Notre Dame Journal of Formal Logic Volume 46, Number 1, 2005

Program Size Complexity for Possibly Infinite Computations

Verónica Becher, Santiago Figueira, André Nies, and Silvana Picchi

Abstract We define a program size complexity function H^{∞} as a variant of the prefix-free Kolmogorov complexity, based on Turing monotone machines performing possibly unending computations. We consider definitions of randomness and triviality for sequences in $\{0, 1\}^{\omega}$ relative to the H^{∞} complexity. We prove that the classes of Martin-Löf random sequences and H^{∞} -random sequences coincide and that the H^{∞} -trivial sequences are exactly the recursive ones. We also study some properties of H^{∞} and compare it with other complexity functions. In particular, H^{∞} is different from H^A , the prefix-free complexity of monotone machines with oracle A.

1 Introduction

We consider monotone Turing machines (a one-way read-only input tape and a oneway write-only output tape) performing possibly infinite computations, and we define a program size complexity function H^{∞} : $\{0, 1\}^* \rightarrow \mathbb{N}$ as a variant of the classical Kolmogorov complexity: given a universal monotone machine \mathcal{U} , for any string $x \in \{0, 1\}^*$, $H^{\infty}(x)$ is the length of a shortest string $p \in \{0, 1\}^*$ read by \mathcal{U} , which produces x via a possibly infinite computation (either a halting or a nonhalting computation), having read exactly p from the input.

The classical prefix-free complexity H (Chaitin [2], Levin [9]) is an upper bound of the function H^{∞} (up to an additive constant) since the definition of H^{∞} does not require that the machine \mathcal{U} halts. We prove that H^{∞} differs from H in that it has no monotone decreasing recursive approximation and it is not subadditive.

The complexity H^{∞} is closely related with the monotone complexity Hm, independently introduced by Zvonkin and Levin [15] and Schnorr [12] (see Uspensky and Shen [14] and Li and Vitanyi [10] for historical details and differences among

Received July 23, 2003; accepted April 28, 2004; printed January 25, 2005 2000 Mathematics Subject Classification: Primary, 68Q30, 68Q05 Keywords: program size complexity, Kolmogorov complexity, infinite computations ©2005 University of Notre Dame

various monotone complexities, and see [3] for a closely related complexity of sets introduced by Chaitin). Levin defines Hm(x) as the length of the shortest halting program that provided with n ($0 \le n \le |x|$), outputs $x \upharpoonright n$. Equivalently Hm(x) can be defined as the least number of bits read by a monotone machine \mathcal{U} which via a possibly infinite computation produces any finite or infinite extension of x.

Hm is a lower bound of H^{∞} (up to an additive constant) since the definition of H^{∞} imposes that the machine \mathcal{U} reads exactly the input p and produces exactly the output x. Every recursive $A \in \{0, 1\}^{\omega}$ is the output of some monotone machine with no input, so there is some c such that $\forall n \ Hm(A \upharpoonright n) \leq c$. Moreover, there exists n_0 such that $\forall n, m \geq n_0, \ Hm(A \upharpoonright n) = Hm(A \upharpoonright m)$. We show this is not the case with H^{∞} , since for every infinite $B = \{b_1, b_2, \ldots\} \subseteq \{0, 1\}^*$, $\lim_{n \to \infty} H^{\infty}(b_n) = \infty$. This is also a property of the classical prefix-free complexity H, and we consider it as a decisive property that distinguishes H^{∞} from Hm.

The prefix-free complexity of a universal machine with oracle \emptyset' , the function $H^{\emptyset'}$, is also a lower bound of H^{∞} (up to an additive constant). We prove that for infinitely many strings x, the complexities H(x), $H^{\infty}(x)$, and $H^{\emptyset'}(x)$ separate as much as we want. This already proves that these three complexities are different. In addition we show that for every oracle A, H^{∞} differs from H^A , the prefix-free complexity of a universal machine with oracle A.

For sequences in $\{0, 1\}^{\omega}$ we consider definitions of randomness and triviality based on the H^{∞} complexity. A sequence is H^{∞} -random if its initial segments have maximal H^{∞} complexity. Since Hm gives a lower bound of H^{∞} and Hmrandomness coincides with Martin-Löf randomness (Levin [8]), the classes of Martin-Löf random, H^{∞} -random, and Hm-random coincide.

We argue for a definition of H^{∞} -trivial sequences as those whose initial segments have minimal H^{∞} complexity. While every recursive $A \in \{0, 1\}^{\omega}$ is both *H*-trivial and H^{∞} -trivial, we show that the class of H^{∞} -trivial sequences is strictly included in the class of *H*-trivial sequences. Moreover, in Theorem 5.6, the main result of the paper, we characterize the recursive sequences as those which are H^{∞} -trivial.

2 Definitions

N is the set of natural numbers, and we work with the binary alphabet $\{0, 1\}$. As usual, a string is a finite sequence of elements of $\{0, 1\}$, λ is the empty string, and $\{0, 1\}^*$ is the set of all strings. $\{0, 1\}^{\omega}$ is the set of all infinite sequences of $\{0, 1\}$, that is, the Cantor space, and $\{0, 1\}^{\leq \omega} = \{0, 1\}^* \cup \{0, 1\}^{\omega}$ is the set of all finite or infinite sequences of $\{0, 1\}$.

For $s \in \{0, 1\}^*$, |s| denotes the length of s. If $s \in \{0, 1\}^*$ and $A \in \{0, 1\}^{\omega}$ we denote by $s \upharpoonright n$ the prefix of s with length $\min\{n, |s|\}$ and by $A \upharpoonright n$ the length n prefix of the infinite sequence A. We consider the prefix ordering \leq over $\{0, 1\}^*$, that is, for $s, t \in \{0, 1\}^*$ we write $s \leq t$ if s is a prefix of t. We assume the recursive bijection *string* : $\mathbb{N} \to \{0, 1\}^*$ such that *string(i)* is the *i*th string in the length and lexicographic order over $\{0, 1\}^*$.

If f is any partial map then, as usual, we write $f(p)\downarrow$ when it is defined and $f(p)\uparrow$ otherwise.

2.1 Possibly infinite computations on monotone machines A monotone machine is a Turing machine with a one-way read-only input tape, some work tapes, and a

one-way write-only output tape. The input tape contains a first dummy cell (representing the empty input) and then a one-way infinite sequence of 0s and 1s, and initially the input head scans the leftmost dummy cell. The output tape is written one symbol of $\{0, 1\}$ at a time (the output grows with respect to the prefix ordering in $\{0, 1\}^*$ as the computational time increases).

A possibly infinite computation is either a halting or a nonhalting computation. If the machine halts, the output of the computation is the finite string written on the output tape. Else, the output is either a finite string or an infinite sequence written on the output tape as a result of a never ending process. This leads us to consider $\{0, 1\}^{\leq \omega}$ as the output space.

In this work we restrict ourselves to possibly infinite computations on monotone machines which read just finitely many symbols from the input tape.

Definition 2.1 Let \mathcal{M} be a monotone machine. M(p)[t] is the *current* output of \mathcal{M} on input p at stage t if it has not read beyond the end of p. Otherwise, $M(p)[t]\uparrow$. Notice that M(p)[t] does not require that the computation on input p halts.

Remark 2.2

- 1. If $M(p)[t]\uparrow$ then $M(q)[u]\uparrow$ for all $q \leq p$ and $u \geq t$.
- If M(p)[t]↓ then M(q)[u]↓ for any q ≥ p and u ≤ t. Also, if at stage t, M reaches a halting state without having read beyond the end of p, then M(p)[u]↓ = M(p)[t] for all u ≥ t.
- 3. Since \mathcal{M} is monotone, $M(p)[t] \leq M(p)[t+1]$, in case $M(p)[t+1]\downarrow$.
- 4. M(p)[t] has recursive domain.

Definition 2.3 Let \mathcal{M} be a monotone machine.

- 1. The input/output behavior of \mathcal{M} for *halting computations* is the partial recursive map $M : \{0, 1\}^* \to \{0, 1\}^*$ given by the usual computation of \mathcal{M} , that is, $M(p)\downarrow$ if and only if \mathcal{M} enters into a halting state on input p without reading beyond p. If $M(p)\downarrow$ then M(p) = M(p)[t] for some stage t at which \mathcal{M} entered a halting state.
- 2. The input/output behavior of \mathcal{M} for *possibly infinite computations* is the map $M^{\infty}: \{0, 1\}^* \to \{0, 1\}^{\leq \omega}$ given by $M^{\infty}(p) = \lim_{t \to \infty} M(p)[t]$.

Proposition 2.4

- 1. domain(M) is closed under extensions and its syntactical complexity is Σ_1^0 ;
- 2. domain(M^{∞}) is closed under extensions and its syntactical complexity is Π_1^0 ;
- 3. M^{∞} extends M.

Proof

- 1. is trivial.
- M[∞](p)↓ if and only if ∀t M on input p does not read p0 and does not read p1. Clearly, domain(M[∞]) is closed under extensions since if M[∞](p)↓ then M[∞](q)↓ = M[∞](p) for every q ≥ p.
- 3. Since the machine \mathcal{M} is not required to halt, M^{∞} extends M.

Remark 2.5 An alternative definition of the functions M and M^{∞} would be to consider them with prefix-free domains (instead of closed under extensions):

- $M(p)\downarrow$ if and only if at some stage $t \mathcal{M}$ enters a halting state having read exactly p. If $M(p)\downarrow$ then its value is M(p)[t] for such stage t.

Becher, Figueira, Nies, and Picchi

- $M^{\infty}(p)\downarrow$ if and only if $\exists t$ at which \mathcal{M} has read exactly p and for every $t' \mathcal{M}$ does not read p0 nor p1. If $M^{\infty}(p)\downarrow$ then its value is $\lim_{t\to\infty} M(p)[t]$.

We fix an effective enumeration of all tables of instructions. This gives an effective $(\mathcal{M}_i)_{i\in\mathbb{N}}$. We also fix the usual monotone universal machine \mathcal{U} , which defines the functions $U(0^i 1p) = M_i(p)$ and $U^{\infty}(0^i 1p) = M_i^{\infty}(p)$ for halting and possibly infinite computations, respectively. As usual, i + 1 is the coding constant of \mathcal{M}_i . Recall that U^{∞} is an extension of U. We also fix $\mathcal{U}^{\varnothing'}$ a monotone universal machine with an oracle for \varnothing' .

By Shoenfield's Limit Lemma every M^{∞} : $\{0, 1\}^* \rightarrow \{0, 1\}^*$ is recursive in \emptyset' . However, possibly infinite computations on *monotone* machines cannot compute all \emptyset' -recursive functions. For instance, the characteristic function of the halting problem cannot be computed in the limit by a monotone machine. In contrast, the Busy Beaver function in unary notation $bb : \mathbb{N} \to 1^*$:

bb(n) = the maximum number of 1s produced by any Turing machine with *n* states which halts with no input

is just \emptyset' -recursive and bb(n) is the output of a nonhalting computation which on input *n*, simulates every Turing machine with *n* states and for each one that halts updates, if necessary, the output with more 1s.

2.2 Program size complexities on monotone machines Let \mathcal{M} be a monotone machine and M, M^{∞} the respective maps for the input/output behavior of \mathcal{M} for halting computations and possibly infinite computations (Definition 2.3). We denote the usual prefix-free complexity ([2], [9], Gacs [7]) for M by $H_{\mathcal{M}} : \{0, 1\}^* \to \mathbb{N}$:

$$H_{\mathcal{M}}(x) = \begin{cases} \min\{|p|: M(p) = x\} & \text{if } x \text{ is in the range of } M\\ \infty & \text{otherwise.} \end{cases}$$

Definition 2.6 $H^{\infty}_{\mathcal{M}} : \{0, 1\}^{\leq \omega} \to \mathbb{N}$ is the program size complexity for functions M^{∞} .

$$H^{\infty}_{\mathcal{M}}(x) = \begin{cases} \min\{|p|: M^{\infty}(p) = x\} & \text{if } x \text{ is in the range of } M^{\infty} \\ \infty & \text{otherwise.} \end{cases}$$

For \mathcal{U} we drop subindexes and we simply write H and H^{∞} . The Invariance Theorem holds for H^{∞} :

 $\forall \text{ monotone machine } \mathcal{M} \exists c \forall s \in \{0, 1\}^{\leq \omega} H^{\infty}(s) \leq H^{\infty}_{\mathcal{M}}(s) + c.$

The complexity function H^{∞} was first introduced in Becher et al. [1] without a detailed study of its properties. Notice that if we take monotone machines \mathcal{M} according to Remark 2.5 instead of Definition 2.3, we obtain *the same* complexity functions $H_{\mathcal{M}}$ and $H_{\mathcal{M}}^{\infty}$.

In this work we only consider the H^{∞} complexity of finite strings, that is, we restrict our attention to H^{∞} : $\{0, 1\}^* \to \mathbb{N}$. We will compare H^{∞} with these other complexity functions:

- $H^A: \{0,1\}^* \to \mathbb{N}$ is the program size complexity function for \mathcal{U}^A , a monotone universal machine with oracle A. We pay special attention to $A = \emptyset'$.
- $Hm: \{0, 1\}^{\leq \omega} \to \mathbb{N} \text{ (see [15]), where } Hm_{\mathcal{M}}(x) = \min\{|p|: M^{\infty}(p) \geq x\} \text{ is the monotone complexity function for a monotone machine } \mathcal{M} \text{ and, as usual, for } \mathcal{U} \text{ we simply write } Hm.$

We mention some known results that will be used later.

Proposition 2.7 (For items 1 and 2 see [2], for item 3 see [1].)

∀s ∈ {0, 1}* H(s) ≤ |s| + H(|s|) + O(1);
 ∀n ∃s ∈ {0, 1}* of length n such that

 (a) H(s) ≥ n,
 (b) H^{Ø'}(s) ≥ n;
 ∀s ∈ {0, 1}* H^{Ø'}(s) < H[∞](s) + O(1) and H[∞](s) < H(s) + O(1).

3 H^{∞} Is Different From H

The following properties of H^{∞} are in the spirit of those of H.

Proposition 3.1 For all strings s and t,

- 1. $H(s) \le H^{\infty}(s) + H(|s|) + \mathcal{O}(1),$
- 2. $\#\{s \in \{0, 1\}^* : H^{\infty}(s) \le n\} < 2^{n+1}$,
- 3. $H^{\infty}(ts) < H^{\infty}(s) + H(t) + \mathcal{O}(1),$
- 4. $H^{\infty}(s) \leq H^{\infty}(st) + H(|t|) + \mathcal{O}(1),$
- 5. $H^{\infty}(s) \leq H^{\infty}(st) + H^{\infty}(|s|) + \mathcal{O}(1).$

Proof

- 1. Let $p, q \in \{0, 1\}^*$ such that $U^{\infty}(p) = s$ and U(q) = |s|. Then there is a machine that first simulates U(q) to obtain |s|, then starts a simulation of $U^{\infty}(p)$ writing its output on the output tape, until it has written |s| symbols, and then halts.
- 2. There are at most $2^{n+1} 1$ strings of length $\leq n$.
- 3. Let $p, q \in \{0, 1\}^*$ such that $U^{\infty}(p) = s$ and U(q) = t. Then there is a machine that first simulates U(q) until it halts and prints U(q) on the output tape. Then it starts a simulation of $U^{\infty}(p)$ writing its output on the output tape.
- 4. Let p, q ∈ {0, 1}* such that U[∞](p) = st and U(q) = |t|. Then there is a machine that first simulates U(q) until it halts to obtain |t|. Then it starts a simulation of U[∞](p) such that at each stage n of the simulation it writes the symbols needed to leave U(p)[n][(|U(p)[n]| |t|) on the output tape.
- 5. Consider the following monotone machine:

 $t := 1; v := \lambda; w := \lambda$

repeat

if U(v)[t] asks for reading then append to v the next bit in the input

if U(w)[t] asks for reading then append to w the next bit in the input

extend the actual output to $U(w)[t] \upharpoonright (U(v)[t])$

t := t + 1

If p and q are shortest programs such that $U^{\infty}(p) = |s|$ and $U^{\infty}(q) = st$, respectively, then we can interleave p and q in a way such that at each stage t, $v \leq p$ and $w \leq q$ (notice that eventually v = p and w = q). Thus, this machine will compute s and will never read more than $H^{\infty}(st)+H^{\infty}(|s|)$ bits.

H is recursively approximable from above, but H^{∞} is not.

Proposition 3.2 There is no effective decreasing approximation of H^{∞} .

Proof Suppose there is a recursive function $h : \{0, 1\}^* \times \mathbb{N} \to \mathbb{N}$ such that for every string *s*, $\lim_{t\to\infty} h(s, t) = H^{\infty}(s)$ and for all $t \in \mathbb{N}$, $h(s, t) \ge h(s, t+1)$. We write $h_t(s)$ for h(s, t). Consider the monotone machine \mathcal{M} with coding constant *d* given by the Recursion Theorem, which on input *p* does the following:

t := 1; print 0 repeat forever n := number of bits read by U(p)[t]for each string *s* not yet printed, $|s| \le t$ and $h_t(s) \le n + d$ print *s* t := t + 1

Let p be a program such that $U^{\infty}(p) = k$ and $|p| = H^{\infty}(k)$. Notice that, as $t \to \infty$, the number of bits read by U(p)[t] goes to $|p| = H^{\infty}(k)$. Let t_0 be such that for all $t \ge t_0$, U(p)[t] reads no more from the input. Since there are only finitely many strings s such that $H^{\infty}(s) \le H^{\infty}(k) + d$, there is a $t_1 \ge t_0$ such that for all $t \ge t_1$ and for all those strings s, $h_t(s) = H^{\infty}(s)$. Hence, every string s with $H^{\infty}(s) \le H^{\infty}(k) + d$ will be printed.

Let $z = M^{\infty}(p)$. On one hand, we have $H^{\infty}(z) \leq |p| + d = H^{\infty}(k) + d$. On the other hand, by the construction of \mathcal{M} , z cannot be the output of a program of length $\leq H^{\infty}(k) + d$ (because z is different from each string s such that $H^{\infty}(s) \leq H^{\infty}(k) + d$). So it must be that $H^{\infty}(z) > H^{\infty}(k) + d$, a contradiction.

The following lemma states a critical property that distinguishes H^{∞} from H. It implies that H^{∞} is not subadditive, that is, it is not the case that $H^{\infty}(st) \leq H^{\infty}(s) + H^{\infty}(t) + \mathcal{O}(1)$. It also implies that H^{∞} is not invariant under recursive permutations $\{0, 1\}^* \rightarrow \{0, 1\}^*$.

Lemma 3.3 For every total recursive function f there is a natural k such that

$$H^{\infty}(0^{k}1) > f(H^{\infty}(0^{k})).$$

Proof Let f be any recursive function and \mathcal{M} the following monotone machine with coding constant d given by the Recursion Theorem:

$$\begin{split} t &:= 1 \\ \text{do forever} \\ &\text{for each } p \text{ such that } |p| \leq \max\{f(i): 0 \leq i \leq d\} \\ &\text{if } U(p)[t] = 0^j 1 \text{ then} \\ &\text{print enough 0s to leave at least } 0^{j+1} \text{ on the output tape} \\ &t:= t+1 \end{split}$$

Let $N = \max\{f(i) : 0 \le i \le d\}$. We claim there is a k such that $M^{\infty}(\lambda) = 0^k$. Since there are only finitely many programs of length less than or equal to N which output a string of the form $0^j 1$ for some j, then there is some stage at which \mathcal{M} has written 0^k , with k greater than all such j's, and then it prints nothing else. Therefore, there is no program p with $|p| \le N$ such that $U^{\infty}(p) = 0^k 1$.

If $M^{\infty}(\lambda) = 0^k$ then $H^{\infty}(0^k) \leq d$. So, $f(H^{\infty}(0^k)) \leq N$. Also, for this k, there is no program of length $\leq N$ that outputs $0^k 1$ and thus $H^{\infty}(0^k 1) > N$. Hence, $H^{\infty}(0^k 1) > f(H^{\infty}(0^k))$.

Note that $H(0^k) = H(0^k 1) = H^{\infty}(0^k 1)$ up to additive constants, so the above lemma gives an example where H^{∞} is much smaller than H.

Proposition 3.4

- 1. H^{∞} is not subadditive.
- 2. It is not the case that for every recursive one-one $g : \{0, 1\}^* \to \{0, 1\}^*$ $\exists c \forall s | H^{\infty}(g(s)) - H^{\infty}(s) | \leq c.$

Proof

- 1. Let f be the recursive injection f(n) = n + c. By Lemma 3.3 there is k such that $H^{\infty}(0^k 1) > H^{\infty}(0^k) + c$. Since the last inequality holds for every c, it is not true that $H^{\infty}(0^k 1) \le H^{\infty}(0^k) + \mathcal{O}(1)$.
- 2. It is immediate from Lemma 3.3.

It is known that the complexity *H* is smooth in the length and lexicographic order over $\{0, 1\}^*$ in the sense that |H(string(n)) - H(string(n + 1))| = O(1). However, this is not the case for H^{∞} .

Proposition 3.5

- 1. H^{∞} is not smooth in the length and lexicographical order over $\{0, 1\}^*$.
- 2. $\forall n | H^{\infty}(string(n)) H^{\infty}(string(n+1))| \le H(|string(n)|) + \mathcal{O}(1).$

Proof

- 1. Notice that $\forall n > 1$, $H^{\infty}(0^n 1) \le H^{\infty}(0^{n-1}1) + \mathcal{O}(1)$, because if $U^{\infty}(p) = 0^{n-1}1$ then there is a machine that first writes a 0 on the output tape and then simulates $U^{\infty}(p)$. By Lemma 3.3, for each *c* there is an *n* such that $H^{\infty}(0^n 1) > H^{\infty}(0^n) + c$. Joining the two inequalities, we obtain $\forall c \exists n \ H^{\infty}(0^{n-1}1) > H^{\infty}(0^n) + c$. Since $string^{-1}(0^{n-1}1) = string^{-1}(0^n) + 1$, H^{∞} is not smooth.
- 2. Consider the following monotone machine \mathcal{M} with input pq:

obtain y = U(p)simulate $z = U^{\infty}(q)$ till it outputs y bits write *string*(*string*⁻¹(z) + 1)

Let $p, q \in \{0, 1\}^*$ such that U(p) = |string(n)| and $U^{\infty}(q) = string(n)$. Then, $M^{\infty}(pq) = string(n+1)$ and

 $H^{\infty}(string(n+1)) \le H^{\infty}(string(n)) + H(|string(n)|) + \mathcal{O}(1).$

Similarly, if \mathcal{M} , instead of writing $string(string^{-1}(z) + 1)$, writes $string(string^{-1}(z) - 1)$, we conclude

 $H^{\infty}(string(n)) \le H^{\infty}(string(n+1)) + H(|string(n+1)|) + \mathcal{O}(1).$ Since $|H(|string(n)|) - H(|string(n+1)|)| = \mathcal{O}(1)$, it follows that

 $|H^{\infty}(string(n)) - H^{\infty}(string(n+1))| \le H(|string(n)|) + \mathcal{O}(1).$

Becher, Figueira, Nies, and Picchi

4 H^{∞} is Different From H^A for Every Oracle A

Item 3 of Proposition 2.7 states that H^{∞} is between H and $H^{\emptyset'}$. The following result shows that H^{∞} is really strictly in between them.

Proposition 4.1 For every *c* there is a string $s \in \{0, 1\}^*$ such that

$$H^{\varnothing'}(s) + c < H^{\infty}(s) < H(s) - c.$$

Proof Let $u_n = \min\{s \in \{0, 1\}^n : H(s) \ge n\}$ and let $A = \{a_0, a_1, \ldots\}$ be any infinite r.e. set and consider a machine \mathcal{M} which on input *i* does the following:

$$j := 0$$

repeat
write a_j
find a program $p, |p| \le 3i$, such that $U(p) = a_j$
 $j := j + 1$

 $M^{\infty}(i)$ outputs the string $v_i = a_0 a_1 \dots a_{k_i}$, where $H(a_{k_i}) > 3i$ and for all z, $0 \le z < k_i$ we have $H(a_z) \le 3i$. We define $w_i = u_i v_i$. Let's see that both $H^{\infty}(w_i) - H^{\varnothing'}(w_i)$ and $H(w_i) - H^{\infty}(w_i)$ grow arbitrarily.

On one hand, we can construct a machine which on input *i* and *p* executes $U^{\infty}(p)$ till it outputs *i* bits and then halts. Since the first *i* bits of w_i are u_i and $H(i) \leq 2|i| + \mathcal{O}(1)$, we have $i \leq H(u_i) \leq H^{\infty}(w_i) + 2|i| + \mathcal{O}(1)$. But with the help of the \mathscr{O}' -oracle we can compute w_i from *i*, so $H^{\mathscr{O}'}(w_i) \leq 2|i| + \mathcal{O}(1)$. Thus we have $H^{\infty}(w_i) - H^{\mathscr{O}'}(w_i) \geq i - 4|i| - \mathcal{O}(1)$.

On the other hand, given *i* and w_i , we can effectively compute a_{k_i} . Hence, $\forall i$ we have $3i < H(a_{k_i}) \leq H(w_i) + 2|i| + O(1)$. Also, given u_i , we can compute w_i in the limit using the idea of machine \mathcal{M} , and hence $H^{\infty}(w_i) \leq 2|u_i| + O(1) = 2i + O(1)$. Then, for all *i*

$$H(w_i) - H^{\infty}(w_i) > i - 2|i| - \mathcal{O}(1).$$

Not only H^{∞} is different from $H^{\emptyset'}$ but it differs from H^A (the prefix-free complexity of a universal monotone machine with oracle A), for every A.

Theorem 4.2 There is no oracle A such that $|H^{\infty} - H^{A}| \leq \mathcal{O}(1)$.

Proof Immediate from Lemma 3.3 and from the standard result that for all A, H^A is subadditive so, in particular, for every k, $H^A(0^k 1) \le H^A(0^k) + \mathcal{O}(1)$.

5 H^{∞} and the Cantor Space

The advantage of H^{∞} over H can be seen along the initial segments of every recursive sequence: if $A \in \{0, 1\}^{\omega}$ is recursive then there are infinitely many n's such that $H(A \upharpoonright n) - H^{\infty}(A \upharpoonright n) > c$, for an arbitrary c.

Proposition 5.1 Let $A \in \{0, 1\}^{\omega}$ be a recursive sequence. Then

- 1. $\limsup_{n \to \infty} H(A \restriction n) H^{\infty}(A \restriction n) = \infty;$
- 2. $\limsup_{n \to \infty} H^{\infty}(A \restriction n) Hm(A \restriction n) = \infty$.

Proof

 Let A(n) be the nth bit of A. Let's consider the following monotone machine *M* with input p:

> obtain n := U(p)write $A \upharpoonright (string^{-1}(0^n) - 1)$ for $s := 0^n$ to 1^n in lexicographic order write $A(string^{-1}(s))$ search for a program p such that |p| < n and U(p) = s

If U(p) = n, then $M^{\infty}(p)$ outputs $A | k_n$ for some k_n such that $2^n \le k_n < 2^{n+1}$, since for all *n* there is a string of length *n* with *H*-complexity greater than or equal to *n*. Let us fix *n*. On one hand, $H^{\infty}(A | k_n) \le H(n) + \mathcal{O}(1)$. On the other, $H(A | k_n) \ge n + \mathcal{O}(1)$, because we can compute the first string in the lexicographic order with *H*-complexity $\ge n$ from a program for $A | k_n$. Hence, for each n, $H(A | k_n) - H^{\infty}(A | k_n) \ge n - H(n) + \mathcal{O}(1)$.

2. Trivial because for each recursive sequence A there is a constant c such that $Hm(A \restriction n) \leq c$ and $\lim_{n \to \infty} H^{\infty}(B \restriction n) = \infty$ for every $B \in \{0, 1\}^{\omega}$. \Box

5.1 *H*-triviality and H^{∞} -triviality There is a standard convention to use *H* with arguments in \mathbb{N} . That is, for any $n \in \mathbb{N}$, H(n) is written instead of H(f(n)) where *f* is some particular representation of natural numbers on $\{0, 1\}^*$. This convention makes sense because *H* is invariant (up to a constant) for any recursive representation of natural numbers.

H-triviality has been defined as follows (see Downey et al. [5]): $A \in \{0, 1\}^{\omega}$ is *H*-trivial if and only if there is a constant *c* such that for all *n*, $H(A | n) \leq H(n) + c$. The idea is that *H*-trivial sequences are exactly those whose initial segments have minimal *H*-complexity. Considering the above convention, *A* is *H*-trivial if and only if $\exists c \forall n \ H(A | n) \leq H(0^n) + c$.

In general H^{∞} is not invariant for recursive representations of \mathbb{N} . We propose the following definition that insures that recursive sequences are H^{∞} -trivial.

Definition 5.2 $A \in \{0, 1\}^{\omega}$ is H^{∞} -trivial if and only if $\exists c \forall n \ H^{\infty}(A \upharpoonright n) \leq H^{\infty}(0^n) + c$.

Our choice of the right-hand side of the above definition is supported by the following proposition (see Ferbus-Zanda and Grigorieff [6] for further discussion).

Proposition 5.3 Let $f : \mathbb{N} \to \{0, 1\}^*$ be recursive and strictly increasing with respect to the length and lexicographical order over $\{0, 1\}^*$. Then

$$\forall n \ H^{\infty}(0^n) \le H^{\infty}(f(n)) + \mathcal{O}(1).$$

Proof Notice that, since f is strictly increasing, f has recursive range. We construct a monotone machine \mathcal{M} with input p:

```
t := 0
repeat
if U(p)[t]\downarrow is in the range of f then n := f^{-1}(U(p)[t])
print the needed 0's to leave 0^n on the output tape
t := t + 1
```

Since *f* is increasing in the length and lexicographic order over $\{0, 1\}^*$, if *p* is a program for \mathcal{U} such that $U^{\infty}(p) = f(n)$, then $M^{\infty}(p) = 0^n$.

Chaitin observed that every recursive $A \in \{0, 1\}^{\omega}$ is *H*-trivial (Chaitin [4]) and that *H*-trivial sequences are Δ_2^0 . However, *H*-triviality does not characterize the class Δ_1^0 of recursive sequences: Solovay [13] constructed a Δ_2^0 sequence which is *H*-trivial but not recursive (see also [5] for the construction of a strongly computably enumerable real with the same properties). Our next result implies that H^{∞} -trivial sequences are Δ_2^0 , and Theorem 5.6 characterizes Δ_1^0 as the class of H^{∞} -trivial sequences.

Theorem 5.4 Suppose that A is a sequence such that, for some $b \in \mathbb{N}$, $\forall n \ H^{\infty}(A \mid n) \leq H(n) + b$. Then A is H-trivial.

Proof An r.e. set $W \subseteq \mathbb{N} \times 2^{<\omega}$ is a *Kraft-Chaitin set* (KC-set) if

$$\sum_{(r,v)\in W} 2^{-r} \le 1.$$

For any $E \subseteq W$, let the *weight* of E be $wt(E) = \sum \{2^{-r} : \langle r, n \rangle \in E\}$. The pairs enumerated into such a set W are called *axioms*. Chaitin proved that from a Kraft-Chaitin set W one may obtain a prefix machine M_d such that $\forall \langle r, y \rangle \in W \exists w (|w| = r \land M_d(w) = y)$.

The idea is to define a Δ_2^0 tree *T* such that $A \in [T]$, and a KC-set *W* showing that each path of *T* is *H*-trivial. For $x \in \{0, 1\}^*$ and $t \in \mathbb{N}$, let

$$H^{\infty}(x)[t] = \min\{|p| : U(p)[t] = x\} \text{ and}$$

$$H(x)[t] = \min\{|p| : U(p)[t] = x \text{ and } U(p) \text{ halts in at most } t \text{ steps}\}$$

be effective approximations of H^{∞} and H. Notice that for all $x \in \{0, 1\}^*$, $\lim_{t\to\infty} H^{\infty}(x)[t] = H^{\infty}(x)$ and $\lim_{t\to\infty} H(x)[t] = H(x)$.

Given s, let

$$T_s = \{ \gamma : |\gamma| < s \land \forall m \le |\gamma| \ H^{\infty}(\gamma \restriction m)[s] \le H(m)[s] + b \},$$

then $(T_s)_{s\in\mathbb{N}}$ is an effective approximation of a Δ_2^0 tree T, and [T] is the class of sequences A satisfying $\forall n \ H^{\infty}(A \upharpoonright n) \leq H(n) + b$. Let $r = H(|\gamma|)[s]$. We define a KC-set W as follows: if $\gamma \in T_s$ and either there is u < s greatest such that $\gamma \in T_u$ and $r < H(|\gamma|)[u]$, or $\gamma \notin T_u$ for all u < s, then put an axiom $\langle r + b + 1, \gamma \rangle$ into W.

Once we show that W is indeed a KC-set, we are done: by Chaitin's result, there is d such that $\langle k, \gamma \rangle \in W$ implies $H(\gamma) \leq k + d$. Thus, if $A \in [T]$, then $H(\gamma) \leq H(|\gamma|) + b + d + 1$ for each initial segment γ of A.

To show that W is a KC-set, define strings $D_s(\gamma)$ as follows. When we put an axiom $\langle r + b + 1, \gamma \rangle$ into W at stage s,

- let $D_s(\gamma)$ be a shortest p such that $U(p)[s] = \gamma$ (recall from Definition 2.1 that it is not required that U halts at stage s),
- if β ≺ γ, we haven't defined D_s(β) yet and D_{s-1}(β) is defined as a prefix of p, then let D_s(β) be a shortest q such that U(q)[s] = β.

In all other cases, if $D_{s-1}(\beta)$ is defined then we let $D_s(\beta) = D_{s-1}(\beta)$. We claim that, for each s, all the strings $D_s(\beta)$ are pairwise incompatible (i.e., they form a prefix-free set). For suppose that $p \prec q$, where $p = D_s(\beta)$ was defined at stage $u \leq s$, and $q = D_s(\gamma)$ was defined at stage $t \leq s$. Thus, $\beta = U(p)[u]$ and $\gamma = U(q)[t]$. By the definition of monotone machines and the minimality of q, u < t and $\beta \prec \gamma$. But then, at stage t we would redefine $D_u(\beta)$, a contradiction. This shows the claim.

If we put an axiom $\langle r + b + 1, \gamma \rangle$ into W at stage t, then for all $s \ge t$, $D_s(\gamma)$ is defined and has length at most $H(|\gamma|)[t] + b$ (by the definition of the trees T_s). Thus, if \widetilde{W}_s is the set of axioms $\langle k, \gamma \rangle$ in W_s where k is minimal for γ , then $wt(\widetilde{W}_s) \le \sum_{\gamma} 2^{-|D_s(\gamma)|-1} \le 1/2$ by the claim above. Hence $wt(W_s) \le 1$ as all axioms weigh at most twice as much as the minimal ones, and W_s is a KC-set for each s. Hence W is a KC-set.

Corollary 5.5 If $A \in \{0, 1\}^{\omega}$ is H^{∞} -trivial then A is H-trivial, hence in Δ_2^0 .

Theorem 5.6 Let $A \in \{0, 1\}^{\omega}$. A is H^{∞} -trivial if and only if A is recursive.

Proof From right to left, it is easy to see that if A is a recursive sequence then A is H^{∞} -trivial. For the converse, let A be H^{∞} -trivial via some constant b. By Corollary 5.5, A is Δ_2^0 , hence, there is a recursive approximation $(A_s)_{s \in \mathbb{N}}$ such that $\lim_{s \to \infty} A_s = A$. Recall that $H^{\infty}(x)[t] = \min\{|p| : U(p)[t] = x\}$. Consider the following program with coding constant c given by the Recursion Theorem:

k := 1; $s_0 := 0$; print 0 while $\exists s_k > s_{k-1}$ such that $H^{\infty}(A_{s_k} \restriction k)[s_k] \le c + b$ do print 0 k := k + 1

Let us see that the above program prints out infinitely many 0s. Suppose it writes 0^k for some k. Then, on one hand, $H^{\infty}(0^k) \leq c$, and on the other, $\forall s > s_{k-1}$, we have $H^{\infty}(A_s \restriction k)[s] > c + b$. Also, $H^{\infty}(A_s \restriction k)[s] = H^{\infty}(A \restriction k)$ for s large enough. Hence, $H^{\infty}(A \restriction k) > H^{\infty}(0^k) + b$, which contradicts that A is H^{∞} -trivial via b.

So, for each k, there is some $q \in \{0,1\}^*$ with $|q| \leq c + b$ such that $U(q)[s_k] = A_{s_k} \upharpoonright k$. Since there are only $2^{c+b+1} - 1$ strings of length at most c+b, there must be at least one q such that, for *infinitely many* k, $U(q)[s_k] = A_{s_k} \upharpoonright k$. Let's call I the set of all these k's. We will show that such a q necessarily computes A. Suppose not. Then, there is a t such that for all $s \geq t$, U(q)[s] is not an initial segment of A. Thus, noticing that $(s_k)_{k\in\mathbb{N}}$ is increasing and I is infinite, there are infinitely many $s_k \geq t$ such that $k \in I$ and $U(q)[s_k] = A_{s_k} \upharpoonright k \neq A \upharpoonright k$. This contradicts that $A_{s_k} \upharpoonright k \to A$ when $k \to \infty$.

Corollary 5.7 The class of H^{∞} -trivial sequences is strictly included in the class of *H*-trivial sequences.

Proof By Corollary 5.5, any H^{∞} -trivial sequence is also *H*-trivial. Solovay [13] built an *H*-trivial sequence in Δ_2^0 which is not recursive. By Theorem 5.6 this sequence cannot be H^{∞} -trivial.

5.2 H^{∞} -randomness

Definition 5.8

- (Chaitin [2]) A ∈ {0, 1}^ω is *H*-random iff ∃c ∀n H(A |n) > n − c. Chaitin and Schnorr [2] showed that *H*-randomness coincides with Martin-Löf randomness [11].
- 2. (Levin [8]) $A \in \{0, 1\}^{\omega}$ is *Hm*-random iff $\exists c \forall n \ Hm(A \mid n) > n c$.
- 3. $A \in \{0, 1\}^{\omega}$ is H^{∞} -random iff $\exists c \forall n \ H^{\infty}(A \upharpoonright n) > n c$.

Using Levin's result [8] that Hm-randomness coincides with Martin-Löf randomness, and the fact that Hm gives a lower bound of H^{∞} , it follows immediately that the classes of H-random, H^{∞} -random, and Hm-random sequences coincide. For the sake of completeness we give an alternative proof.

Proposition 5.9 (with Hirschfeldt) There is a b_0 such that for all $b \ge b_0$ and z, if $Hm(z) \le |z| - b$, then there is $y \le z$ such that $H(y) \le |y| - b/2$.

Proof Consider the following machine \mathcal{M} with coding constant c. On input qp, first it simulates U(q) until it halts. Let's call b the output of this simulation. Then it simulates $U^{\infty}(p)$ till it outputs a string y of length b + l where l is the length of the prefix of p read by U^{∞} . Then it writes this string y on the output and stops.

Let b_0 be the first number such that $2|b_0| + c \le b_0/2$ and take $b \ge b_0$. Suppose $Hm(z) \le |z| - b$. Let p be a shortest program such that $U^{\infty}(p) \ge z$ and let q be a shortest program such that $U(q) \ge b$. This means that |p| = Hm(z) and |q| = H(b). On input qp, the machine \mathcal{M} will compute b and then it will start simulating $U^{\infty}(p)$. Since $|z| \ge Hm(z) + b = |p| + b$, the machine will eventually read l bits from p in a way that the simulation of $U^{\infty}(p|l) = y$ and |y| = l + b. When this happens, the machine \mathcal{M} writes y and stops. Then for p' = p|l, we have $M(qp') \downarrow = y$ and |y| = |p'| + b. Hence

$$H(y) \le |q| + |p'| + c \le H(b) + |y| - b + c \le 2|b| - b + |y| + c \le |y| - b/2.$$

Corollary 5.10 $A \in \{0, 1\}^{\omega}$ is Martin-Löf random if and only if A is Hm-random if and only if A is H^{∞} -random.

Proof Since $Hm \leq H + O(1)$ it is clear that if a sequence is Hm-random then it is Martin-Löf random. For the opposite, suppose A is Martin-Löf random but not Hm-random. Let b_0 be as in Proposition 5.9 and let $2c \geq b_0$ be such that $\forall n \ H(A \mid n) > n - c$. Since A is not Hm-random, $\forall d \ \exists n \ Hm(A \mid n) \leq n - d$. In particular for d = 2c there is an n such that $Hm(A \mid n) \leq n - 2c$. On one hand, by Proposition 5.9, there is a $y \leq A \mid n$ such that $H(y) \leq |y| - c$. On the other, since y is a prefix of A and A is Martin-Löf random, we have H(y) > |y| - c. This is a contradiction. Since Hm is a lower bound of H^{∞} , the above equivalence implies Ais Martin-Löf random if and only if A is H^{∞} -random.

References

- Becher, V., S. Daicz, and G. Chaitin, "A highly random number," pp. 55–68 in *Combinatorics, Computability and Logic: Proceedings of the Third Discrete Mathematics and Theoretical Computer Science Conference (DMTCS'01)*, edited by C. S. Calude and M. J. Dineen and S. Sburlan, Springer-Verlag, London, 2001. Zbl 0967.00065. MR 2003d:00011. 54, 55
- [2] Chaitin, G. J., "A theory of program size formally identical to information theory," *Journal of the Association for Computing Machinery*, vol. 22 (1975), pp. 329–40. Zbl 0309.68045. MR 53:15557. 51, 54, 55, 62
- [3] Chaitin, G. J., "Algorithmic entropy of sets," Computers & Mathematics with Applications, vol. 2 (1976), pp. 233–45. Zbl 0367.68036. 52
- [4] Chaitin, G. J., "Information-theoretic characterizations of recursive infinite strings," *Theoretical Computer Science*, vol. 2 (1976), pp. 45–48. Zbl 0328.02029. MR 54:1709. 60
- [5] Downey, R. G., D. R. Hirschfeldt, A. Nies, and F. Stephan, "Trivial reals," pp. 103–31 in *Proceedings of the 7th and 8th Asian Logic Conferences*, Singapore University Press, Singapore, 2003. Zbl 02063218. MR 2051976. 59, 60
- [6] Ferbus-Zanda, M., and S. Grigorieff, "Church, cardinal and ordinal representations of integers and kolmogorov complexity," in preparation, 2003. 59
- [7] Gacs, P., "On the symmetry of algorithmic information," Soviet Mathematics, Doklady (Akademiia Nauk SSSR. Doklady), vol. 15 (1974), pp. 1477–80. Zbl 0314.94019. 54
- [8] Levin, L. A., "The concept of a random sequence," *Doklady Akademii Nauk SSSR*, vol. 212 (1973), pp. 548–50. Zbl 0312.94006. MR 51:2346. 52, 62
- [9] Levin, L. A., "Laws on the conservation (zero increase) of information, and questions on the foundations of probability theory," *Problemy Peredači Informacii*, vol. 10 (1974), pp. 30–35. Zbl 0312.94007. MR 57:9298. 51, 54
- [10] Li, M., and P. Vitanyi, An Introduction to Kolmogorov Complexity and Its Applications, 2d edition, Graduate Texts in Computer Science. Springer-Verlag, New York, 1997. Zbl 0866.68051. MR 97k:68086. 51
- [11] Martin-Löf, P., "The definition of random sequences," *Information and Control*, vol. 9 (1966), pp. 602–19. Zbl 0244,62008. MR 36:6228.
- [12] Schnorr, C.-P., "Process complexity and effective random tests," *Journal of Computer and System Sciences*, vol. 7 (1973), pp. 376–88. Fourth Annual ACM Symposium on the Theory of Computing (Denver, Colo., 1972). Zbl 0273.68036. MR 48:3713. 51
- [13] Solovay, R. M., "Draft of a paper (or series of papers) on Chaitin's work done for the most part during the period Sept. to Dec. 1974," 1974. 60, 61
- [14] Uspensky, V. A., and A. Shen, "Relations between varieties of Kolmogorov complexities," *Mathematical Systems Theory*, vol. 29 (1996), pp. 271–92. Zbl 0849.68059. MR 97c:68074. 51
- [15] Zvonkin, A. K., and L. A. Levin, "The complexity of finite objects and the basing of the concepts of information and randomness on the theory of algorithms," *Uspekhi Matematicheskikh Nauk*, vol. 25 (1970), pp. 85–127. Zbl 0222.02027. MR 46:7004. 51, 54

Acknowledgments

Becher is supported by Agencia Nacional de Promoción Científica y Tecnológica, Figueira by a grant of Fundación Antorchas, and Nies by the Marsden grant of New Zealand.

Depto. Computación Facultad Cs. Exactas y Naturales Universidad de Buenos Aires Buenos Aires ARGENTINA vbecher@dc.uba.ar

Depto. Computación Facultad Cs. Exactas y Naturales Universidad de Buenos Aires Buenos Aires ARGENTINA sfigueir@dc.uba.ar

Department of Computer Science University of Auckland NEW ZEALAND andre@cs.auckland.ac.nz

Depto. Computación Facultad Cs. Exactas y Naturales Universidad de Buenos Aires Buenos Aires ARGENTINA spicchi@dc.uba.ar