

L
B . If X consists of all the admissible rules of L, then R

is called a basis for the admissible rules of L. Thus R is a basis for the admissible
rules of L if and only if |∼ L = ⊢R

L
, that is,

A |∼ L B ⇔ A ⊢R
L B.

Fact 2.1 If R is a basis for the admissible rules of L and all rules in R are derivable,
then L has no nonderivable admissible rules.

2.2 The disjunction property A logic L has the disjunction property if

⊢L A ∨ B ⇒ ⊢L A or ⊢L B.

If L has the disjunction property, then A |∼ LC and B |∼ LC implies A ∨ B |∼ LC . Thus
in the context of Visser’s rules this implies that when the the following special in-
stances of Visser’s rules, the restricted Visser rules,

V −
n (

n
∧

i=1

(Ai → Bi ) → An+1 ∨ An+2) /

n+2
∨

j=1

(

n
∧

i=1

(Ai → Bi ) → A j ),
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are admissible for L, then so are Visser’s rules. Therefore, when considering only
logics with the disjunction property, like, for example, IPC, the difference between
the Visser rules and the restricted Visser rules does not play a role. However, when
considering intermediate logics in all generality, as we do in this paper, we cannot
restrict ourselves to this subcollection of Visser’s rules.

2.3 Kripke models A Kripke model K is a triple (W,4,) where W is a set (the
set of nodes) with a unique least element that is called the root, 4 is a partial order
on W , and , the forcing relation, a binary relation on W and sets of propositional
variables. The pair (W,4) is called the frame of K . The notion of forcing in a
Kripke model is defined as usual. We write K |H A if A is forced in all nodes of K

and say that A holds in K . We write Kk for the model with domain {k ′ | k 4 k ′}

which partial order and valuation are the restrictions of the corresponding relations
of K to this domain.

2.4 Bounded morphisms A map f : (W,4,) → (W ′,4′,′) is a bounded

morphism when the following conditions hold:

1. k and f (k) force the same atoms,
2. k 4 l implies f (k) 4′ f (l),
3. if f (k) 4 l, then there is a k ′ < k in W such that f (k ′) = l.

K ′ is a bounded morphic image of K , K ։ K ′, whenever there is a surjective
bounded morphism from K to K ′. It is well known (see, for example, [2]) that when
f is a bounded morphism from K to K ′, then for all k in K , for all formulas A:
k  A ⇔ f (k) ′ A. Thus if K ′ is a bounded morphic image of K , it validates
exactly the same formulas as K .

2.5 Extension properties For Kripke models K1, . . . , Kn , (
∑

i Ki )
′ denotes the

Kripke model which is the result of attaching one new node at which no propositional
variables are forced, below all nodes in K1, . . . , Kn . (

∑

·)′ is called the Smorynski

operator. Two models K , K ′ are variants of each other, written KvK ′, when they
have the same set of nodes and partial order, and their forcing relations agree on all
nodes except possibly the root. A class of models U has the extension property if for
every finite family of models K1, . . . , Kn ∈ U , there is a variant of (

∑

i Ki )
′ which

belongs to U . U has the weak extension property if for every model K ∈ U , and
every finite collection of nodes k1, . . . , kn ∈ K distinct from the root, there exists a
model M ∈ U such that

∃M1
(

(
∑

i

Kki )
′vM1 ∧ (M1 ։ M)

)

.

U has the offspring property if for every model K ∈ U , and for every finite collection
of nodes k1, . . . , kn ∈ K distinct from the root, there exists a model M ∈ U such
that

∃M1∃M0
(

(
∑

i

Kki )
′vM1 ∧ (M1 + K )′vM0 ∧ (M0 ։ M)

)

.

A logic L has the extension (weak extension, offspring) property if it is sound and
complete with respect to some class of models that has the extension (weak ex-
tension, offspring) property. Note that for all three properties the class of models
involved does not have to be the class of all models of L. However, we might as
well require that, because we will see in Section 4 that if a logic has the offspring
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property, then so does the class of all its models. Since the class of all models of a
logic is closed under submodels and bounded morphic images, this also implies that
for logics

extension property ⇒ offspring property ⇒ weak extension property.

The reason that we have chosen the definition of offspring property as given above,
not the most elegant one, is that it will turn out particularly useful for the application
to various frame complete logics discussed in Section 1. There are quite natural
classes of models that satisfy the offspring property, for example, the class of linear
models, as the reader may wish to verify for himself.

If we would not restrict our models to rooted ones, the extension property and the
weak extension property would be equivalent, at least for logics. Since we require
our Kripke models to be rooted, there is a subtle difference between the two.

Fact 2.2 If a logic L has the extension property, it has the disjunction property.

As there are logics that do not have the disjunction property, but that have the weak
extension property, the latter is indeed stronger. We will see examples of such logics
in Section 5.

2.6 Projective formulas We define n(A) to be the maximal nesting of implica-
tions in A. Recall that a substitution σ is a unifier of A in IPC if ⊢IPC σ A.

In [6], Ghilardi introduced the notion of a projective formula: a formula is called
projective if there exists a substitution σ such that

⊢IPC σ A, and for all atoms p (A ⊢IPC σ(p) ↔ p).

We call such a σ a projective unifier for A. A projective approximation 5A of A( p̄)

is a set of formulas such that for all B ∈ 5A,

1. all atoms in B are among the atoms p̄ of A, n(B) ≤ n(A), B is projective
and B ⊢IPC A, and

2. for all formulas C satisfying (1), there is a B ∈ 5A such that C ⊢IPC B .

Observe that if σ is a projective unifier for A, then A ⊢IPC σ B ↔ B , for all formulas
B . This implies that for any projective formula A, for all formulas B we have that

A |∼ L B ⇔ A ⊢L B. (1)

For if A |∼ L B , then ⊢L σ B for any projective unifier σ of A. Whence A ⊢L B , as
A ⊢IPC σ B ↔ B . Note that (1) implies

∨

5A |∼ L B ⇔
∨

5A ⊢L B .

Example 2.3 Examples of projective formulas are p, ¬p, and A → p. Their pro-
jective unifiers are respectively, σ(p) = ⊤, σ(p) = ⊥, and σ(p) = (A → p) → p,
where σ is the identity on all atoms distinct from p. For the first two, this is easy to
see. To see that the last substitution is a unifier for A → p, note that

σ(A → p) = σ(A) → ((A → p) → p) ↔ (σ (A) ∧ (A → p) → p).

Observe that indeed (A → p) ⊢ σ(B) ↔ B , as is required of a projective unifier.
Hence (σ (A) ∧ (A → p) → p) is equivalent to ((A → p) ∧ A → p), which is a
tautology of IPC.

In [6], Ghilardi showed that projective formulas are exactly the formulas which class
of models has the extension property. This implies that, for example, p ∨ q is not a
projective formula. Nor are the formulas

∧n
i=1(pi → qi ) → pn+1 ∨ pn+2 that occur

in Visser’s rules projective.
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3 Visser’s Rules as a Basis

We will show that once Visser’s rules are admissible for a logic they form a basis,
Theorem 3.9. The first subsection recalls the theorems that lead to the mentioned
result. First, we discuss results on projective formulas and admissible rules of IPC

and how they may be connected to the admissible rules of other intermediate logics.

3.1 Maximal admissible consequences The important point in the proof of Theo-
rem 3.9 is that for various logics there exist formulas λA, called maximal admissible
consequences, such that A |∼ B ⇔ λA ⊢ B . In this section we explain the connection
between such formulas and bases of admissible rules.

Definition 3.1 For a formula A, let ACL

A = {B | A |∼ L B} be the set of admissible

consequences of A in L. A formula λL

A is called a maximal admissible consequence

(mac) of A in L if

∀B (A |∼ L B ⇔ λL

A ⊢L B).

We omit the superscript when L is clear from the context. In the case of IPC, we
write 3A for λIPC

A . A formula A is called stable for admissibility in L, or stable for
short, if it is a maximal admissible consequence of itself, that is, if

∀B (A |∼ L B ⇔ A ⊢L B).

The name maximal admissible consequence stems from the fact that such λA is max-
imal in ACL

A, or equivalently that it axiomatizes ACL

A, that is,

ACL

A = {B | A |∼ L B} = {B | λA ⊢L B}.

Note that the macs of a formula A in L (if any) are unique up to provable equivalence
in L. Therefore, when A has a mac in L we speak of the mac of A in L and denote it
by λL

A . The following fact provides a straightforward equivalent for the existence of
macs.

Fact 3.2 A formula λA is a mac of A in L if and only if

1. A |∼ LλA ⊢L A, and
2. λA is stable, that is, ∀B (λA |∼ L B ⇔ λA ⊢L B).

Proof We assume that A has a mac λA in L and show that (1) and (2) hold. We leave
the other direction to the reader. We have ∀B (A |∼ B ⇔ λA ⊢ B) by assumption.
Thus A |∼λA ⊢ A follows, which is (1). For (2), the direction from right to left is
trivial. For the other direction, assume λA |∼ B . Then A |∼ B by (1) and the fact that
|∼ is clearly transitive. Thus λA ⊢ B by the definition of λA . �

The following fact expresses the relation between macs and bases for admissible
rules.

Fact 3.3

1. If λA is a mac of A in L, R a set of rules such that A ⊢R
L

λA , then
∀B (A |∼ L B ⇒ A ⊢R

L
B).

2. If all formulas A have a mac λA in L and R is a set of admissible rules of L,
then

∀A (A ⊢R
L λA) ⇔ (R is a basis for the admissible rules of L).
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Proof For the first part, assume A |∼ L B . By the definition of macs, λA ⊢L B fol-
lows. Thus A ⊢R

L
λA ⊢L B , which gives A ⊢R

L
B . For the second part it suffices to

show that for all A we have

(A ⊢R
L λA) ⇔ ∀B(A |∼ L B ⇔ A ⊢R

L B).

For the direction from left to right, assume A ⊢R
L

λA . (A |∼ L B ⇒ A ⊢R
L

B) follows
from (1). (A ⊢R

L
B ⇒ A |∼ L B) follows from the assumption that the rules R are

admissible for L. The direction from right to left follows from A |∼ LλA; see Fact 3.2.
�

Thus by the above fact, one approach to finding a basis for the admissible rules of an
intermediate logic L is to first check whether

(a) for every A there exists a mac λA of A in L,

and if so, to provide

(b) a set of rules R, admissible for L, such that A ⊢R
L

λA for all A.

By the previous fact it then follows that R is a basis for the admissible rules of L.
In this paper we will follow this procedure. We will see that there are many logics

for which these two properties (a) and (b) hold, for example, for the logics KC, LC,
Gk. The central point here is that (a) and (b) hold for IPC: it turns out that for all
these logics the mac of a formula A is always the same, namely, 3A, the mac of A in
IPC. That is, in Corollary 3.8, it is shown that in any intermediate logic L for which
Visser’s rules are admissible, 3A is a mac of A and A ⊢V

L
3A. This implies that

(a) and (b) hold for L, and whence that Visser’s rules form a basis for the admissible
rules of L. Corollary 3.8 therefore not only allows us to establish the basis for the
admissible rules of many logics, but moreover shows that once Visser’s rules are
admissible, this basis is always the same, namely, the collection of Visser’s rules
(Theorem 3.9).

The main Corollary 3.8 follows from two theorems below: Theorem 3.4 by Ghi-
lardi [6] implies that in IPC every formula A has a mac 3A that moreover is stable
in any intermediate logic L (Corollary 3.5). Theorem 3.7 by the author [9] states
that Visser’s rules are a basis for the admissible rules of IPC. Hence it follows that
3A ⊢IPC A ⊢V

IPC
3A. By Fact 3.2, these two theorems together imply that 3A is a

mac of A in any logic in which V is admissible, which is the content of Corollary 3.8.
All this will be proved below and in Subsection 3.2.

Theorem 3.4 (Ghilardi [6]) Every formula A has a finite projective approximation

5A . For every unifier σ of A there is formula B ∈ 5A such that σ is a unifier for B

too.

Corollary 3.5 Every formula A has a mac 3A in IPC. Moreover, 3A is stable in

any intermediate logic L. The disjunction of any projective approximation of A can

be taken for 3A.

Proof Let 5A be a finite projective approximation of A, which exists by Theo-
rem 3.4. We show that we can take

∨

5A for 3A . First, we show that 3A is a mac
of A in IPC:

∀B (A |∼ IPC B ⇔
∨

5A ⊢IPC B).

The direction from left to right. Assume A |∼ B . Whence ⊢ σ B . Thus
∨

5A |∼ B .
Recall from Section 2.6 that

∨

5A |∼ B implies
∨

5A ⊢ B . For the other direction,
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assume
∨

5A ⊢IPC B and ⊢IPC σ A. By Theorem 3.4 there is a formula C ∈ 5A

such that σ is a unifier of C , that is, ⊢IPC σC . Hence ⊢IPC σ(
∨

5A), and thus
⊢IPC σ B . This proves A |∼ B .

It remains to show that 3A is stable in any intermediate logic L, that is,

∀B (
∨

5A |∼ L B ⇔
∨

5A ⊢L B).

Assume
∨

5A |∼ L B . Pick a projective formula C ∈ 5A and a projective unifier
σ for C , that is, ⊢IPC σC and C ⊢IPC B ↔ σ B (Section 2.6). Thus ⊢L σC and
C ⊢L B ↔ σ B . Since

∨

5A |∼ L B , we have ⊢L σ B . Thus C ⊢L B . As we have
shown this for arbitrary C ∈ 5A,

∨

5A ⊢L B follows. �

Corollary 3.6 If A |∼ L3A , then 3A is a mac of A in L, that is, λL

A = 3A.

Proof By Fact 3.2 it suffices to show that A |∼ L3A ⊢L A and that 3A is stable in
L. The last part follows from Corollary 3.5. The first part follows from 3A ⊢IPC A,
which again follows from Corollary 3.5 and Fact 3.2. �

As mentioned in the introduction, Ghilardi, in [7], constructed an algorithm to com-
pute 3A. Based on this, we have developed a proof system that, given a formula
A, derives 3A [11]. Although we will not use these results here, we mention them
because they show that and how one can obtain the 3A “in practice.”

3.2 When Visser’s rules are admissible

Theorem 3.7 ([9]) A |∼ IPC B if and only if A ⊢V
IPC

B.

Corollary 3.8 If V is admissible for L, then 3A is a mac of A in L and A ⊢V
L

3A.

Proof We have A |∼ IPC3A by Corollary 3.5 and Fact 3.2. It follows from Theo-
rem 3.7 that A ⊢V

IPC
3A. As V is admissible for L, this gives A |∼ L3A. Corollary 3.6

implies that 3A is a mac for A in L. As A ⊢V
IPC

3A clearly implies A ⊢V
L

3A, the
result follows. �

As explained above, this leads to the following characterization of the admissible
rules for logics for which V is admissible.

Theorem 3.9 If V is admissible for L, then V is a basis for the admissible rules of

L, that is, |∼ L = ⊢V
L

when V is admissible.

Proof By (2) of Fact 3.3 and Corollary 3.8. �

Corollary 3.10 If V is admissible for L then all admissible rules of IPC are admis-

sible for L.

Proof By Corollary 3.8 and Theorem 3.5,

A |∼ IPC B ⇔ 3A ⊢IPC B ⇒ 3A ⊢L B ⇔ A |∼ L B.

�

Note that Corollary 3.10 follows already from the fact that V is a basis for the ad-
missible rules of IPC.

Corollary 3.11 If V is derivable for L then L has no nonderivable admissible rules.

Proof By Corollary 3.9 and Fact 2.1. �
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Note that this theorem implies that CPC has no nonderivable admissible rules, as
stated in the introduction, a fact that can also be derived directly from the definition
of admissible rules.

In Section 5 we will apply the results above to specific intermediate logics and
obtain characterizations of their admissible rules. We conclude this section by some
general facts on admissible rules for the case that Visser’s rules are not admissible,
before we proceed in Section 4 with a semantic criterion for the admissibility of V .

3.3 General remarks For completeness sake we include the following known
facts for logics for which Visser’s rules are not admissible. They only provide nec-
essary conditions for admissibility.

Fact 3.12 If A |∼ L B , then CPC ⊢ A → B .

Proof Suppose A |∼ L B . This means that for all σ , ⊢L σ A implies ⊢L σ B . Suppose
the variables that occur in A and B are among p1, . . . , pn . Consider σ ∈ {⊤,⊥}n .
Note that for such σ , ⊢CPC σ A if and only if ⊢IPC σ A if and only if ⊢L σ A. Whence
for all σ ∈ {⊤,⊥}n , if ⊢CPC σ A then ⊢CPC σ B . Thus ⊢CPC A → B . �

Corollary 3.13 If A |∼ L B, then the logic that consists of L extended with the axiom

scheme (A → B) is consistent.

Fact 3.14 If A |∼ L B then 3A ⊢L B .

Proof By Corollary 3.5 and Fact 3.2. �

4 Semantic Criterion for Visser’s Rules

In this section we give a semantic criterion for the admissibility of V . Both statement
and proof are similar to analogues but with weaker results on intermediate logics with
the disjunction property in [10], where the following has been proved.

Theorem 4.1 ([10]) For any intermediate logic L with the disjunction property, if

Visser’s rules are admissible for L, then its class of models has the extension property.

Here we find, Theorem 4.6, that in leaving out the disjunction property one can obtain
a similar criterion for the admissibility of V , namely, the offspring property, which
is not only sufficient but also necessary. The offspring property holds for many
intermediate logics, as we will see in Section 5—this in contrast to the extension
property, which only holds for IPC.

Theorem 4.2 (Folklore, proof in [10]) If the class of models of an intermediate

logic has the extension property, it is the logic IPC.

As an aside, let us mention that this implies the following.

Corollary 4.3 If a logic has the disjunction property, not all Visser’s rules are

admissible.

Here we set out to prove that the offspring property is a necessary and sufficient
condition for the admissibility of Visser’s rules, and that the weak extension property
is a necessary and sufficient condition for the admissibility of the restricted Visser
rules. As we will see below, it is not so difficult to show that the conditions are
sufficient. The proofs that they are also necessary are more involved and are based
on the following idea, part of which is already present in [9]. We explain it for the
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case of the weak extension property, as the proof for the offspring property is similar.
In will be shown that when the restricted Visser rules are admissible, the class of all
models of L has the weak extension property. Thus, since we consider the class of
all models, it suffices to show that given a model K of L and nodes k1, . . . , kn in K

distinct from the root, some variant M1 of (6Kki )
′ is a model of L. In order to do

so, we consider the kis as saturated sets xi (namely, as the set of formulas that are
forced at ki ). Then we show that the intersection of these n saturated sets contains
a saturated set x such that there are no saturated sets properly between x and any
xi . If exactly those atoms are forced at the root of (6Kki )

′ that are elements of x ,
then one can show that this model is a model of L. In the case that Visser’s rules
are admissible, one has to repeat the same trick to construct a variant of (M1 + K )′.
The main ingredient of the proof of Theorem 4.6 is Lemma 4.5 which shows the
existence of the mentioned saturated set.

Definition 4.4 A set x is called L-saturated if it does not contain ⊥, is closed under
derivability in L, and x ⊢L A ∨ B implies x ⊢L A or x ⊢L B . A saturated set x is
called a tight predecessor of saturated set x1, . . . , xn if x ⊆ x1 ∩ · · · ∩ xn , and for all
L-saturated sets x ⊂ y there is some i ≤ n such that xi ⊆ y. A node k in a Kripke
model K is called a tight predecessor of the nodes k1, . . . , kn in K , if k 4 ki for all
i , and for all nodes k ≺ l in K there is some i ≤ n such that ki 4 l. Note that in the
canonical model of a logic both definitions of tight predecessor coincide.

Lemma 4.5 Let L be an intermediate logic for which the restricted Visser’s rules

are admissible. Then for all n, for all L-saturated sets x1, . . . , xn for which there is

an L-saturated set x0 ⊆ x1 ∩· · ·∩xn , there exists a tight predecessor x of x1, . . . , xn .

If Visser’s rules are admissible for L, we can moreover construct x in such a way that

there also exists a tight predecessor x ′ of x, x0.

Proof In the proof, saturated means L-saturated, ⊢ stands for ⊢L. Let x0, x1, . . . , xn

be as in the lemma. We first prove the second part of the lemma, that is, when all
Visser’s rules, not only the restricted ones, are admissible. First we construct x , then
x ′. Let

10 = {A | ∃B 6∈ x0 (⊢ A ∨ B)},

11 = {(A → B) | A 6∈ x1 ∩ · · · ∩ xn and B ∈ x1 ∩ · · · ∩ xn}.

Note that 10 ⊆ x0, as x0 is saturated. Consider 1 = 10 ∪ 11. Clearly,
1 ⊆ x1 ∩ · · · ∩ xn . Now we construct a sequence of sets z0 ⊆ z1, . . ., where
z0 = {C | 1 ⊢ C}, such that x will be the union of the zi .

The explanation behind the set’s 1i is as follows. Since x has to be such that we
can construct a tight predecessor x ′ of x, x0, we should at least be able to construct a
saturated set in x ∩ x0. This implies that the following has to hold for x :

⊢

m
∨

i=1

Di ⇒ ∃i ≤ m(Di ∈ x ∩ x0). (2)

Observe that when 10 ⊆ x , this indeed is the case. For assume ⊢
∨m

i=1 Di . If
Di ∈ x0 for all i , then clearly Di ∈ x0 ∩ x for some i , because x is saturated. There-
fore, assume not all Di belong to x0. Note that some Di ∈ x0. W.l.o.g. assume that
there is a number 1 ≤ k < m such that D1, . . . , Dk ∈ x0 and Dk+1, . . . , Dm 6∈ x0.
Whence

∨m
i=k+1 Di 6∈ x0. Thus by the definition of 10,

∨k
i=1 Di belongs to 10,

and thus to x . The saturatedness of x implies that Dh ∈ x for some h ≤ k, which
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proves (2). The set 11 is put in x in order to make x a tight predecessor of the xi .
The exact use of this set will get clear later on in the proof when we prove that for
all x ⊂ y there is some i such that xi ⊆ y.

We proceed with the construction of the zi . Let C0, C1, . . . enumerate all formu-
las, with infinite repetition. Define the property ∗(·) on sets via

∗(z) iff ∀A1, . . . , Am

(

z ⊢

m
∨

i=1

Ai ⇒ ∃i ≤ m (Ai ∈ x1 ∩ . . . ∩ xn)
)

.

Define zi as follows.

zi+1 =















zi if not ∗ (zi ∪ {Ci })
zi ∪ {Ci } if Ci no disjunction and ∗ (zi ∪ {Ci })

zi ∪ {D, Ci } if Ci = D ∨ E, ∗(zi ∪ {Ci }), and ∗ (zi ∪ {D, Ci })

zi ∪ {E, Ci } if Ci = D ∨ E, ∗(zi ∪ {Ci }), and not ∗ (zi ∪ {D, Ci }).

We show that ∗(zi ) holds with induction to i .
For i = 0, assume 1 ⊢

∨m
h=1 Ah . Whence there are k, l ∈ ω, (Bi → Di ) ∈ 11

and E j ∈ 10 such that

⊢

k
∧

i=1

(Bi → Di ) ∧

l
∧

j=1

E j →

m
∨

h=1

Ah .

By assumption there exists for all j ≤ l formulas E ′
j 6∈ x0 such that ⊢ E j ∨ E ′

j .
Thus by elementary logic

⊢
(

k
∧

i=1

(Bi → Di ) →

m
∨

h=1

Ah

)

∨

l
∨

j=1

E ′
j .

Let B =
∧k

i=1(Bi → Di ). As Vkm is admissible for L by Remark 1.1, an application

of Vkm (with
∨l

j=1 E ′
j for C) gives

⊢

k
∨

i=1

(B → Bi ) ∨

m
∨

h=1

(B → Ah) ∨

l
∨

j=1

E ′
j .

As x0 is a saturated set it follows that it contains (B → Bi ) for some i ≤ k, or
(B → Ah) for some h ≤ m, or E ′

j for some j ≤ l. Since the E ′
j do not belong to x0,

only the first two possibilities remain. Since x0 ⊆ x1 ∩ · · · ∩ xn it follows that some
(B → Bi) or some (B → Ah) belongs to x1 ∩ · · · ∩ xn . Since B ∈ x1 ∩ · · · ∩ xn

and Bi 6∈ x1 ∩ · · · ∩ xn , it follows that it has to be one of the (B → Ah). Thus
Ah ∈ x1 ∩ · · · ∩ xn which is what we had to show.

For i > 0, the only nontrivial case is that in which Ci = D ∨ E and
zi+1 = zi ∪ {E, Ci }, as the other cases follow immediately from the induction
hypothesis. If ∗(zi ∪ {E, Ci }) we are done. Therefore, suppose not ∗(zi ∪ {E, Ci }).
Note that not ∗(zi ∪ {D, Ci }), as otherwise zi+1 would have been zi ∪ {D, Ci }.
Therefore there are k, l ∈ ω and F1, . . . , Fl such that F j 6∈ x1 ∩ · · · ∩ xn for all
j ≤ l, and

zi ∪ {D, Ci } ⊢

k
∨

j=1

F j and zi ∪ {E, Ci } ⊢

l
∨

j=k+1

F j .
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But this implies

zi , Ci , D ∨ E ⊢

l
∨

j=1

F j ,

and thus zi , Ci ⊢
∨l

j=1 F j , which contradicts ∗(zi ∪{Ci }). This completes the proof
that for all i , ∗(zi ) holds.

Let x = ∪i zi . We have to show x is a tight predecessor of x1, . . . , xn . For
x ⊆ x1 ∩ · · · ∩ xn , note that zi ⊆ x1 ∩ · · · ∩ xn . We show the saturation of x . If
⊥ ∈ x , then ⊥ ∈ zi for some i . Because ∗(zi ) this implies ⊥ ∈ x1 ∩ · · · ∩ xn ,
contradicting the fact that the xi are saturated. x is closed under derivability because
zi ⊢ A and ∗(zi ) implies ∗(zi ∪ {A}). If x ⊢ A ∨ B , then zi ⊢ A ∨ B for some i .
Thus ∗(zi ∪ {A ∨ B}). The construction of the zi guarantees that either A or B will
be an element of x .

The proof that x is a tight predecessor is finished once we have shown that for all
saturated sets x ⊂ y there is some i ≤ n for which xi ⊆ y. Arguing by contradiction
assume x ⊂ y and xi 6⊆ y for all i ≤ n. For all i ≤ n choose Ai such that Ai ∈ xi\y.
Observe that x cannot be extended to a larger saturated set inside x1 ∩ · · · ∩ xn , that
is, for no saturated set z it holds that x ⊂ z ⊆ x1 ∩ · · · ∩ xn . For if so, there would
be an i such that Ci ∈ z\x . The fact that z is saturated and a subset of x1 ∩ · · · ∩ xn

implies that ∗(z). Thus certainly ∗(zi ∪ {Ci }), since zi ∪ {Ci } ⊆ z, which would
imply Ci ∈ x . As x ⊂ y, this observation gives y 6⊆ x1 ∩ · · · ∩ xn . Thus there is a
formula B ∈ y\(x1 ∩· · · ∩ xn). Hence (B →

∨n
i=1 Ai ) ∈ 1 ⊆ x ⊂ y. Since B ∈ y,

∨n
i=1 Ai ∈ y, contradicting the fact that y is saturated and whence should contain

one of the Ai . This completes the proof that x is a tight predecessor of x1, . . . , xn .
Finally, we have to see that there exists a tight predecessor x ′ of x, x0. We pro-

ceed in a similar way as for the construction of x : we construct a sequence of sets
y0 ⊆ y1 ⊆ y2 · · · , where y0 = {C | 12 ⊢ C}, such that x ′ will be the union of the
yi . Here

12 = {A → B | B ∈ x ∩ x0, A 6∈ x ∩ x0}.

Instead of ∗ we consider the property ⋆:

⋆(y) iff ∀A1, . . . , Am

(

y ⊢

m
∨

i=1

Ai ⇒ ∃i ≤ m (Ai ∈ x ∩ x0)
)

.

We define yi+1 inductively as the zi+1 above but with the property ⋆ instead of ∗:

yi+1 =















yi if not ⋆ (yi ∪ {Ci })
yi ∪ {Ci } if Ci no disjunction and ⋆ (yi ∪ {Ci })

yi ∪ {D, Ci } if Ci = D ∨ E, ⋆(yi ∪ {Ci }) and ⋆ (yi ∪ {D, Ci })

yi ∪ {E, Ci } if Ci = D ∨ E, ⋆(yi ∪ {Ci }) and not ⋆ (zi ∪ {D, Ci }).

Again, we have to show that ⋆(yi ) holds for all i . The induction step is similar as for
the zi . We only treat the case i = 0. Therefore, assume 12 ⊢

∨m
h=1 Ah . Whence

there are k, l ∈ ω, (Bi → Di ) ∈ 12 such that

⊢

k
∧

i=1

(Bi → Di ) →

m
∨

h=1

Ah .
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Let B =
∧k

i=1(Bi → Di ). As Vkm is admissible for L by Remark 1.1, an application
of Vkm (with C empty) gives

⊢

k
∨

i=1

(B → Bi ) ∨

m
∨

h=1

(B → Ah).

By (2) it follows that x ∩ x0 contains (B → Bi ) for some i ≤ k, or (B → Ah) for
some h ≤ m. Since B ∈ x0 ∩ x and Bi 6∈ x0 ∩ x , we have to be in the latter case.
Because B ∈ x ∩ x0, this implies that Ah ∈ x ∩ x0 for some h, which is what we had
to show.

Let x ′ = ∪i yi . The proof that x ′ is a tight predecessor of x, x0 is analogue to the
proof for x above, and therefore omitted. This proves the second part of the lemma.

For the proof of the first part of the lemma, the case that only the restricted Visser’s
rules are admissible, take 1 = 11, then the construction of the tight predecessor is
completely similar to the construction of x above. �

Theorem 4.6 For any intermediate logic L, Visser’s rules are admissible for L if

and only if L has the offspring property.

Proof In the proof we omit reference to L, that is, saturated means L-saturated, ⊢

denote ⊢L and so on. First the direction from right to left. Let U be a class of models
with the offspring property with respect to which L is sound and complete. Let

A =

n
∧

i=1

(Ai → Bi), A′ = An+1 ∨ An+2, B =

n+2
∨

j=1

(A → A j ),

and suppose L ⊢ (A → A′) ∨ C . We have to show that L ⊢ B ∨ C . Argu-
ing by contradiction, assume this is not the case. Then there is a model K ∈ U

with root k0 such that K 6|H B ∨ C . We show that there is a model K ′′ such that
K ′′ 6|H (A → A′) ∨ C . Note that k0 6 B and k0 6 C . Thus there are ki ∈ K such
that ki  A and ki 6 Ai , for all i ≤ n + 2. First suppose all ki are distinct from
the root of K . Then by assumption, there is a variant M1 of (

∑n+2
i=1 Kki )

′ such that
a bounded morphic image M of some variant M0 of (M1 + K )′ is contained in U .
Recall that M and M0 validate the same formulas (Section 2.4). We leave it to the
reader to verify that the root of M1 forces A but not A′. This gives M1 6|H (A → A′).
Whence M0 does not force (A → A′). As it clearly does not force C either, this
gives M0 6|H (A → A′) ∨ C . Thus M 6|H (A → A′) ∨ C . Since M ∈ U , this implies
L 6⊢ (A → A′) ∨ C . If one of the ki is the root of K , say k j , this implies that A is
forced at the root, but as none of the Ai are forced at the root, A′ is not forced there
either. Thus k j 6|H (A → A′). Since also k j 6 C , K 6|H (A → A′)∨ C follows. This
also implies L 6⊢ (A → A′) ∨ C .

The direction from left to right. We show that the class of all models of L has
the offspring property. This will prove that L has the offspring property. Consider a
model K of L and nodes k1, . . . , kn in K that are distinct from the root. Let k0 be the
root of K , let Ki be Kki and xi = {A | ki  A}. Note that the xi are saturated sets
such that x0 ⊆ x1 ∩ · · · ∩ xn . By Lemma 4.5 there exist saturated sets x, x ′ such that
x is a tight predeccessor of x1, . . . , xn and x ′ is a tight predeccessor of x, x0. This
means that x ⊆ x1 ∩ · · · ∩ xn and x ′ ⊆ x ∩ x0, and that for all saturated sets y

(

x ⊂ y ⇒ ∃i ≤ n(xi ⊆ y)
)

∧
(

x ′ ⊂ y ⇒ (x0 ⊆ y ∨ x ⊆ y)
)

. (3)
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We first define a variant K ′ of (
∑

Ki )
′ by defining for the root k ′ of (

∑

Ki )
′,

k ′  p if and only if p ∈ x , for atoms p. Then we define a variant K ′′ of (K ′ + K )′

by defining for the root k ′′ of K ′′, k ′′  p if and only if p ∈ x ′. Note that the fact
that x ′ ⊆ x ∩ x0 and x ⊆ x1 ∩ · · · ∩ xn guarantees the upward persistency in the
model. To show that this is a model of L it suffices to show that for all formulas A

k ′  A iff A ∈ x k ′′  A iff A ∈ x ′. (4)

We use formula induction, and only treat implication, for the case k ′, x . Consider
A = (B → C). If (B → C) ∈ x then k ′  (C → D) follows easily. For the other
direction, assume (B → C) 6∈ x . This implies that there is a saturated set y ⊇ x

such that B ∈ y and C 6∈ y. By (3), x = y or xi ⊆ y for some i = 1, . . . , n. In the
first case the induction hypothesis gives k ′  B and k ′ 6 C , thus k ′ 6 (B → C). In
the latter case (B → C) 6∈ xi , and thus ki 6 (B → C). Hence k ′ 6 (B → C). This
proves (4), and thereby the theorem. �

Theorem 4.7 For any intermediate logic L, the restricted Visser rules are admissi-

ble for L if and only if L has the weak extension property.

Proof Similar as the proof above, using the first part of Lemma 4.5 instead of the
second part. �

From the Theorem 4.6 and 4.7 we also derive the following corollary.

Corollary 4.8 For any intermediate logic L, the (restricted) Visser rules are admis-

sible for L if and only if the class of all models of L has the offspring (weak extension)

property. Whence L has the offspring (weak extension) property if and only if, and

only the class of all models of L has the offspring (weak extension) property.

Proof If a logic has the offspring property, then Visser’s rules are admissible by
Theorem 4.6. As the proof of this theorem shows, this again implies that the class
of all models of L has the offspring property. Similar reasoning applies to the weak
extension property. �

5 Intermediate Logics

In this section we apply the results of the previous theorems to the following specific
intermediate logics. When we say “axiomatized by . . . ” we mean “axiomatized
over IPC by . . . ”. For a class of frames F , L is called the logic of the frames F

when L is sound and complete with respect to F .

Bdn The logic of frames of depth at most n. Bd1 is axiomatized by
bd1 = p1 ∨ ¬p1, and Bdn+1 by bdn+1 = (pn+1 ∨ (pn+1 → bdn))

[3].

Dn The Gabbay-de Jongh logics [5], axiomatized by the following scheme:
∧n+1

i=0 ((Ai →
∨

j 6=i A j ) →
∨

j 6=i A j ) →
∨n+1

i=0 Ai . Dn is complete
with respect to the class of finite trees in which every point has at most
(n + 1) immediate successors.

Gk The Gödel logics, first introduced by Gödel [8]. They are extensions of
LC axiomatized by A1 ∨ (A1 → A2) ∨ · · · ∨ (A1 ∧ · · · ∧ Ak−1 → Ak).
Gk is the logic of the linearly ordered Kripke frames with at most k − 1
nodes [1].
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KC De Morgan logic (also called Jankov logic), axiomatized by ¬A∨¬¬A.
The logic of the frames with one maximal node.

KP The logic axiomatized by (¬A → B∨C) →
(

(¬A → B)∨(¬A → C)
)

,
called Kreisel-Putnam logic. It constituted the first counterexample
to Łukasiewicz’s conjecture that IPC is the greatest intermediate logic
with the disjunction property [12].

LC Gödel-Dummett logic [4], the logic of the linear frames. It is axioma-
tized by the scheme (A → B) ∨ (B → A).

Mn The logic of frames with at most n maximal nodes. Note that M1 = KC.

Sm The greatest intermediate logic properly included in classical logic. It
is axiomatized by

(

(A → B) ∨ (B → A)
)

∧ (A ∨ (A → B ∨ ¬B)) and
it is complete with respect to frames of at most 2 nodes [3].

V The logic axiomatized by V →
1 , that is, by the implication corresponding

to the rule V1:
(

(A1 → B) → A2 ∨ A3
)

→
∨3

i=1

(

(A1 → B) → Ai

)

.

Theorem 5.1 Visser’s rules form a basis for the admissible rules of the logics KC

and Mn. Visser’s rules are not derivable in these logics.

Proof The first part is proved by showing that the classes of models based on the
frames for these logics as mentioned in the list above, have the offspring property.
Then apply Theorem 4.6. To see that the logics have the offspring property, the
following claim suffices.

Claim 5.2 Let W be a class of frames, and let U be the class of models based on

frames in W. U has the offspring property if for every F ∈ W, for all k1, . . . , kn in

F distinct from the root k0, the frame that consists of attaching a new node l1 below

k1, . . . , kn and a new node l0 below l1, k0, also belongs to W.

Proof of Claim Left to the reader. �

The second part of the theorem can be shown by constructing appropriate counter-
models to the formulas V →

n , which we leave to the reader. �

Note that all the logics in Theorem 5.1 are also examples of logics which have the
weak extension property, but not the extension property, as they do not have the
disjunction property (see Fact 2.2). That they do not have the disjunction property
follows from the fact that the only logic with the disjunction property for which all
Visser’s rules are admissible is IPC (recall Corollary 4.3).

Theorem 5.3 Visser’s rules are derivable in Bd1, Gk, LC, Sm, and V. Whence these

logics do not have nonderivable admissible rules.

Proof The first four logics are complete with respect to classes that contain only
models with linear frames. It is easy to see that in any linear model the im-
plications V →

n are valid (for the notation R→, see Section 2.1). In fact, even
(A → B ∨ C) → (A → B) ∨ (A → C) holds in every linear model. Then apply
Corollary 3.11. For V one uses the fact that all V →

n are derivable from V →
1 , which

was first observed in [13]. �
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Theorem 5.4 For Bdn, n ≥ 2, the restricted Visser rules are admissible but not

derivable.

Proof Use Theorem 4.7 by showing that the class of models of depth n has the weak
extension property. To see that the restricted Visser rules are not derivable it suffices
to construct a countermodel of depth 2 to V →

1 , which is left to the reader. �

Theorem 5.5 V1 is not admissible for KP. For the logics Dn (n ≥ 1), Vn+1 is

admissible, while Vn+2 is not.

Proof The part about the Dns is proved in [10]. For KP, let X = (¬p → q ∨ r)

and Y = (¬p → q) ∨ (¬p → r). Then (X → Y ) is derivable in KP. If V1 would
be admissible, then KP would derive

(

X → (¬p → q)
)

∨
(

X → (¬p → r)
)

∨ (X → ¬p).

Since KP has the disjunction property, this would imply that at least one of
(

X → (¬p → q)
)

,
(

X → (¬p → r)
)

, or (X → ¬p) is derivable in KP.
However, these formulas are not even derivable in classical logic. �
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