
Notre Dame Journal of Formal Logic

Volume 46, Number 1, 2005

Program Size Complexity for Possibly
Infinite Computations

Verónica Becher, Santiago Figueira,
André Nies, and Silvana Picchi

Abstract We define a program size complexity function H∞ as a variant of

the prefix-free Kolmogorov complexity, based on Turing monotone machines

performing possibly unending computations. We consider definitions of ran-

domness and triviality for sequences in {0, 1}ω relative to the H∞ complexity.

We prove that the classes of Martin-Löf random sequences and H∞-random se-

quences coincide and that the H∞-trivial sequences are exactly the recursive

ones. We also study some properties of H∞ and compare it with other complex-

ity functions. In particular, H∞ is different from H A, the prefix-free complexity

of monotone machines with oracle A.

1 Introduction

We consider monotone Turing machines (a one-way read-only input tape and a one-

way write-only output tape) performing possibly infinite computations, and we de-

fine a program size complexity function H ∞ : {0, 1}∗ → N as a variant of the

classical Kolmogorov complexity: given a universal monotone machine U, for any

string x ∈ {0, 1}∗, H ∞(x) is the length of a shortest string p ∈ {0, 1}∗ read by U,

which produces x via a possibly infinite computation (either a halting or a nonhalting

computation), having read exactly p from the input.

The classical prefix-free complexity H (Chaitin [2], Levin [9]) is an upper bound

of the function H ∞ (up to an additive constant) since the definition of H ∞ does not

require that the machine U halts. We prove that H ∞ differs from H in that it has no

monotone decreasing recursive approximation and it is not subadditive.

The complexity H ∞ is closely related with the monotone complexity Hm, inde-

pendently introduced by Zvonkin and Levin [15] and Schnorr [12] (see Uspensky

and Shen [14] and Li and Vitanyi [10] for historical details and differences among

Received July 23, 2003; accepted April 28, 2004; printed January 25, 2005
2000 Mathematics Subject Classification: Primary, 68Q30, 68Q05

Keywords: program size complexity, Kolmogorov complexity, infinite computations

c©2005 University of Notre Dame

51

http://www.nd.edu/~ndjfl
http://www.nd.edu

52 Becher, Figueira, Nies, and Picchi

various monotone complexities, and see [3] for a closely related complexity of sets

introduced by Chaitin). Levin defines Hm(x) as the length of the shortest halting

program that provided with n (0 ≤ n ≤ |x |), outputs x↾n. Equivalently Hm(x) can

be defined as the least number of bits read by a monotone machine U which via a

possibly infinite computation produces any finite or infinite extension of x .

Hm is a lower bound of H ∞ (up to an additive constant) since the definition of

H ∞ imposes that the machine U reads exactly the input p and produces exactly the

output x . Every recursive A ∈ {0, 1}ω is the output of some monotone machine with

no input, so there is some c such that ∀n Hm(A↾n) ≤ c. Moreover, there exists n0

such that ∀n, m ≥ n0, Hm(A↾n) = Hm(A↾m). We show this is not the case with

H ∞, since for every infinite B = {b1, b2, . . .} ⊆ {0, 1}∗, limn→∞ H ∞(bn) = ∞.

This is also a property of the classical prefix-free complexity H , and we consider it

as a decisive property that distinguishes H ∞ from Hm.

The prefix-free complexity of a universal machine with oracle ∅
′, the function

H ∅
′
, is also a lower bound of H ∞ (up to an additive constant). We prove that for

infinitely many strings x , the complexities H (x), H ∞(x), and H ∅
′
(x) separate as

much as we want. This already proves that these three complexities are different.

In addition we show that for every oracle A, H ∞ differs from H A, the prefix-free

complexity of a universal machine with oracle A.

For sequences in {0, 1}ω we consider definitions of randomness and triviality

based on the H ∞ complexity. A sequence is H ∞-random if its initial segments

have maximal H ∞ complexity. Since Hm gives a lower bound of H ∞ and Hm-

randomness coincides with Martin-Löf randomness (Levin [8]), the classes of

Martin-Löf random, H ∞-random, and Hm-random coincide.

We argue for a definition of H ∞-trivial sequences as those whose initial segments

have minimal H ∞ complexity. While every recursive A ∈ {0, 1}ω is both H -trivial

and H ∞-trivial, we show that the class of H ∞-trivial sequences is strictly included

in the class of H -trivial sequences. Moreover, in Theorem 5.6, the main result of the

paper, we characterize the recursive sequences as those which are H ∞-trivial.

2 Definitions

N is the set of natural numbers, and we work with the binary alphabet {0, 1}. As

usual, a string is a finite sequence of elements of {0, 1}, λ is the empty string, and

{0, 1}∗ is the set of all strings. {0, 1}ω is the set of all infinite sequences of {0, 1}, that

is, the Cantor space, and {0, 1}≤ω = {0, 1}∗ ∪ {0, 1}ω is the set of all finite or infinite

sequences of {0, 1}.

For s ∈ {0, 1}∗, |s| denotes the length of s. If s ∈ {0, 1}∗ and A ∈ {0, 1}ω we

denote by s↾n the prefix of s with length min{n, |s|} and by A↾n the length n prefix

of the infinite sequence A. We consider the prefix ordering � over {0, 1}∗, that is,

for s, t ∈ {0, 1}∗ we write s � t if s is a prefix of t . We assume the recursive

bijection string : N → {0, 1}∗ such that string(i) is the i th string in the length and

lexicographic order over {0, 1}∗.

If f is any partial map then, as usual, we write f (p)↓ when it is defined and

f (p)↑ otherwise.

2.1 Possibly infinite computations on monotone machines A monotone machine

is a Turing machine with a one-way read-only input tape, some work tapes, and a

Complexity for Possibly Infinite Computations 53

one-way write-only output tape. The input tape contains a first dummy cell (rep-

resenting the empty input) and then a one-way infinite sequence of 0s and 1s, and

initially the input head scans the leftmost dummy cell. The output tape is written

one symbol of {0, 1} at a time (the output grows with respect to the prefix ordering

in {0, 1}∗ as the computational time increases).

A possibly infinite computation is either a halting or a nonhalting computation.

If the machine halts, the output of the computation is the finite string written on the

output tape. Else, the output is either a finite string or an infinite sequence written

on the output tape as a result of a never ending process. This leads us to consider

{0, 1}≤ω as the output space.

In this work we restrict ourselves to possibly infinite computations on monotone

machines which read just finitely many symbols from the input tape.

Definition 2.1 Let M be a monotone machine. M(p)[t] is the current output of

M on input p at stage t if it has not read beyond the end of p. Otherwise, M(p)[t]↑.

Notice that M(p)[t] does not require that the computation on input p halts.

Remark 2.2

1. If M(p)[t]↑ then M(q)[u]↑ for all q � p and u ≥ t .

2. If M(p)[t]↓ then M(q)[u]↓ for any q � p and u ≤ t . Also, if at stage

t , M reaches a halting state without having read beyond the end of p, then

M(p)[u]↓ = M(p)[t] for all u ≥ t .

3. Since M is monotone, M(p)[t] � M(p)[t + 1], in case M(p)[t + 1]↓.

4. M(p)[t] has recursive domain.

Definition 2.3 Let M be a monotone machine.

1. The input/output behavior of M for halting computations is the partial recur-

sive map M : {0, 1}∗ → {0, 1}∗ given by the usual computation of M, that is,

M(p)↓ if and only if M enters into a halting state on input p without reading

beyond p. If M(p)↓ then M(p) = M(p)[t] for some stage t at which M

entered a halting state.

2. The input/output behavior of M for possibly infinite computations is the map

M∞ : {0, 1}∗ → {0, 1}≤ω given by M∞(p) = limt→∞ M(p)[t].

Proposition 2.4

1. domain(M) is closed under extensions and its syntactical complexity is 60
1 ;

2. domain(M∞) is closed under extensions and its syntactical complexity is 50
1;

3. M∞ extends M.

Proof

1. is trivial.

2. M∞(p)↓ if and only if ∀t M on input p does not read p0 and does not read

p1. Clearly, domain(M∞) is closed under extensions since if M∞(p)↓ then

M∞(q)↓ = M∞(p) for every q � p.

3. Since the machine M is not required to halt, M∞ extends M . �

Remark 2.5 An alternative definition of the functions M and M∞ would be to

consider them with prefix-free domains (instead of closed under extensions):

- M(p)↓ if and only if at some stage t M enters a halting state having read

exactly p. If M(p)↓ then its value is M(p)[t] for such stage t .

54 Becher, Figueira, Nies, and Picchi

- M∞(p)↓ if and only if ∃t at which M has read exactly p and for every t ′ M

does not read p0 nor p1. If M∞(p)↓ then its value is limt→∞ M(p)[t].

We fix an effective enumeration of all tables of instructions. This gives an effective

(Mi)i∈N. We also fix the usual monotone universal machine U, which defines the

functions U(0i 1 p) = Mi (p) and U∞(0i 1 p) = M∞
i (p) for halting and possibly

infinite computations, respectively. As usual, i + 1 is the coding constant of Mi .

Recall that U∞ is an extension of U . We also fix U
∅

′
a monotone universal machine

with an oracle for ∅
′.

By Shoenfield’s Limit Lemma every M∞ : {0, 1}∗ → {0, 1}∗ is recursive in

∅
′. However, possibly infinite computations on monotone machines cannot compute

all ∅
′-recursive functions. For instance, the characteristic function of the halting

problem cannot be computed in the limit by a monotone machine. In contrast, the

Busy Beaver function in unary notation bb : N → 1∗:

bb(n) =
the maximum number of 1s produced by any Turing machine

with n states which halts with no input

is just ∅
′-recursive and bb(n) is the output of a nonhalting computation which on

input n, simulates every Turing machine with n states and for each one that halts

updates, if necessary, the output with more 1s.

2.2 Program size complexities on monotone machines Let M be a monotone

machine and M , M∞ the respective maps for the input/output behavior of M for

halting computations and possibly infinite computations (Definition 2.3). We denote

the usual prefix-free complexity ([2], [9], Gacs [7]) for M by HM : {0, 1}∗ → N:

HM(x) =

{
min{|p| : M(p) = x} if x is in the range of M

∞ otherwise.

Definition 2.6 H ∞
M

: {0, 1}≤ω → N is the program size complexity for functions

M∞.

H ∞
M

(x) =

{
min{|p| : M∞(p) = x} if x is in the range of M∞

∞ otherwise.

For U we drop subindexes and we simply write H and H ∞. The Invariance Theorem

holds for H ∞:

∀ monotone machine M ∃c ∀s ∈ {0, 1}≤ω H ∞(s) ≤ H ∞
M

(s) + c.

The complexity function H ∞ was first introduced in Becher et al. [1] without a de-

tailed study of its properties. Notice that if we take monotone machines M according

to Remark 2.5 instead of Definition 2.3, we obtain the same complexity functions

HM and H ∞
M

.

In this work we only consider the H ∞ complexity of finite strings, that is, we

restrict our attention to H ∞ : {0, 1}∗ → N. We will compare H ∞ with these other

complexity functions:

H A : {0, 1}∗ → N is the program size complexity function for U
A, a monotone

universal machine with oracle A. We pay special attention to A = ∅
′.

Hm : {0, 1}≤ω → N (see [15]), where HmM(x) = min{|p| : M∞(p) � x} is the

monotone complexity function for a monotone machine M and, as usual, for

U we simply write Hm.

We mention some known results that will be used later.

Complexity for Possibly Infinite Computations 55

Proposition 2.7 (For items 1 and 2 see [2], for item 3 see [1].)

1. ∀s ∈ {0, 1}∗ H (s) ≤ |s| + H (|s|) + O(1);

2. ∀n ∃s ∈ {0, 1}∗ of length n such that

(a) H (s) ≥ n,

(b) H ∅
′
(s) ≥ n;

3. ∀s ∈ {0, 1}∗ H ∅
′
(s) < H ∞(s) + O(1) and H ∞(s) < H (s) + O(1).

3 H
∞ Is Different From H

The following properties of H ∞ are in the spirit of those of H .

Proposition 3.1 For all strings s and t,

1. H (s) ≤ H ∞(s) + H (|s|) + O(1),

2. #{s ∈ {0, 1}∗ : H ∞(s) ≤ n} < 2n+1,

3. H ∞(ts) ≤ H ∞(s) + H (t) + O(1),

4. H ∞(s) ≤ H ∞(st) + H (|t|) + O(1),

5. H ∞(s) ≤ H ∞(st) + H ∞(|s|) + O(1).

Proof

1. Let p, q ∈ {0, 1}∗ such that U∞(p) = s and U(q) = |s|. Then there is

a machine that first simulates U(q) to obtain |s|, then starts a simulation of

U∞(p) writing its output on the output tape, until it has written |s| symbols,

and then halts.

2. There are at most 2n+1 − 1 strings of length ≤ n.

3. Let p, q ∈ {0, 1}∗ such that U∞(p) = s and U(q) = t . Then there is a

machine that first simulates U(q) until it halts and prints U(q) on the output

tape. Then it starts a simulation of U∞(p) writing its output on the output

tape.

4. Let p, q ∈ {0, 1}∗ such that U∞(p) = st and U(q) = |t|. Then there is a

machine that first simulates U(q) until it halts to obtain |t|. Then it starts a

simulation of U∞(p) such that at each stage n of the simulation it writes the

symbols needed to leave U(p)[n]↾(|U(p)[n]| − |t|) on the output tape.

5. Consider the following monotone machine:

t := 1; v := λ; w := λ

repeat

if U(v)[t] asks for reading then append to v the next bit in the input

if U(w)[t] asks for reading then append to w the next bit in the input

extend the actual output to U(w)[t]↾(U(v)[t])

t := t + 1

If p and q are shortest programs such that U∞(p) = |s| and U∞(q) = st ,

respectively, then we can interleave p and q in a way such that at each stage

t , v � p and w � q (notice that eventually v = p and w = q). Thus, this

machine will compute s and will never read more than H ∞(st)+H ∞(|s|)

bits. �

H is recursively approximable from above, but H ∞ is not.

56 Becher, Figueira, Nies, and Picchi

Proposition 3.2 There is no effective decreasing approximation of H ∞.

Proof Suppose there is a recursive function h : {0, 1}∗×N → N such that for every

string s, limt→∞ h(s, t) = H ∞(s) and for all t ∈ N, h(s, t) ≥ h(s, t + 1). We write

ht (s) for h(s, t). Consider the monotone machine M with coding constant d given

by the Recursion Theorem, which on input p does the following:

t := 1; print 0

repeat forever

n := number of bits read by U(p)[t]

for each string s not yet printed, |s| ≤ t and ht (s) ≤ n + d

print s

t := t + 1

Let p be a program such that U∞(p) = k and |p| = H ∞(k). Notice that, as t → ∞,

the number of bits read by U(p)[t] goes to |p| = H ∞(k). Let t0 be such that for

all t ≥ t0, U(p)[t] reads no more from the input. Since there are only finitely

many strings s such that H ∞(s) ≤ H ∞(k) + d , there is a t1 ≥ t0 such that for

all t ≥ t1 and for all those strings s, ht (s) = H ∞(s). Hence, every string s with

H ∞(s) ≤ H ∞(k) + d will be printed.

Let z = M∞(p). On one hand, we have H ∞(z) ≤ |p| + d = H ∞(k) + d .

On the other hand, by the construction of M, z cannot be the output of a pro-

gram of length ≤ H ∞(k) + d (because z is different from each string s such that

H ∞(s) ≤ H ∞(k) + d). So it must be that H ∞(z) > H ∞(k) + d , a contradic-

tion. �

The following lemma states a critical property that distinguishes H ∞ from H . It

implies that H ∞ is not subadditive, that is, it is not the case that H ∞(st) ≤ H ∞(s)+

H ∞(t)+O(1). It also implies that H ∞ is not invariant under recursive permutations

{0, 1}∗ → {0, 1}∗.

Lemma 3.3 For every total recursive function f there is a natural k such that

H ∞(0k1) > f (H ∞(0k)).

Proof Let f be any recursive function and M the following monotone machine

with coding constant d given by the Recursion Theorem:

t := 1

do forever

for each p such that |p| ≤ max{ f (i) : 0 ≤ i ≤ d}

if U(p)[t] = 0 j 1 then

print enough 0s to leave at least 0 j+1 on the output tape

t := t + 1

Let N = max{ f (i) : 0 ≤ i ≤ d}. We claim there is a k such that M∞(λ) = 0k .

Since there are only finitely many programs of length less than or equal to N which

output a string of the form 0 j 1 for some j , then there is some stage at which M has

written 0k , with k greater than all such j ’s, and then it prints nothing else. Therefore,

there is no program p with |p| ≤ N such that U∞(p) = 0k1.

Complexity for Possibly Infinite Computations 57

If M∞(λ) = 0k then H ∞(0k) ≤ d . So, f (H ∞(0k)) ≤ N . Also, for this k,

there is no program of length ≤ N that outputs 0k1 and thus H ∞(0k1) > N . Hence,

H ∞(0k1) > f (H ∞(0k)). �

Note that H (0k) = H (0k1) = H ∞(0k1) up to additive constants, so the above

lemma gives an example where H ∞ is much smaller than H .

Proposition 3.4

1. H ∞ is not subadditive.

2. It is not the case that for every recursive one-one g : {0, 1}∗ → {0, 1}∗

∃c ∀s |H ∞(g(s)) − H ∞(s)| ≤ c.

Proof

1. Let f be the recursive injection f (n) = n + c. By Lemma 3.3 there is k such

that H ∞(0k1) > H ∞(0k) + c. Since the last inequality holds for every c, it

is not true that H ∞(0k1) ≤ H ∞(0k) + O(1).

2. It is immediate from Lemma 3.3. �

It is known that the complexity H is smooth in the length and lexicographic order

over {0, 1}∗ in the sense that |H (string(n)) − H (string(n + 1))| = O(1). However,

this is not the case for H ∞.

Proposition 3.5

1. H ∞ is not smooth in the length and lexicographical order over {0, 1}∗.

2. ∀n |H ∞(string(n)) − H ∞(string(n + 1))| ≤ H (|string(n)|) + O(1).

Proof

1. Notice that ∀n > 1, H ∞(0n1) ≤ H ∞(0n−11) + O(1), because if U∞(p) =

0n−11 then there is a machine that first writes a 0 on the output tape and

then simulates U∞(p). By Lemma 3.3, for each c there is an n such

that H ∞(0n1) > H ∞(0n) + c. Joining the two inequalities, we obtain

∀c ∃n H ∞(0n−11) > H ∞(0n)+c. Since string−1(0n−11) = string−1(0n)+1,

H ∞ is not smooth.

2. Consider the following monotone machine M with input pq:

obtain y = U(p)

simulate z = U∞(q) till it outputs y bits

write string(string−1(z) + 1)

Let p, q ∈ {0, 1}∗ such that U(p) = |string(n)| and U∞(q) = string(n).

Then, M∞(pq) = string(n + 1) and

H ∞(string(n + 1)) ≤ H ∞(string(n)) + H (|string(n)|) + O(1).

Similarly, if M, instead of writing string(string−1(z) + 1), writes

string(string−1(z) − 1), we conclude

H ∞(string(n)) ≤ H ∞(string(n + 1)) + H (|string(n + 1)|) + O(1).

Since |H (|string(n)|) − H (|string(n + 1)|)| = O(1), it follows that

|H ∞(string(n)) − H ∞(string(n + 1))| ≤ H (|string(n)|) + O(1).

�

58 Becher, Figueira, Nies, and Picchi

4 H
∞ is Different From H

A for Every Oracle A

Item 3 of Proposition 2.7 states that H ∞ is between H and H ∅
′
. The following

result shows that H ∞ is really strictly in between them.

Proposition 4.1 For every c there is a string s ∈ {0, 1}∗ such that

H ∅
′

(s) + c < H ∞(s) < H (s) − c.

Proof Let un = min{s ∈ {0, 1}n : H (s) ≥ n} and let A = {a0, a1, . . .} be any

infinite r.e. set and consider a machine M which on input i does the following:

j := 0

repeat

write a j

find a program p, |p| ≤ 3i , such that U(p) = a j

j := j + 1

M∞(i) outputs the string vi = a0a1 . . . aki , where H (aki) > 3i and for all z,

0 ≤ z < ki we have H (az) ≤ 3i . We define wi = uivi . Let’s see that both

H ∞(wi) − H ∅
′
(wi) and H (wi) − H ∞(wi) grow arbitrarily.

On one hand, we can construct a machine which on input i and p executes

U∞(p) till it outputs i bits and then halts. Since the first i bits of wi are ui and

H (i) ≤ 2 |i | + O(1), we have i ≤ H (ui) ≤ H ∞(wi) + 2 |i | + O(1). But with the

help of the ∅
′-oracle we can compute wi from i , so H ∅

′
(wi) ≤ 2 |i | + O(1). Thus

we have H ∞(wi) − H ∅
′
(wi) ≥ i − 4 |i | − O(1).

On the other hand, given i and wi , we can effectively compute aki . Hence, ∀i we

have 3i < H (aki) ≤ H (wi)+2 |i |+O(1). Also, given ui , we can compute wi in the

limit using the idea of machine M, and hence H ∞(wi) ≤ 2 |ui |+O(1) = 2i +O(1).

Then, for all i

H (wi) − H ∞(wi) > i − 2 |i | − O(1). �

Not only H ∞ is different from H ∅
′
but it differs from H A (the prefix-free complex-

ity of a universal monotone machine with oracle A), for every A.

Theorem 4.2 There is no oracle A such that
∣∣H ∞ − H A

∣∣ ≤ O(1).

Proof Immediate from Lemma 3.3 and from the standard result that for all A, H A

is subadditive so, in particular, for every k, H A(0k1) ≤ H A(0k) + O(1). �

5 H
∞ and the Cantor Space

The advantage of H ∞ over H can be seen along the initial segments of every recur-

sive sequence: if A ∈ {0, 1}ω is recursive then there are infinitely many n’s such that

H (A↾n) − H ∞(A↾n) > c, for an arbitrary c.

Proposition 5.1 Let A ∈ {0, 1}ω be a recursive sequence. Then

1. lim supn→∞ H (A↾n) − H ∞(A↾n) = ∞;

2. lim supn→∞ H ∞(A↾n) − Hm(A↾n) = ∞.

Complexity for Possibly Infinite Computations 59

Proof

1. Let A(n) be the nth bit of A. Let’s consider the following monotone machine

M with input p:

obtain n := U(p)

write A↾(string−1(0n) − 1)

for s := 0n to 1n in lexicographic order

write A(string−1(s))

search for a program p such that |p| < n and U(p) = s

If U(p)=n, then M∞(p) outputs A↾kn for some kn such that 2n ≤kn <2n+1,

since for all n there is a string of length n with H -complexity greater than

or equal to n. Let us fix n. On one hand, H ∞(A↾kn) ≤ H (n) + O(1). On

the other, H (A↾kn) ≥ n + O(1), because we can compute the first string in

the lexicographic order with H -complexity ≥ n from a program for A↾kn .

Hence, for each n, H (A↾kn) − H ∞(A↾kn) ≥ n − H (n) + O(1).

2. Trivial because for each recursive sequence A there is a constant c such that

Hm(A↾n) ≤ c and limn→∞ H ∞(B↾n) = ∞ for every B ∈ {0, 1}ω. �

5.1 H-triviality and H
∞-triviality There is a standard convention to use H with

arguments in N. That is, for any n ∈ N, H (n) is written instead of H (f (n)) where

f is some particular representation of natural numbers on {0, 1}∗. This convention

makes sense because H is invariant (up to a constant) for any recursive representation

of natural numbers.

H -triviality has been defined as follows (see Downey et al. [5]): A ∈ {0, 1}ω is

H -trivial if and only if there is a constant c such that for all n, H (A↾n) ≤ H (n)+ c.

The idea is that H -trivial sequences are exactly those whose initial segments have

minimal H -complexity. Considering the above convention, A is H -trivial if and only

if ∃c ∀n H (A↾n) ≤ H (0n) + c.

In general H ∞ is not invariant for recursive representations of N. We propose the

following definition that insures that recursive sequences are H ∞-trivial.

Definition 5.2 A ∈ {0, 1}ω is H ∞-trivial if and only if ∃c ∀n H ∞(A↾n)

≤ H ∞(0n) + c.

Our choice of the right-hand side of the above definition is supported by the follow-

ing proposition (see Ferbus-Zanda and Grigorieff [6] for further discussion).

Proposition 5.3 Let f : N → {0, 1}∗ be recursive and strictly increasing with

respect to the length and lexicographical order over {0, 1}∗. Then

∀n H ∞(0n) ≤ H ∞(f (n)) + O(1).

Proof Notice that, since f is strictly increasing, f has recursive range. We con-

struct a monotone machine M with input p:

t := 0

repeat

if U(p)[t]↓ is in the range of f then n := f −1(U(p)[t])

print the needed 0’s to leave 0n on the output tape

t := t + 1

60 Becher, Figueira, Nies, and Picchi

Since f is increasing in the length and lexicographic order over {0, 1}∗, if p is a

program for U such that U∞(p) = f (n), then M∞(p) = 0n . �

Chaitin observed that every recursive A ∈ {0, 1}ω is H -trivial (Chaitin [4]) and that

H -trivial sequences are 10
2. However, H -triviality does not characterize the class

10
1 of recursive sequences: Solovay [13] constructed a 10

2 sequence which is H -

trivial but not recursive (see also [5] for the construction of a strongly computably

enumerable real with the same properties). Our next result implies that H ∞-trivial

sequences are 10
2, and Theorem 5.6 characterizes 10

1 as the class of H ∞-trivial

sequences.

Theorem 5.4 Suppose that A is a sequence such that, for some b ∈ N,

∀n H ∞(A↾n) ≤ H (n) + b. Then A is H -trivial.

Proof An r.e. set W ⊆ N × 2<ω is a Kraft-Chaitin set (KC-set) if

∑
〈r,y〉∈W 2−r ≤ 1.

For any E ⊆ W , let the weight of E be wt(E) =
∑

{2−r : 〈r, n〉 ∈ E}.

The pairs enumerated into such a set W are called axioms. Chaitin proved

that from a Kraft-Chaitin set W one may obtain a prefix machine Md such that

∀〈r, y〉 ∈ W ∃w (|w| = r ∧ Md (w) = y).

The idea is to define a 10
2 tree T such that A ∈ [T], and a KC-set W showing that

each path of T is H -trivial. For x ∈ {0, 1}∗ and t ∈ N, let

H ∞(x)[t] = min{|p| : U(p)[t] = x} and

H (x)[t] = min{|p| : U(p)[t] = x and U(p) halts in at most t steps}

be effective approximations of H ∞ and H . Notice that for all x ∈ {0, 1}∗,

limt→∞ H ∞(x)[t] = H ∞(x) and limt→∞ H (x)[t] = H (x).

Given s, let

Ts = {γ : |γ | < s ∧ ∀m ≤ |γ | H ∞(γ ↾m)[s] ≤ H (m)[s] + b},

then (Ts)s∈N is an effective approximation of a 10
2 tree T , and [T] is the class of

sequences A satisfying ∀n H ∞(A↾n) ≤ H (n) + b. Let r = H (|γ |)[s]. We define a

KC-set W as follows: if γ ∈ Ts and either there is u < s greatest such that γ ∈ Tu

and r < H (|γ |)[u], or γ /∈ Tu for all u < s, then put an axiom 〈r + b + 1, γ 〉 into

W .

Once we show that W is indeed a KC-set, we are done: by Chaitin’s result,

there is d such that 〈k, γ 〉 ∈ W implies H (γ) ≤ k + d . Thus, if A ∈ [T], then

H (γ) ≤ H (|γ |) + b + d + 1 for each initial segment γ of A.

To show that W is a KC-set, define strings Ds(γ) as follows. When we put an

axiom 〈r + b + 1, γ 〉 into W at stage s,

- let Ds(γ) be a shortest p such that U(p)[s] = γ (recall from Definition 2.1

that it is not required that U halts at stage s),

- if β ≺ γ , we haven’t defined Ds(β) yet and Ds−1(β) is defined as a prefix of

p, then let Ds(β) be a shortest q such that U(q)[s] = β.

Complexity for Possibly Infinite Computations 61

In all other cases, if Ds−1(β) is defined then we let Ds(β) = Ds−1(β). We claim

that, for each s, all the strings Ds(β) are pairwise incompatible (i.e., they form a

prefix-free set). For suppose that p ≺ q , where p = Ds(β) was defined at stage

u ≤ s, and q = Ds(γ) was defined at stage t ≤ s. Thus, β = U(p)[u] and

γ = U(q)[t]. By the definition of monotone machines and the minimality of q ,

u < t and β ≺ γ . But then, at stage t we would redefine Du(β), a contradiction.

This shows the claim.

If we put an axiom 〈r + b + 1, γ 〉 into W at stage t , then for all s ≥ t , Ds(γ)

is defined and has length at most H (|γ |)[t] + b (by the definition of the trees

Ts). Thus, if W̃s is the set of axioms 〈k, γ 〉 in Ws where k is minimal for γ , then

wt(W̃s) ≤
∑

γ 2−|Ds(γ)|−1 ≤ 1/2 by the claim above. Hence wt(Ws) ≤ 1 as all

axioms weigh at most twice as much as the minimal ones, and Ws is a KC-set for

each s. Hence W is a KC-set. �

Corollary 5.5 If A ∈ {0, 1}ω is H ∞-trivial then A is H -trivial, hence in 10
2.

Theorem 5.6 Let A ∈ {0, 1}ω. A is H ∞-trivial if and only if A is recursive.

Proof From right to left, it is easy to see that if A is a recursive sequence then

A is H ∞-trivial. For the converse, let A be H ∞-trivial via some constant b. By

Corollary 5.5, A is 10
2, hence, there is a recursive approximation (As)s∈N such that

lims→∞ As = A. Recall that H ∞(x)[t] = min{|p| : U(p)[t] = x}. Consider the

following program with coding constant c given by the Recursion Theorem:

k := 1; s0 := 0; print 0

while ∃sk > sk−1 such that H ∞(Ask↾k)[sk] ≤ c + b do

print 0

k := k + 1

Let us see that the above program prints out infinitely many 0s. Suppose it writes

0k for some k. Then, on one hand, H ∞(0k) ≤ c, and on the other, ∀s > sk−1, we

have H ∞(As↾k)[s] > c + b. Also, H ∞(As↾k)[s] = H ∞(A↾k) for s large enough.

Hence, H ∞(A↾k) > H ∞(0k) + b, which contradicts that A is H ∞-trivial via b.

So, for each k, there is some q ∈ {0, 1}∗ with |q| ≤ c + b such that

U(q)[sk] = Ask↾k. Since there are only 2c+b+1 − 1 strings of length at most

c +b, there must be at least one q such that, for infinitely many k, U(q)[sk] = Ask ↾k.

Let’s call I the set of all these k’s. We will show that such a q necessarily computes

A. Suppose not. Then, there is a t such that for all s ≥ t , U(q)[s] is not an initial

segment of A. Thus, noticing that (sk)k∈N is increasing and I is infinite, there

are infinitely many sk ≥ t such that k ∈ I and U(q)[sk] = Ask↾k 6= A↾k. This

contradicts that Ask↾k → A when k → ∞. �

Corollary 5.7 The class of H ∞-trivial sequences is strictly included in the class of

H -trivial sequences.

Proof By Corollary 5.5, any H ∞-trivial sequence is also H -trivial. Solovay [13]

built an H -trivial sequence in 10
2 which is not recursive. By Theorem 5.6 this se-

quence cannot be H ∞-trivial. �

62 Becher, Figueira, Nies, and Picchi

5.2 H
∞-randomness

Definition 5.8

1. (Chaitin [2]) A ∈ {0, 1}ω is H -random iff ∃c ∀n H (A↾n) > n − c.

Chaitin and Schnorr [2] showed that H -randomness coincides with Martin-

Löf randomness [11].

2. (Levin [8]) A ∈ {0, 1}ω is Hm-random iff ∃c ∀n Hm(A↾n) > n − c.

3. A ∈ {0, 1}ω is H ∞-random iff ∃c ∀n H ∞(A↾n) > n − c.

Using Levin’s result [8] that Hm-randomness coincides with Martin-Löf random-

ness, and the fact that Hm gives a lower bound of H ∞, it follows immediately that

the classes of H -random, H ∞-random, and Hm-random sequences coincide. For the

sake of completeness we give an alternative proof.

Proposition 5.9 (with Hirschfeldt) There is a b0 such that for all b ≥ b0 and z, if

Hm(z) ≤ |z| − b, then there is y � z such that H (y) ≤ |y| − b/2.

Proof Consider the following machine M with coding constant c. On input qp,

first it simulates U(q) until it halts. Let’s call b the output of this simulation. Then it

simulates U∞(p) till it outputs a string y of length b + l where l is the length of the

prefix of p read by U∞. Then it writes this string y on the output and stops.

Let b0 be the first number such that 2 |b0| + c ≤ b0/2 and take b ≥ b0. Suppose

Hm(z) ≤ |z| − b. Let p be a shortest program such that U∞(p) � z and let q be a

shortest program such that U(q) = b. This means that |p| = Hm(z) and |q| = H (b).

On input qp, the machine M will compute b and then it will start simulating U∞(p).

Since |z| ≥ Hm(z) + b = |p| + b, the machine will eventually read l bits from p

in a way that the simulation of U∞(p↾l) = y and |y| = l + b. When this happens,

the machine M writes y and stops. Then for p′ = p↾l, we have M(qp′)↓ = y and

|y| =
∣∣p′

∣∣ + b. Hence

H (y) ≤ |q| +
∣∣p′

∣∣ + c ≤ H (b) + |y| − b + c ≤ 2 |b| − b + |y| + c ≤ |y| − b/2.

�

Corollary 5.10 A ∈ {0, 1}ω is Martin-Löf random if and only if A is Hm-random

if and only if A is H ∞-random.

Proof Since Hm ≤ H + O(1) it is clear that if a sequence is Hm-random then

it is Martin-Löf random. For the opposite, suppose A is Martin-Löf random but

not Hm-random. Let b0 be as in Proposition 5.9 and let 2c ≥ b0 be such that

∀n H (A↾n) > n − c. Since A is not Hm-random, ∀d ∃n Hm(A↾n) ≤ n − d .

In particular for d = 2c there is an n such that Hm(A↾n) ≤ n − 2c. On one hand,

by Proposition 5.9, there is a y � A↾n such that H (y) ≤ |y| − c. On the other, since

y is a prefix of A and A is Martin-Löf random, we have H (y) > |y| − c. This is a

contradiction. Since Hm is a lower bound of H ∞, the above equivalence implies A

is Martin-Löf random if and only if A is H ∞-random. �

Complexity for Possibly Infinite Computations 63

References

[1] Becher, V., S. Daicz, and G. Chaitin, “A highly random number,” pp. 55–68 in Com-

binatorics, Computability and Logic: Proceedings of the Third Discrete Mathematics

and Theoretical Computer Science Conference (DMTCS’01), edited by C. S. Calude

and M. J. Dineen and S. Sburlan, Springer-Verlag, London, 2001. Zbl 0967.00065.

MR 2003d:00011. 54, 55

[2] Chaitin, G. J., “A theory of program size formally identical to information theory,”

Journal of the Association for Computing Machinery, vol. 22 (1975), pp. 329–40.

Zbl 0309.68045. MR 53:15557. 51, 54, 55, 62

[3] Chaitin, G. J., “Algorithmic entropy of sets,” Computers & Mathematics with Applica-

tions, vol. 2 (1976), pp. 233–45. Zbl 0367.68036. 52

[4] Chaitin, G. J., “Information-theoretic characterizations of recursive infinite strings,”

Theoretical Computer Science, vol. 2 (1976), pp. 45–48. Zbl 0328.02029. MR 54:1709.

60

[5] Downey, R. G., D. R. Hirschfeldt, A. Nies, and F. Stephan, “Trivial reals,” pp. 103–31

in Proceedings of the 7th and 8th Asian Logic Conferences, Singapore University Press,

Singapore, 2003. Zbl 02063218. MR 2051976. 59, 60

[6] Ferbus-Zanda, M., and S. Grigorieff, “Church, cardinal and ordinal representations of

integers and kolmogorov complexity,” in preparation, 2003. 59

[7] Gacs, P., “On the symmetry of algorithmic information,” Soviet Mathematics, Doklady

(Akademiia Nauk SSSR. Doklady), vol. 15 (1974), pp. 1477–80. Zbl 0314.94019. 54

[8] Levin, L. A., “The concept of a random sequence,” Doklady Akademii Nauk SSSR,

vol. 212 (1973), pp. 548–50. Zbl 0312.94006. MR 51:2346. 52, 62

[9] Levin, L. A., “Laws on the conservation (zero increase) of information, and questions

on the foundations of probability theory,” Problemy Peredači Informacii, vol. 10 (1974),

pp. 30–35. Zbl 0312.94007. MR 57:9298. 51, 54

[10] Li, M., and P. Vitanyi, An Introduction to Kolmogorov Complexity and Its Applications,

2d edition, Graduate Texts in Computer Science. Springer-Verlag, New York, 1997.

Zbl 0866.68051. MR 97k:68086. 51

[11] Martin-Löf, P., “The definition of random sequences,” Information and Control, vol. 9

(1966), pp. 602–19. Zbl 0244.62008. MR 36:6228. 62

[12] Schnorr, C.-P., “Process complexity and effective random tests,” Journal of Computer

and System Sciences, vol. 7 (1973), pp. 376–88. Fourth Annual ACM Symposium on the

Theory of Computing (Denver, Colo., 1972). Zbl 0273.68036. MR 48:3713. 51

[13] Solovay, R. M., “Draft of a paper (or series of papers) on Chaitin’s work done for the

most part during the period Sept. to Dec. 1974,” 1974. 60, 61

[14] Uspensky, V. A., and A. Shen, “Relations between varieties of Kolmogorov complex-

ities,” Mathematical Systems Theory, vol. 29 (1996), pp. 271–92. Zbl 0849.68059.

MR 97c:68074. 51

[15] Zvonkin, A. K., and L. A. Levin, “The complexity of finite objects and the basing of the

concepts of information and randomness on the theory of algorithms,” Uspekhi Mate-

maticheskikh Nauk, vol. 25 (1970), pp. 85–127. Zbl 0222.02027. MR 46:7004. 51, 54

http://www.emis.de/cgi-bin/MATH-item?0967.00065
http://www.ams.org/mathscinet-getitem?mr=2003d:00011
http://www.emis.de/cgi-bin/MATH-item?0309.68045
http://www.ams.org/mathscinet-getitem?mr=53:15557
http://www.emis.de/cgi-bin/MATH-item?0367.68036
http://www.emis.de/cgi-bin/MATH-item?0328.02029
http://www.ams.org/mathscinet-getitem?mr=54:1709
http://www.emis.de/cgi-bin/MATH-item?02063218
http://www.ams.org/mathscinet-getitem?mr=2051976
http://www.emis.de/cgi-bin/MATH-item?0314.94019
http://www.emis.de/cgi-bin/MATH-item?0312.94006
http://www.ams.org/mathscinet-getitem?mr=51:2346
http://www.emis.de/cgi-bin/MATH-item?0312.94007
http://www.ams.org/mathscinet-getitem?mr=57:9298
http://www.emis.de/cgi-bin/MATH-item?0866.68051
http://www.ams.org/mathscinet-getitem?mr=97k:68086
http://www.emis.de/cgi-bin/MATH-item?0244.62008
http://www.ams.org/mathscinet-getitem?mr=36:6228
http://www.emis.de/cgi-bin/MATH-item?0273.68036
http://www.ams.org/mathscinet-getitem?mr=48:3713
http://www.emis.de/cgi-bin/MATH-item?0849.68059
http://www.ams.org/mathscinet-getitem?mr=97c:68074
http://www.emis.de/cgi-bin/MATH-item?0222.02027
http://www.ams.org/mathscinet-getitem?mr=46:7004

64 Becher, Figueira, Nies, and Picchi

Acknowledgments

Becher is supported by Agencia Nacional de Promoción Científica y Tecnológica,

Figueira by a grant of Fundación Antorchas, and Nies by the Marsden grant of New

Zealand.

Depto. Computación
Facultad Cs. Exactas y Naturales
Universidad de Buenos Aires
Buenos Aires
ARGENTINA
vbecher@dc.uba.ar

Depto. Computación
Facultad Cs. Exactas y Naturales
Universidad de Buenos Aires
Buenos Aires
ARGENTINA
sfigueir@dc.uba.ar

Department of Computer Science
University of Auckland
NEW ZEALAND
andre@cs.auckland.ac.nz

Depto. Computación
Facultad Cs. Exactas y Naturales
Universidad de Buenos Aires
Buenos Aires
ARGENTINA
spicchi@dc.uba.ar

mailto:vbecher@dc.uba.ar
mailto:sfigueir@dc.uba.ar
mailto:andre@cs.auckland.ac.nz
mailto:spicchi@dc.uba.ar

	1. Introduction
	2. Definitions
	2.1. Possibly infinite computations on monotone machines
	2.2. Program size complexities on monotone machines

	3. H Is Different From H
	4. H is Different From HA for Every Oracle A
	5. H and the Cantor Space
	5.1. H-triviality and H-triviality
	5.2. H-randomness

	References
	Acknowledgments

