Program Size Complexity for Possibly Infinite Computations

Verónica Becher, Santiago Figueira, André Nies, and Silvana Picchi

Abstract

We define a program size complexity function H^{∞} as a variant of the prefix-free Kolmogorov complexity, based on Turing monotone machines performing possibly unending computations. We consider definitions of randomness and triviality for sequences in $\{0,1\}^{\omega}$ relative to the H^{∞} complexity. We prove that the classes of Martin-Löf random sequences and H^{∞}-random sequences coincide and that the H^{∞}-trivial sequences are exactly the recursive ones. We also study some properties of H^{∞} and compare it with other complexity functions. In particular, H^{∞} is different from H^{A}, the prefix-free complexity of monotone machines with oracle A.

1 Introduction

We consider monotone Turing machines (a one-way read-only input tape and a oneway write-only output tape) performing possibly infinite computations, and we define a program size complexity function $H^{\infty}:\{0,1\}^{*} \rightarrow \mathbb{N}$ as a variant of the classical Kolmogorov complexity: given a universal monotone machine \mathcal{U}, for any string $x \in\{0,1\}^{*}, H^{\infty}(x)$ is the length of a shortest string $p \in\{0,1\}^{*}$ read by \mathcal{U}, which produces x via a possibly infinite computation (either a halting or a nonhalting computation), having read exactly p from the input.

The classical prefix-free complexity H (Chaitin [2], Levin [9]) is an upper bound of the function H^{∞} (up to an additive constant) since the definition of H^{∞} does not require that the machine U halts. We prove that H^{∞} differs from H in that it has no monotone decreasing recursive approximation and it is not subadditive.

The complexity H^{∞} is closely related with the monotone complexity Hm , independently introduced by Zvonkin and Levin [15] and Schnorr [12] (see Uspensky and Shen [14] and Li and Vitanyi [10] for historical details and differences among

Received July 23, 2003; accepted April 28, 2004; printed January 25, 2005
2000 Mathematics Subject Classification: Primary, 68Q30, 68Q05
Keywords: program size complexity, Kolmogorov complexity, infinite computations © 2005 University of Notre Dame
various monotone complexities, and see [3] for a closely related complexity of sets introduced by Chaitin). Levin defines $H m(x)$ as the length of the shortest halting program that provided with $n(0 \leq n \leq|x|)$, outputs $x \upharpoonright n$. Equivalently $\operatorname{Hm}(x)$ can be defined as the least number of bits read by a monotone machine \mathcal{U} which via a possibly infinite computation produces any finite or infinite extension of x.
$H m$ is a lower bound of H^{∞} (up to an additive constant) since the definition of H^{∞} imposes that the machine \mathcal{U} reads exactly the input p and produces exactly the output x. Every recursive $A \in\{0,1\}^{\omega}$ is the output of some monotone machine with no input, so there is some c such that $\forall n \operatorname{Hm}(A \upharpoonright n) \leq c$. Moreover, there exists n_{0} such that $\forall n, m \geq n_{0}, \operatorname{Hm}(A \upharpoonright n)=\operatorname{Hm}(A \upharpoonright m)$. We show this is not the case with H^{∞}, since for every infinite $B=\left\{b_{1}, b_{2}, \ldots\right\} \subseteq\{0,1\}^{*}, \lim _{n \rightarrow \infty} H^{\infty}\left(b_{n}\right)=\infty$. This is also a property of the classical prefix-free complexity H, and we consider it as a decisive property that distinguishes H^{∞} from Hm .

The prefix-free complexity of a universal machine with oracle \varnothing^{\prime}, the function $H^{\varnothing^{\prime}}$, is also a lower bound of H^{∞} (up to an additive constant). We prove that for infinitely many strings x, the complexities $H(x), H^{\infty}(x)$, and $H^{\varnothing^{\prime}}(x)$ separate as much as we want. This already proves that these three complexities are different. In addition we show that for every oracle A, H^{∞} differs from H^{A}, the prefix-free complexity of a universal machine with oracle A.

For sequences in $\{0,1\}^{\omega}$ we consider definitions of randomness and triviality based on the H^{∞} complexity. A sequence is H^{∞}-random if its initial segments have maximal H^{∞} complexity. Since Hm gives a lower bound of H^{∞} and Hm randomness coincides with Martin-Löf randomness (Levin [8]), the classes of Martin-Löf random, H^{∞}-random, and Hm -random coincide.

We argue for a definition of H^{∞}-trivial sequences as those whose initial segments have minimal H^{∞} complexity. While every recursive $A \in\{0,1\}^{\omega}$ is both H-trivial and H^{∞}-trivial, we show that the class of H^{∞}-trivial sequences is strictly included in the class of H-trivial sequences. Moreover, in Theorem 5.6, the main result of the paper, we characterize the recursive sequences as those which are H^{∞}-trivial.

2 Definitions

\mathbb{N} is the set of natural numbers, and we work with the binary alphabet $\{0,1\}$. As usual, a string is a finite sequence of elements of $\{0,1\}, \lambda$ is the empty string, and $\{0,1\}^{*}$ is the set of all strings. $\{0,1\}^{\omega}$ is the set of all infinite sequences of $\{0,1\}$, that is, the Cantor space, and $\{0,1\}^{\leq \omega}=\{0,1\}^{*} \cup\{0,1\}^{\omega}$ is the set of all finite or infinite sequences of $\{0,1\}$.

For $s \in\{0,1\}^{*},|s|$ denotes the length of s. If $s \in\{0,1\}^{*}$ and $A \in\{0,1\}^{\omega}$ we denote by $s \uparrow n$ the prefix of s with length $\min \{n,|s|\}$ and by $A \upharpoonright n$ the length n prefix of the infinite sequence A. We consider the prefix ordering \preceq over $\{0,1\}^{*}$, that is, for $s, t \in\{0,1\}^{*}$ we write $s \preceq t$ if s is a prefix of t. We assume the recursive bijection string : $\mathbb{N} \rightarrow\{0,1\}^{*}$ such that $\operatorname{string}(i)$ is the i th string in the length and lexicographic order over $\{0,1\}^{*}$.

If f is any partial map then, as usual, we write $f(p) \downarrow$ when it is defined and $f(p) \uparrow$ otherwise.
2.1 Possibly infinite computations on monotone machines A monotone machine is a Turing machine with a one-way read-only input tape, some work tapes, and a
one-way write-only output tape. The input tape contains a first dummy cell (representing the empty input) and then a one-way infinite sequence of 0 s and 1 s , and initially the input head scans the leftmost dummy cell. The output tape is written one symbol of $\{0,1\}$ at a time (the output grows with respect to the prefix ordering in $\{0,1\}^{*}$ as the computational time increases).

A possibly infinite computation is either a halting or a nonhalting computation. If the machine halts, the output of the computation is the finite string written on the output tape. Else, the output is either a finite string or an infinite sequence written on the output tape as a result of a never ending process. This leads us to consider $\{0,1\}^{\leq \omega}$ as the output space.

In this work we restrict ourselves to possibly infinite computations on monotone machines which read just finitely many symbols from the input tape.

Definition 2.1 Let \mathcal{M} be a monotone machine. $M(p)[t]$ is the current output of \mathcal{M} on input p at stage t if it has not read beyond the end of p. Otherwise, $M(p)[t] \uparrow$. Notice that $M(p)[t]$ does not require that the computation on input p halts.

Remark 2.2

1. If $M(p)[t] \uparrow$ then $M(q)[u] \uparrow$ for all $q \preceq p$ and $u \geq t$.
2. If $M(p)[t] \downarrow$ then $M(q)[u] \downarrow$ for any $q \succeq p$ and $u \leq t$. Also, if at stage t, \mathcal{M} reaches a halting state without having read beyond the end of p, then $M(p)[u] \downarrow=M(p)[t]$ for all $u \geq t$.
3. Since \mathcal{M} is monotone, $M(p)[t] \preceq M(p)[t+1]$, in case $M(p)[t+1] \downarrow$.
4. $M(p)[t]$ has recursive domain.

Definition 2.3 Let \mathcal{M} be a monotone machine.

1. The input/output behavior of \mathcal{M} for halting computations is the partial recursive map $M:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ given by the usual computation of \mathcal{M}, that is, $M(p) \downarrow$ if and only if \mathcal{M} enters into a halting state on input p without reading beyond p. If $M(p) \downarrow$ then $M(p)=M(p)[t]$ for some stage t at which \mathcal{M} entered a halting state.
2. The input/output behavior of \mathcal{M} for possibly infinite computations is the map $M^{\infty}:\{0,1\}^{*} \rightarrow\{0,1\}^{\leq \omega}$ given by $M^{\infty}(p)=\lim _{t \rightarrow \infty} M(p)[t]$.

Proposition 2.4

1. domain (M) is closed under extensions and its syntactical complexity is Σ_{1}^{0};
2. domain $\left(M^{\infty}\right)$ is closed under extensions and its syntactical complexity is Π_{1}^{0};
3. M^{∞} extends M.

Proof

1. is trivial.
2. $M^{\infty}(p) \downarrow$ if and only if $\forall t \mathcal{M}$ on input p does not read $p 0$ and does not read $p 1$. Clearly, $\operatorname{domain}\left(M^{\infty}\right)$ is closed under extensions since if $M^{\infty}(p) \downarrow$ then $M^{\infty}(q) \downarrow=M^{\infty}(p)$ for every $q \succeq p$.
3. Since the machine \mathcal{M} is not required to halt, M^{∞} extends M.

Remark 2.5 An alternative definition of the functions M and M^{∞} would be to consider them with prefix-free domains (instead of closed under extensions):

- $M(p) \downarrow$ if and only if at some stage $t \mathcal{M}$ enters a halting state having read exactly p. If $M(p) \downarrow$ then its value is $M(p)[t]$ for such stage t.
- $M^{\infty}(p) \downarrow$ if and only if $\exists t$ at which \mathcal{M} has read exactly p and for every $t^{\prime} \mathcal{M}$ does not read $p 0$ nor $p 1$. If $M^{\infty}(p) \downarrow$ then its value is $\lim _{t \rightarrow \infty} M(p)[t]$.

We fix an effective enumeration of all tables of instructions. This gives an effective $\left(\mathcal{M}_{i}\right)_{i \in \mathbb{N}}$. We also fix the usual monotone universal machine \mathcal{U}, which defines the functions $U\left(0^{i} 1 p\right)=M_{i}(p)$ and $U^{\infty}\left(0^{i} 1 p\right)=M_{i}^{\infty}(p)$ for halting and possibly infinite computations, respectively. As usual, $i+1$ is the coding constant of \mathcal{M}_{i}. Recall that U^{∞} is an extension of U. We also fix $\mathcal{U}^{\varnothing^{\prime}}$ a monotone universal machine with an oracle for \varnothing^{\prime}.

By Shoenfield's Limit Lemma every $M^{\infty}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is recursive in \varnothing^{\prime}. However, possibly infinite computations on monotone machines cannot compute all \varnothing^{\prime}-recursive functions. For instance, the characteristic function of the halting problem cannot be computed in the limit by a monotone machine. In contrast, the Busy Beaver function in unary notation $b b: \mathbb{N} \rightarrow 1^{*}$:

$$
\begin{aligned}
& b b(n)=\quad \text { the maximum number of } 1 \mathrm{~s} \text { produced by any Turing machine } \\
& \text { with } n \text { states which halts with no input }
\end{aligned}
$$

is just \varnothing^{\prime}-recursive and $b b(n)$ is the output of a nonhalting computation which on input n, simulates every Turing machine with n states and for each one that halts updates, if necessary, the output with more 1s.
2.2 Program size complexities on monotone machines Let \mathcal{M} be a monotone machine and M, M^{∞} the respective maps for the input/output behavior of \mathcal{M} for halting computations and possibly infinite computations (Definition 2.3). We denote the usual prefix-free complexity ([2], [9], Gacs [7]) for M by $H_{\mathcal{M}}:\{0,1\}^{*} \rightarrow \mathbb{N}$:

$$
H_{\mathcal{M}}(x)= \begin{cases}\min \{|p|: M(p)=x\} & \text { if } x \text { is in the range of } M \\ \infty & \text { otherwise }\end{cases}
$$

Definition $2.6 \quad H_{\mathcal{M}}^{\infty}:\{0,1\} \leq \omega \rightarrow \mathbb{N}$ is the program size complexity for functions M^{∞}.

$$
H_{\mathcal{M}}^{\infty}(x)= \begin{cases}\min \left\{|p|: M^{\infty}(p)=x\right\} & \text { if } x \text { is in the range of } M^{\infty} \\ \infty & \text { otherwise } .\end{cases}
$$

For U we drop subindexes and we simply write H and H^{∞}. The Invariance Theorem holds for H^{∞} :
\forall monotone machine $\mathcal{M} \exists c \forall s \in\{0,1\}^{\leq \omega} H^{\infty}(s) \leq H_{\mathcal{M}}^{\infty}(s)+c$.
The complexity function H^{∞} was first introduced in Becher et al. [1] without a detailed study of its properties. Notice that if we take monotone machines \mathcal{M} according to Remark 2.5 instead of Definition 2.3, we obtain the same complexity functions $H_{\mathcal{M}}$ and $H_{\mathcal{M}}^{\infty}$.

In this work we only consider the H^{∞} complexity of finite strings, that is, we restrict our attention to $H^{\infty}:\{0,1\}^{*} \rightarrow \mathbb{N}$. We will compare H^{∞} with these other complexity functions:
$H^{A}:\{0,1\}^{*} \rightarrow \mathbb{N}$ is the program size complexity function for U^{A}, a monotone universal machine with oracle A. We pay special attention to $A=\varnothing^{\prime}$.
$H m:\{0,1\}^{\leq \omega} \rightarrow \mathbb{N}$ (see [15]), where $\operatorname{Hm}_{\mathcal{M}}(x)=\min \left\{|p|: M^{\infty}(p) \succeq x\right\}$ is the monotone complexity function for a monotone machine \mathcal{M} and, as usual, for U we simply write $H m$.
We mention some known results that will be used later.

Proposition 2.7 (For items 1 and 2 see [2], for item 3 see [1].)

1. $\forall s \in\{0,1\}^{*} H(s) \leq|s|+H(|s|)+\mathcal{O}(1)$;
2. $\forall n \exists s \in\{0,1\}^{*}$ of length n such that
(a) $H(s) \geq n$,
(b) $H^{\varnothing^{\prime}}(s) \geq n$;
3. $\forall s \in\{0,1\}^{*} H^{\varnothing^{\prime}}(s)<H^{\infty}(s)+\mathcal{O}(1)$ and $H^{\infty}(s)<H(s)+\mathcal{O}(1)$.

$3 \boldsymbol{H}^{\infty}$ Is Different From \boldsymbol{H}

The following properties of H^{∞} are in the spirit of those of H.
Proposition 3.1 For all strings s and t,

1. $H(s) \leq H^{\infty}(s)+H(|s|)+\mathcal{O}(1)$,
2. $\#\left\{s \in\{0,1\}^{*}: H^{\infty}(s) \leq n\right\}<2^{n+1}$,
3. $H^{\infty}(t s) \leq H^{\infty}(s)+H(t)+\mathcal{O}(1)$,
4. $H^{\infty}(s) \leq H^{\infty}(s t)+H(|t|)+\mathcal{O}(1)$,
5. $H^{\infty}(s) \leq H^{\infty}(s t)+H^{\infty}(|s|)+\mathcal{O}(1)$.

Proof

1. Let $p, q \in\{0,1\}^{*}$ such that $U^{\infty}(p)=s$ and $U(q)=|s|$. Then there is a machine that first simulates $U(q)$ to obtain $|s|$, then starts a simulation of $U^{\infty}(p)$ writing its output on the output tape, until it has written $|s|$ symbols, and then halts.
2. There are at most $2^{n+1}-1$ strings of length $\leq n$.
3. Let $p, q \in\{0,1\}^{*}$ such that $U^{\infty}(p)=s$ and $U(q)=t$. Then there is a machine that first simulates $U(q)$ until it halts and prints $U(q)$ on the output tape. Then it starts a simulation of $U^{\infty}(p)$ writing its output on the output tape.
4. Let $p, q \in\{0,1\}^{*}$ such that $U^{\infty}(p)=s t$ and $U(q)=|t|$. Then there is a machine that first simulates $U(q)$ until it halts to obtain $|t|$. Then it starts a simulation of $U^{\infty}(p)$ such that at each stage n of the simulation it writes the symbols needed to leave $U(p)[n]\lceil(|U(p)[n]|-|t|)$ on the output tape.
5. Consider the following monotone machine:

$$
\begin{aligned}
& t:=1 ; v:=\lambda ; w:=\lambda \\
& \text { repeat } \\
& \text { if } U(v)[t] \text { asks for reading then append to } v \text { the next bit in the input } \\
& \text { if } U(w)[t] \text { asks for reading then append to } w \text { the next bit in the input } \\
& \text { extend the actual output to } U(w)[t]\lceil(U(v)[t]) \\
& t:=t+1
\end{aligned}
$$

If p and q are shortest programs such that $U^{\infty}(p)=|s|$ and $U^{\infty}(q)=s t$, respectively, then we can interleave p and q in a way such that at each stage $t, v \preceq p$ and $w \preceq q$ (notice that eventually $v=p$ and $w=q$). Thus, this machine will compute s and will never read more than $H^{\infty}(s t)+H^{\infty}(|s|)$ bits.
H is recursively approximable from above, but H^{∞} is not.

Proposition 3.2 There is no effective decreasing approximation of H^{∞}.
Proof Suppose there is a recursive function $h:\{0,1\}^{*} \times \mathbb{N} \rightarrow \mathbb{N}$ such that for every string $s, \lim _{t \rightarrow \infty} h(s, t)=H^{\infty}(s)$ and for all $t \in \mathbb{N}, h(s, t) \geq h(s, t+1)$. We write $h_{t}(s)$ for $h(s, t)$. Consider the monotone machine \mathcal{M} with coding constant d given by the Recursion Theorem, which on input p does the following:

```
\(t:=1\); print 0
repeat forever
    \(n:=\) number of bits read by \(U(p)[t]\)
    for each string \(s\) not yet printed, \(|s| \leq t\) and \(h_{t}(s) \leq n+d\)
        print \(s\)
    \(t:=t+1\)
```

Let p be a program such that $U^{\infty}(p)=k$ and $|p|=H^{\infty}(k)$. Notice that, as $t \rightarrow \infty$, the number of bits read by $U(p)[t]$ goes to $|p|=H^{\infty}(k)$. Let t_{0} be such that for all $t \geq t_{0}, U(p)[t]$ reads no more from the input. Since there are only finitely many strings s such that $H^{\infty}(s) \leq H^{\infty}(k)+d$, there is a $t_{1} \geq t_{0}$ such that for all $t \geq t_{1}$ and for all those strings $s, h_{t}(s)=H^{\infty}(s)$. Hence, every string s with $H^{\infty}(s) \leq H^{\infty}(k)+d$ will be printed.

Let $z=M^{\infty}(p)$. On one hand, we have $H^{\infty}(z) \leq|p|+d=H^{\infty}(k)+d$. On the other hand, by the construction of \mathcal{M}, z cannot be the output of a program of length $\leq H^{\infty}(k)+d$ (because z is different from each string s such that $\left.H^{\infty}(s) \leq H^{\infty}(k)+d\right)$. So it must be that $H^{\infty}(z)>H^{\infty}(k)+d$, a contradiction.

The following lemma states a critical property that distinguishes H^{∞} from H. It implies that H^{∞} is not subadditive, that is, it is not the case that $H^{\infty}(s t) \leq H^{\infty}(s)+$ $H^{\infty}(t)+\mathcal{O}(1)$. It also implies that H^{∞} is not invariant under recursive permutations $\{0,1\}^{*} \rightarrow\{0,1\}^{*}$.

Lemma 3.3 For every total recursive function f there is a natural k such that

$$
H^{\infty}\left(0^{k} 1\right)>f\left(H^{\infty}\left(0^{k}\right)\right)
$$

Proof Let f be any recursive function and \mathcal{M} the following monotone machine with coding constant d given by the Recursion Theorem:

```
\(t:=1\)
do forever
    for each \(p\) such that \(|p| \leq \max \{f(i): 0 \leq i \leq d\}\)
        if \(U(p)[t]=0^{j} 1\) then
            print enough 0 s to leave at least \(0^{j+1}\) on the output tape
    \(t:=t+1\)
```

Let $N=\max \{f(i): 0 \leq i \leq d\}$. We claim there is a k such that $M^{\infty}(\lambda)=0^{k}$. Since there are only finitely many programs of length less than or equal to N which output a string of the form $0^{j} 1$ for some j, then there is some stage at which \mathcal{M} has written 0^{k}, with k greater than all such j 's, and then it prints nothing else. Therefore, there is no program p with $|p| \leq N$ such that $U^{\infty}(p)=0^{k} 1$.

If $M^{\infty}(\lambda)=0^{k}$ then $H^{\infty}\left(0^{k}\right) \leq d$. So, $f\left(H^{\infty}\left(0^{k}\right)\right) \leq N$. Also, for this k, there is no program of length $\leq N$ that outputs $0^{k} 1$ and thus $H^{\infty}\left(0^{k} 1\right)>N$. Hence, $H^{\infty}\left(0^{k} 1\right)>f\left(H^{\infty}\left(0^{k}\right)\right)$.

Note that $H\left(0^{k}\right)=H\left(0^{k} 1\right)=H^{\infty}\left(0^{k} 1\right)$ up to additive constants, so the above lemma gives an example where H^{∞} is much smaller than H.

Proposition 3.4

1. H^{∞} is not subadditive.
2. It is not the case that for every recursive one-one $g:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ $\exists c \forall s\left|H^{\infty}(g(s))-H^{\infty}(s)\right| \leq c$.

Proof

1. Let f be the recursive injection $f(n)=n+c$. By Lemma 3.3 there is k such that $H^{\infty}\left(0^{k} 1\right)>H^{\infty}\left(0^{k}\right)+c$. Since the last inequality holds for every c, it is not true that $H^{\infty}\left(0^{k} 1\right) \leq H^{\infty}\left(0^{k}\right)+\mathcal{O}(1)$.
2. It is immediate from Lemma 3.3.

It is known that the complexity H is smooth in the length and lexicographic order over $\{0,1\}^{*}$ in the sense that $|H(\operatorname{string}(n))-H(\operatorname{string}(n+1))|=\mathcal{O}(1)$. However, this is not the case for H^{∞}.

Proposition 3.5

1. H^{∞} is not smooth in the length and lexicographical order over $\{0,1\}^{*}$.
2. $\forall n\left|H^{\infty}(\operatorname{string}(n))-H^{\infty}(\operatorname{string}(n+1))\right| \leq H(|\operatorname{string}(n)|)+\mathcal{O}(1)$.

Proof

1. Notice that $\forall n>1, H^{\infty}\left(0^{n} 1\right) \leq H^{\infty}\left(0^{n-1} 1\right)+\mathcal{O}(1)$, because if $U^{\infty}(p)=$ $0^{n-1} 1$ then there is a machine that first writes a 0 on the output tape and then simulates $U^{\infty}(p)$. By Lemma 3.3, for each c there is an n such that $H^{\infty}\left(0^{n} 1\right)>H^{\infty}\left(0^{n}\right)+c$. Joining the two inequalities, we obtain $\forall c \exists n H^{\infty}\left(0^{n-1} 1\right)>H^{\infty}\left(0^{n}\right)+c$. Since string ${ }^{-1}\left(0^{n-1} 1\right)=$ string $^{-1}\left(0^{n}\right)+1$, H^{∞} is not smooth.
2. Consider the following monotone machine \mathcal{M} with input $p q$:

$$
\begin{aligned}
& \text { obtain } y=U(p) \\
& \text { simulate } z=U^{\infty}(q) \text { till it outputs } y \text { bits } \\
& \text { write } \operatorname{string}\left(\operatorname{string}^{-1}(z)+1\right)
\end{aligned}
$$

Let $p, q \in\{0,1\}^{*}$ such that $U(p)=|\operatorname{string}(n)|$ and $U^{\infty}(q)=\operatorname{string}(n)$. Then, $M^{\infty}(p q)=\operatorname{string}(n+1)$ and

$$
H^{\infty}(\operatorname{string}(n+1)) \leq H^{\infty}(\operatorname{string}(n))+H(|\operatorname{string}(n)|)+\mathcal{O}(1)
$$

Similarly, if \mathcal{M}, instead of writing $\operatorname{string}\left(\operatorname{string}^{-1}(z)+1\right)$, writes string $\left(\operatorname{string}^{-1}(z)-1\right)$, we conclude

$$
H^{\infty}(\operatorname{string}(n)) \leq H^{\infty}(\operatorname{string}(n+1))+H(|\operatorname{string}(n+1)|)+\mathcal{O}(1)
$$

Since $|H(|\operatorname{string}(n)|)-H(|\operatorname{string}(n+1)|)|=\mathcal{O}(1)$, it follows that

$$
\left|H^{\infty}(\operatorname{string}(n))-H^{\infty}(\operatorname{string}(n+1))\right| \leq H(|\operatorname{string}(n)|)+\mathcal{O}(1)
$$

$4 \boldsymbol{H}^{\infty}$ is Different From $\boldsymbol{H}^{\boldsymbol{A}}$ for Every Oracle \boldsymbol{A}

Item 3 of Proposition 2.7 states that H^{∞} is between H and $H^{\varnothing^{\prime}}$. The following result shows that H^{∞} is really strictly in between them.

Proposition 4.1 For every c there is a string $s \in\{0,1\}^{*}$ such that

$$
H^{\varnothing^{\prime}}(s)+c<H^{\infty}(s)<H(s)-c .
$$

Proof Let $u_{n}=\min \left\{s \in\{0,1\}^{n}: H(s) \geq n\right\}$ and let $A=\left\{a_{0}, a_{1}, \ldots\right\}$ be any infinite r.e. set and consider a machine \mathcal{M} which on input i does the following:

```
\(j:=0\)
repeat
    write \(a_{j}\)
    find a program \(p,|p| \leq 3 i\), such that \(U(p)=a_{j}\)
    \(j:=j+1\)
```

$M^{\infty}(i)$ outputs the string $v_{i}=a_{0} a_{1} \ldots a_{k_{i}}$, where $H\left(a_{k_{i}}\right)>3 i$ and for all z, $0 \leq z<k_{i}$ we have $H\left(a_{z}\right) \leq 3 i$. We define $w_{i}=u_{i} v_{i}$. Let's see that both $H^{\infty}\left(w_{i}\right)-H^{\varnothing^{\prime}}\left(w_{i}\right)$ and $H\left(w_{i}\right)-H^{\infty}\left(w_{i}\right)$ grow arbitrarily.

On one hand, we can construct a machine which on input i and p executes $U^{\infty}(p)$ till it outputs i bits and then halts. Since the first i bits of w_{i} are u_{i} and $H(i) \leq 2|i|+\mathcal{O}(1)$, we have $i \leq H\left(u_{i}\right) \leq H^{\infty}\left(w_{i}\right)+2|i|+\mathcal{O}(1)$. But with the help of the \varnothing^{\prime}-oracle we can compute w_{i} from i, so $H^{\varnothing^{\prime}}\left(w_{i}\right) \leq 2|i|+\mathcal{O}(1)$. Thus we have $H^{\infty}\left(w_{i}\right)-H^{\varnothing^{\prime}}\left(w_{i}\right) \geq i-4|i|-\mathcal{O}(1)$.

On the other hand, given i and w_{i}, we can effectively compute $a_{k_{i}}$. Hence, $\forall i$ we have $3 i<H\left(a_{k_{i}}\right) \leq H\left(w_{i}\right)+2|i|+\mathcal{O}(1)$. Also, given u_{i}, we can compute w_{i} in the limit using the idea of machine \mathcal{M}, and hence $H^{\infty}\left(w_{i}\right) \leq 2\left|u_{i}\right|+\mathcal{O}(1)=2 i+\mathcal{O}(1)$. Then, for all i

$$
H\left(w_{i}\right)-H^{\infty}\left(w_{i}\right)>i-2|i|-\mathcal{O}(1) .
$$

Not only H^{∞} is different from $H^{\varnothing^{\prime}}$ but it differs from H^{A} (the prefix-free complexity of a universal monotone machine with oracle A), for every A.

Theorem 4.2 There is no oracle A such that $\left|H^{\infty}-H^{A}\right| \leq \mathcal{O}(1)$.
Proof Immediate from Lemma 3.3 and from the standard result that for all A, H^{A} is subadditive so, in particular, for every $k, H^{A}\left(0^{k} 1\right) \leq H^{A}\left(0^{k}\right)+\mathcal{O}(1)$.

$5 \quad H^{\infty}$ and the Cantor Space

The advantage of H^{∞} over H can be seen along the initial segments of every recursive sequence: if $A \in\{0,1\}^{\omega}$ is recursive then there are infinitely many n 's such that $H(A \upharpoonright n)-H^{\infty}(A \upharpoonright n)>c$, for an arbitrary c.

Proposition 5.1 Let $A \in\{0,1\}^{\omega}$ be a recursive sequence. Then

1. $\lim \sup _{n \rightarrow \infty} H(A \upharpoonright n)-H^{\infty}(A \upharpoonright n)=\infty$;
2. $\lim \sup _{n \rightarrow \infty} H^{\infty}(A \upharpoonright n)-H m(A \upharpoonright n)=\infty$.

Proof

1. Let $A(n)$ be the nth bit of A. Let's consider the following monotone machine \mathcal{M} with input p :
```
obtain n := U(p)
write }A\upharpoonright(\mp@subsup{\mathrm{ string }}{}{-1}(\mp@subsup{0}{}{n})-1
```

for $s:=0^{n}$ to 1^{n} in lexicographic order
write $A\left(\right.$ string $\left.^{-1}(s)\right)$
search for a program p such that $|p|<n$ and $U(p)=s$

If $U(p)=n$, then $M^{\infty}(p)$ outputs $A \upharpoonright k_{n}$ for some k_{n} such that $2^{n} \leq k_{n}<2^{n+1}$, since for all n there is a string of length n with H-complexity greater than or equal to n. Let us fix n. On one hand, $H^{\infty}\left(A \upharpoonright k_{n}\right) \leq H(n)+\mathcal{O}(1)$. On the other, $H\left(A \mid k_{n}\right) \geq n+\mathcal{O}(1)$, because we can compute the first string in the lexicographic order with H-complexity $\geq n$ from a program for $A \upharpoonright k_{n}$. Hence, for each $n, H\left(A \upharpoonright k_{n}\right)-H^{\infty}\left(A \upharpoonright k_{n}\right) \geq n-H(n)+\mathcal{O}(1)$.
2. Trivial because for each recursive sequence A there is a constant c such that $H m(A \upharpoonright n) \leq c$ and $\lim _{n \rightarrow \infty} H^{\infty}(B \upharpoonright n)=\infty$ for every $B \in\{0,1\}^{\omega}$.
5.1 \boldsymbol{H}-triviality and \boldsymbol{H}^{∞}-triviality \quad There is a standard convention to use H with arguments in \mathbb{N}. That is, for any $n \in \mathbb{N}, H(n)$ is written instead of $H(f(n))$ where f is some particular representation of natural numbers on $\{0,1\}^{*}$. This convention makes sense because H is invariant (up to a constant) for any recursive representation of natural numbers.
H-triviality has been defined as follows (see Downey et al. [5]): $A \in\{0,1\}^{\omega}$ is H-trivial if and only if there is a constant c such that for all $n, H(A \upharpoonright n) \leq H(n)+c$. The idea is that H-trivial sequences are exactly those whose initial segments have minimal H-complexity. Considering the above convention, A is H-trivial if and only if $\exists c \forall n H(A \upharpoonright n) \leq H\left(0^{n}\right)+c$.

In general H^{∞} is not invariant for recursive representations of \mathbb{N}. We propose the following definition that insures that recursive sequences are H^{∞}-trivial.

Definition 5.2 $A \in\{0,1\}^{\omega}$ is H^{∞}-trivial if and only if $\exists c \forall n H^{\infty}(A \upharpoonright n)$ $\leq H^{\infty}\left(0^{n}\right)+c$.

Our choice of the right-hand side of the above definition is supported by the following proposition (see Ferbus-Zanda and Grigorieff [6] for further discussion).

Proposition 5.3 Let $f: \mathbb{N} \rightarrow\{0,1\}^{*}$ be recursive and strictly increasing with respect to the length and lexicographical order over $\{0,1\}^{*}$. Then

$$
\forall n H^{\infty}\left(0^{n}\right) \leq H^{\infty}(f(n))+\mathcal{O}(1) .
$$

Proof Notice that, since f is strictly increasing, f has recursive range. We construct a monotone machine \mathcal{M} with input p :
$t:=0$
repeat
if $U(p)[t] \downarrow$ is in the range of f then $n:=f^{-1}(U(p)[t])$
print the needed 0 's to leave 0^{n} on the output tape
$t:=t+1$

Since f is increasing in the length and lexicographic order over $\{0,1\}^{*}$, if p is a program for U such that $U^{\infty}(p)=f(n)$, then $M^{\infty}(p)=0^{n}$.

Chaitin observed that every recursive $A \in\{0,1\}^{\omega}$ is H-trivial (Chaitin [4]) and that H-trivial sequences are Δ_{2}^{0}. However, H-triviality does not characterize the class Δ_{1}^{0} of recursive sequences: Solovay [13] constructed a Δ_{2}^{0} sequence which is H trivial but not recursive (see also [5] for the construction of a strongly computably enumerable real with the same properties). Our next result implies that H^{∞}-trivial sequences are Δ_{2}^{0}, and Theorem 5.6 characterizes Δ_{1}^{0} as the class of H^{∞}-trivial sequences.

Theorem 5.4 Suppose that A is a sequence such that, for some $b \in \mathbb{N}$, $\forall n H^{\infty}(A \upharpoonright n) \leq H(n)+b$. Then A is H-trivial.

Proof An r.e. set $W \subseteq \mathbb{N} \times 2^{<\omega}$ is a Kraft-Chaitin set (KC-set) if

$$
\sum_{\langle r, y\rangle \in W} 2^{-r} \leq 1
$$

For any $E \subseteq W$, let the weight of E be $w t(E)=\sum\left\{2^{-r}:\langle r, n\rangle \in E\right\}$. The pairs enumerated into such a set W are called axioms. Chaitin proved that from a Kraft-Chaitin set W one may obtain a prefix machine M_{d} such that $\forall\langle r, y\rangle \in W \exists w\left(|w|=r \wedge M_{d}(w)=y\right)$.

The idea is to define a Δ_{2}^{0} tree T such that $A \in[T]$, and a KC-set W showing that each path of T is H-trivial. For $x \in\{0,1\}^{*}$ and $t \in \mathbb{N}$, let

$$
\begin{aligned}
H^{\infty}(x)[t] & =\min \{|p|: U(p)[t]=x\} \text { and } \\
H(x)[t] & =\min \{|p|: U(p)[t]=x \text { and } U(p) \text { halts in at most } t \text { steps }\}
\end{aligned}
$$

be effective approximations of H^{∞} and H. Notice that for all $x \in\{0,1\}^{*}$, $\lim _{t \rightarrow \infty} H^{\infty}(x)[t]=H^{\infty}(x)$ and $\lim _{t \rightarrow \infty} H(x)[t]=H(x)$.

Given s, let

$$
T_{s}=\left\{\gamma:|\gamma|<s \wedge \forall m \leq|\gamma| H^{\infty}(\gamma\lceil m)[s] \leq H(m)[s]+b\}\right.
$$

then $\left(T_{S}\right)_{s \in \mathbb{N}}$ is an effective approximation of a Δ_{2}^{0} tree T, and [T] is the class of sequences A satisfying $\forall n H^{\infty}(A \upharpoonright n) \leq H(n)+b$. Let $r=H(|\gamma|)[s]$. We define a KC-set W as follows: if $\gamma \in T_{s}$ and either there is $u<s$ greatest such that $\gamma \in T_{u}$ and $r<H(|\gamma|)[u]$, or $\gamma \notin T_{u}$ for all $u<s$, then put an axiom $\langle r+b+1, \gamma\rangle$ into W.

Once we show that W is indeed a KC-set, we are done: by Chaitin's result, there is d such that $\langle k, \gamma\rangle \in W$ implies $H(\gamma) \leq k+d$. Thus, if $A \in[T]$, then $H(\gamma) \leq H(|\gamma|)+b+d+1$ for each initial segment γ of A.

To show that W is a KC-set, define strings $D_{s}(\gamma)$ as follows. When we put an axiom $\langle r+b+1, \gamma\rangle$ into W at stage s,

- let $D_{s}(\gamma)$ be a shortest p such that $U(p)[s]=\gamma$ (recall from Definition 2.1 that it is not required that U halts at stage s),
- if $\beta \prec \gamma$, we haven't defined $D_{s}(\beta)$ yet and $D_{s-1}(\beta)$ is defined as a prefix of p, then let $D_{s}(\beta)$ be a shortest q such that $U(q)[s]=\beta$.

In all other cases, if $D_{s-1}(\beta)$ is defined then we let $D_{s}(\beta)=D_{s-1}(\beta)$. We claim that, for each s, all the strings $D_{s}(\beta)$ are pairwise incompatible (i.e., they form a prefix-free set). For suppose that $p \prec q$, where $p=D_{s}(\beta)$ was defined at stage $u \leq s$, and $q=D_{s}(\gamma)$ was defined at stage $t \leq s$. Thus, $\beta=U(p)[u]$ and $\gamma=U(q)[t]$. By the definition of monotone machines and the minimality of q, $u<t$ and $\beta \prec \gamma$. But then, at stage t we would redefine $D_{u}(\beta)$, a contradiction. This shows the claim.

If we put an axiom $\langle r+b+1, \gamma\rangle$ into W at stage t, then for all $s \geq t, D_{s}(\gamma)$ is defined and has length at most $H(|\gamma|)[t]+b$ (by the definition of the trees $\left.T_{s}\right)$. Thus, if \widetilde{W}_{s} is the set of axioms $\langle k, \gamma\rangle$ in W_{s} where k is minimal for γ, then $w t\left(\tilde{W}_{s}\right) \leq \sum_{\gamma} 2^{-\left|D_{s}(\gamma)\right|-1} \leq 1 / 2$ by the claim above. Hence $w t\left(W_{s}\right) \leq 1$ as all axioms weigh at most twice as much as the minimal ones, and W_{s} is a KC-set for each s. Hence W is a KC-set.

Corollary 5.5 If $A \in\{0,1\}^{\omega}$ is H^{∞}-trivial then A is H-trivial, hence in Δ_{2}^{0}.
Theorem 5.6 Let $A \in\{0,1\}^{\omega}$. A is H^{∞}-trivial if and only if A is recursive.
Proof From right to left, it is easy to see that if A is a recursive sequence then A is H^{∞}-trivial. For the converse, let A be H^{∞}-trivial via some constant b. By Corollary 5.5, A is Δ_{2}^{0}, hence, there is a recursive approximation $\left(A_{s}\right)_{s \in \mathbb{N}}$ such that $\lim _{s \rightarrow \infty} A_{s}=A$. Recall that $H^{\infty}(x)[t]=\min \{|p|: U(p)[t]=x\}$. Consider the following program with coding constant c given by the Recursion Theorem:

$$
\begin{aligned}
& k:=1 ; s_{0}:=0 \text {; print } 0 \\
& \text { while } \exists s_{k}>s_{k-1} \text { such that } H^{\infty}\left(A_{s_{k}}\lceil k)\left[s_{k}\right] \leq c+b\right. \text { do } \\
& \quad \text { print } 0 \\
& \quad k:=k+1
\end{aligned}
$$

Let us see that the above program prints out infinitely many 0s. Suppose it writes 0^{k} for some k. Then, on one hand, $H^{\infty}\left(0^{k}\right) \leq c$, and on the other, $\forall s>s_{k-1}$, we have $H^{\infty}\left(A_{s} \upharpoonright k\right)[s]>c+b$. Also, $H^{\infty}\left(A_{s} \upharpoonright k\right)[s]=H^{\infty}(A \upharpoonright k)$ for s large enough. Hence, $H^{\infty}(A \upharpoonright k)>H^{\infty}\left(0^{k}\right)+b$, which contradicts that A is H^{∞}-trivial via b.

So, for each k, there is some $q \in\{0,1\}^{*}$ with $|q| \leq c+b$ such that $U(q)\left[s_{k}\right]=A_{s_{k}} \upharpoonright k$. Since there are only $2^{c+b+1}-1$ strings of length at most $c+b$, there must be at least one q such that, for infinitely many $k, U(q)\left[s_{k}\right]=A_{s_{k}} \upharpoonright k$. Let's call I the set of all these k 's. We will show that such a q necessarily computes A. Suppose not. Then, there is a t such that for all $s \geq t, U(q)[s]$ is not an initial segment of A. Thus, noticing that $\left(s_{k}\right)_{k \in \mathbb{N}}$ is increasing and I is infinite, there are infinitely many $s_{k} \geq t$ such that $k \in I$ and $U(q)\left[s_{k}\right]=A_{s_{k}} \upharpoonright k \neq A \upharpoonright k$. This contradicts that $A_{s_{k}} \upharpoonright k \rightarrow A$ when $k \rightarrow \infty$.

Corollary 5.7 The class of H^{∞}-trivial sequences is strictly included in the class of H-trivial sequences.

Proof By Corollary 5.5, any H^{∞}-trivial sequence is also H-trivial. Solovay [13] built an H-trivial sequence in Δ_{2}^{0} which is not recursive. By Theorem 5.6 this sequence cannot be H^{∞}-trivial.

5.2 H^{∞}-randomness

Definition 5.8

1. (Chaitin [2]) $A \in\{0,1\}^{\omega}$ is H-random iff $\exists c \forall n H(A \upharpoonright n)>n-c$.

Chaitin and Schnorr [2] showed that H-randomness coincides with MartinLöf randomness [11].
2. (Levin [8]) $A \in\{0,1\}^{\omega}$ is Hm-random iff $\exists c \forall n \operatorname{Hm}(A \upharpoonright n)>n-c$.
3. $A \in\{0,1\}^{\omega}$ is H^{∞}-random iff $\exists c \forall n H^{\infty}(A \upharpoonright n)>n-c$.

Using Levin's result [8] that Hm-randomness coincides with Martin-Löf randomness, and the fact that Hm gives a lower bound of H^{∞}, it follows immediately that the classes of H-random, H^{∞}-random, and Hm -random sequences coincide. For the sake of completeness we give an alternative proof.

Proposition 5.9 (with Hirschfeldt) There is a b_{0} such that for all $b \geq b_{0}$ and z, if $H m(z) \leq|z|-b$, then there is $y \preceq z$ such that $H(y) \leq|y|-b / 2$.

Proof Consider the following machine \mathcal{M} with coding constant c. On input $q p$, first it simulates $U(q)$ until it halts. Let's call b the output of this simulation. Then it simulates $U^{\infty}(p)$ till it outputs a string y of length $b+l$ where l is the length of the prefix of p read by U^{∞}. Then it writes this string y on the output and stops.

Let b_{0} be the first number such that $2\left|b_{0}\right|+c \leq b_{0} / 2$ and take $b \geq b_{0}$. Suppose $\operatorname{Hm}(z) \leq|z|-b$. Let p be a shortest program such that $U^{\infty}(p) \succeq z$ and let q be a shortest program such that $U(q)=b$. This means that $|p|=H m(z)$ and $|q|=H(b)$. On input $q p$, the machine \mathcal{M} will compute b and then it will start simulating $U^{\infty}(p)$. Since $|z| \geq \operatorname{Hm}(z)+b=|p|+b$, the machine will eventually read l bits from p in a way that the simulation of $U^{\infty}(p \upharpoonright l)=y$ and $|y|=l+b$. When this happens, the machine \mathcal{M} writes y and stops. Then for $p^{\prime}=p \upharpoonright l$, we have $M\left(q p^{\prime}\right) \downarrow=y$ and $|y|=\left|p^{\prime}\right|+b$. Hence

$$
H(y) \leq|q|+\left|p^{\prime}\right|+c \leq H(b)+|y|-b+c \leq 2|b|-b+|y|+c \leq|y|-b / 2
$$

Corollary 5.10 $A \in\{0,1\}^{\omega}$ is Martin-Löf random if and only if A is Hm-random if and only if A is H^{∞}-random.

Proof Since $H m \leq H+\mathcal{O}(1)$ it is clear that if a sequence is $H m$-random then it is Martin-Löf random. For the opposite, suppose A is Martin-Löf random but not $H m$-random. Let b_{0} be as in Proposition 5.9 and let $2 c \geq b_{0}$ be such that $\forall n H(A \upharpoonright n)>n-c$. Since A is not $H m$-random, $\forall d \exists n \operatorname{Hm}(A \mid n) \leq n-d$. In particular for $d=2 c$ there is an n such that $H m(A \mid n) \leq n-2 c$. On one hand, by Proposition 5.9, there is a $y \preceq A \mid n$ such that $H(y) \leq|y|-c$. On the other, since y is a prefix of A and A is Martin-Löf random, we have $H(y)>|y|-c$. This is a contradiction. Since $H m$ is a lower bound of H^{∞}, the above equivalence implies A is Martin-Löf random if and only if A is H^{∞}-random.

References

[1] Becher, V., S. Daicz, and G. Chaitin, "A highly random number," pp. 55-68 in Combinatorics, Computability and Logic: Proceedings of the Third Discrete Mathematics and Theoretical Computer Science Conference (DMTCS'01), edited by C. S. Calude and M. J. Dineen and S. Sburlan, Springer-Verlag, London, 2001. Zbl 0967.00065. MR 2003d:00011. 54, 55
[2] Chaitin, G. J., "A theory of program size formally identical to information theory," Journal of the Association for Computing Machinery, vol. 22 (1975), pp. 329-40. Zbl 0309.68045. MR 53:15557. 51, 54, 55, 62
[3] Chaitin, G. J., "Algorithmic entropy of sets," Computers \& Mathematics with Applications, vol. 2 (1976), pp. 233-45. Zbl 0367.68036. 52
[4] Chaitin, G. J., "Information-theoretic characterizations of recursive infinite strings," Theoretical Computer Science, vol. 2 (1976), pp. 45-48. Zbl 0328.02029. MR 54:1709. 60
[5] Downey, R. G., D. R. Hirschfeldt, A. Nies, and F. Stephan, "Trivial reals," pp. 103-31 in Proceedings of the 7th and 8th Asian Logic Conferences, Singapore University Press, Singapore, 2003. Zbl 02063218. MR 2051976. 59, 60
[6] Ferbus-Zanda, M., and S. Grigorieff, "Church, cardinal and ordinal representations of integers and kolmogorov complexity," in preparation, 2003. 59
[7] Gacs, P., "On the symmetry of algorithmic information," Soviet Mathematics, Doklady (Akademiia Nauk SSSR. Doklady), vol. 15 (1974), pp. 1477-80. Zbl 0314.94019. 54
[8] Levin, L. A., "The concept of a random sequence," Doklady Akademii Nauk SSSR, vol. 212 (1973), pp. 548-50. Zbl 0312.94006. MR 51:2346. 52, 62
[9] Levin, L. A., "Laws on the conservation (zero increase) of information, and questions on the foundations of probability theory," Problemy Peredači Informacii, vol. 10 (1974), pp. 30-35. Zbl 0312.94007. MR 57:9298. 51, 54
[10] Li, M., and P. Vitanyi, An Introduction to Kolmogorov Complexity and Its Applications, 2d edition, Graduate Texts in Computer Science. Springer-Verlag, New York, 1997. Zbl 0866.68051. MR 97k:68086. 51
[11] Martin-Löf, P., "The definition of random sequences," Information and Control, vol. 9 (1966), pp. 602-19. Zbl 0244.62008. MR 36:6228. 62
[12] Schnorr, C.-P., "Process complexity and effective random tests," Journal of Computer and System Sciences, vol. 7 (1973), pp. 376-88. Fourth Annual ACM Symposium on the Theory of Computing (Denver, Colo., 1972). Zbl 0273.68036. MR 48:3713. 51
[13] Solovay, R. M., "Draft of a paper (or series of papers) on Chaitin's work done for the most part during the period Sept. to Dec. 1974," 1974. 60, 61
[14] Uspensky, V. A., and A. Shen, "Relations between varieties of Kolmogorov complexities," Mathematical Systems Theory, vol. 29 (1996), pp. 271-92. Zbl 0849.68059. MR 97c:68074. 51
[15] Zvonkin, A. K., and L. A. Levin, "The complexity of finite objects and the basing of the concepts of information and randomness on the theory of algorithms," Uspekhi Matematicheskikh Nauk, vol. 25 (1970), pp. 85-127. Zbl 0222.02027. MR 46:7004. 51, 54

Acknowledgments

Becher is supported by Agencia Nacional de Promoción Científica y Tecnológica, Figueira by a grant of Fundación Antorchas, and Nies by the Marsden grant of New Zealand.

Depto. Computación
Facultad Cs. Exactas y Naturales
Universidad de Buenos Aires
Buenos Aires
ARGENTINA
vbecher@dc.uba.ar
Depto. Computación
Facultad Cs. Exactas y Naturales
Universidad de Buenos Aires
Buenos Aires
ARGENTINA
sfigueir@dc.uba.ar
Department of Computer Science
University of Auckland
NEW ZEALAND
andre@cs.auckland.ac.nz
Depto. Computación
Facultad Cs. Exactas y Naturales
Universidad de Buenos Aires
Buenos Aires
ARGENTINA
spicchi@dc.uba.ar

