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Linear Reducts of the Complex Field

James Loveys

Abstract A reduct of a first-order structure is another structure on the same

set with perhaps fewer definable predicates. We consider reducts of the complex

field which are proper (not essentially the whole field) but nontrivial in a sense

to be made precise below. Our main result (the summary that is Theorem 7.1)

lists seven kinds of reducts. The list is complete in the sense that every reduct is

a finite cover of one of these. We also investigate when two items on our list can

be the same, in a couple of natural senses.

1 A Little Basic Model Theory

Here our purpose is to outline certain basics of model theory for those unfamiliar with

the subject. Those who know the territory may want to skim this section quickly for

the purposes of notation, and the precise definition of reduct we use.

We will explain the notion of a (first-order, relational) structure in a little detail.

Such an animal consists of a fixed set (say M) together with certain distinguished

subsets of Mn for various natural numbers n. There are no a priori restrictions on

which subsets we choose to distinguish. For each of these predicates on M we in-

troduce a symbol. If {Pi : i ∈ I } lists these and Ri = Pi (M) is the corresponding

subset of Mn , we will denote the structure M = (M; Ri : i ∈ I ). Here and every-

where else the corresponding roman letter is used to denote the underlying set of the

structure represented by a script letter. In case the structure is understood, we may

use Pi for both the predicate symbol and the set it carves out of Mn . If necessary (say

we are talking about two different structures at the same time), we will emphasize

that we are considering Pi as applied to M by writing Pi (M). When we do consider

two different structures M and N for the same symbol Pi we will always assume

that the number n so that Pi (M) ⊆ Mn is the same n so that Pi (N ) ⊆ Nn . The

collection of symbols {Pi : i ∈ I } is known as the signature or similarity type of the

structure (actually of its language).
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We will frequently also include symbols for functions f from Mn to M; it is

standard in model theory to include these as part of the basic paraphernalia of a

structure, but that will not be of concern here. If we do this, take the symbol f

as shorthand for its graph. The sets Pi (M) are called basic 0-definable sets; the

expression Pi (x1, . . . , xn) is the atomic formula which defines the set. The one other

basic 0-definable set is {(x, x) : x ∈ M} with defining formula x1 = x2; we will

never explicitly include equality among our basic symbols, but it’s always there. The

set M is 0-definable, by ∃x2(x1 = x2), for example.

Other 0-definable sets are formed (by induction) as follows. If A ⊆ Mn is 0-

definable via the formula χ(x1, . . . , xn) and π is a permutation of {1, . . . , n}, then

the set {(aπ(1), . . . , aπ(n)) : (a1, . . . , an) ∈ A} is also 0-definable, via the formula

χ(xπ(1), . . . , xπ(n)). A × M is 0-definable via (say) χ(x̄) ∧ xn+1 = xn+1. Mn \ A

is 0-definable via ¬χ(x̄). If B is another 0-definable subset of Mn , say by the for-

mula ρ(x̄), then A ∪ B is 0-definable via the formula χ(x̄) ∨ ρ(x̄). Finally, the

set {(a1, . . . , an−1) : (a1, . . . , an−1, an) ∈ A for some an ∈ M} is 0-definable via

∃xnχ(x̄). All 0-definable sets are formed by iterating these operations finitely often,

starting from the basic Pi s. (As are, formally, all formulas without parameters. But

we will feel no compunction about writing χ ∧ ρ or ∀xχ and considering them for-

mulas with the obvious interpretations.) If, as above, A is defined by χ(x̄) as above,

we write A = χ(M) and also M |H χ(ā) for ā ∈ A. As above, if we have more

than one structure M for the same signature, we will use this to emphasize that we

are considering the subset of Mn picked out by the formula.

You may have been wondering about the “0” in “0-definable”. If we have a

formula without parameters χ(x1, . . . , xn, xn+1, . . . , xn+m) as described above and

ā ∈ Mm , then we have the formula χ(x1, . . . , xn, ā) with parameters ā and the ā-

definable set {b̄ ∈ Mn : (b̄, ā) ∈ χ(M)}. A set is definable if it is definable with or

without using parameters. Usually it will not matter for us. We will never again be

so careful about variables (the xi ’s) and formulas. For us, the crucial concept is the

collection of definable sets.

We say M is a substructure of N if the two structures have the same signa-

ture, M ⊆ N , and for any P in that signature P(M) = P(N ) ∩ Mn for the

appropriate n. If further, for any formula without parameters χ(x̄), we have that

χ(M) = χ(N ) ∩ Mn , then we say that M is an elementary substructure of N .

The crucial point of this last definition is in the case χ begins with an existential

quantifier. If N |H ∃xρ(x, ā) and ā ∈ Mn , we know there is a witness for this

in N ; elementariness says we can choose it in M . In case M is an (elementary)

substructure of N we say that N is an (elementary) extension of M. To illustrate

the distinction, suppose that N = (N; +) is an Abelian group—the only nontrivial

basic 0-definable set is the graph of +. Any subset can be made into a substructure,

but an elementary substructure must at least be a subgroup; consider the formula

∃z(x + y = z). (In fact, it must be a pure subgroup, and in fact . . . )

The reader uncomfortable with the notion of elementary extension of a structure

may console himself with the following. We are really interested in the complex field

and its reducts (see below). Whenever we mention arbitrary elementary extensions

below, the reader may feel free to consider a single algebraically closed extension

field K of the complexes with size at least (2ℵ0)+. However, he must keep in mind

that the parameters mentioned are in that case only permitted to come from C itself.
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Furthermore, in practice any basic predicate P(M) of some reduct M of the com-

plex field will be presented as a Boolean combination of varieties (solutions sets of

polynomial equations); in the corresponding reduct N of K , P(N ) will be the same

Boolean combination of the corresponding varieties in K .

In the following we provide three nonequivalent possibilities for the definition of

a reduct of a first-order structure, all of which have been used in the literature.

Definition 1.1 Suppose M and N are structures with the same underlying set

M = N . Then M is a reduct of N if

1. (First Take) The signature of M is a subset of that of N and for any symbol

P in the signature of M, P(M) = P(N );

2. (Second Take) Every subset of Mn 0-definable in M is 0-definable in N ;

3. (Third Take) Every subset of Mn definable (allowing parameters) in M is

definable (allowing perhaps other parameters) in N ;

4. If M is a reduct of N , but not otherwise, we say that M is a proper reduct of

N . (In case M and N have the same definable sets, we will sometimes abuse

notation and write M = N .)

(1) is the classical notion and certainly the strictest. We will never mention it further

because for the purposes of most modern model theory it is overly language-bound.

My personal feeling is that the right notion is (2). (3) yields more reducts than

(2); a reduct (in the sense of (3)) is a reduct (in the sense of (2)) of the structure

(N : a ∈ N) with names for the elements of the underlying set—technically, a

name for a ∈ M is a predicate whose interpretation is the singleton {a}, but this is a

triviality. But notion (3) identifies reducts which are distinct in the sense of (2), thus

providing a cruder analysis. However, for technical reasons from now on, when we

use the word reduct, we will mean in the sense of (3) above.

We record here a bit of “general nonsense” that actually holds for reducts in the

sense of (2) above, a fortiori also for our reducts.

Proposition 1.2 Suppose that N is a proper reduct of M. Then there is an ele-

mentary extension M
′ of M so that if N

′ is the corresponding reduct, there is an

automorphism of N
′ which is not an automorphism of M

′.

Our concern here is with reducts of the structure (C; +, ·), the field of complex num-

bers. Here are some examples.

Example 1.3

1. (C, ·).
2. Fix any subfield F ≤ C and take the vector space structure (C; +, λa : a ∈ F)

where in this notation we interpret each λa as (the graph of) the function

x 7→ a · x—notice that for F = Q, this is the “same” reduct as (C; +).

3. Let {Pi (x, y) : i ∈ I } be any collection of polynomials in two variables and

for each i , let Ri (a, b) hold if and only if Pi (a, b) = 0—our structure is

(C; Ri : i ∈ I ).

4. Let g be the function g(x) = x2; take (C; +, g).

5. (C; R) where R(a, b, c) holds if and only if a2 + b2 = c2.

6. As in the last item, except let R(a, b, c) if and only if a2 + b2 = c.

7. As in the last two for R(a, b, c) if and only if ab(a + b) 6= 0 and c = ab
a+b

.

8. Here R(a, b, c) holds exactly if a2 + b2 + c2 = 4 + abc.
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Obviously we could go on forever. It’s not too hard to see that (1) and (2) are proper

reducts (one can’t define + in the former or · in the latter). These are the paradigms

for what we will define later as “linear” reducts. In (3) one can define neither, nor

in fact any “genuinely ternary” relation. (Details later.) (4) is not a proper reduct: to

see this, consider the definable function z = 1
2
[(x + y)2 − x2 − y2] = xy (if one has

addition definable, one has subtraction and division by 2 definable). (6) is also not a

proper reduct, but it takes a little more work to demonstrate this. Actually, there is a

strong sense (see the Rabinovitch result below (Theorem 2.7)) in which for “nearly

any” definable R ⊆ C
n for n ≥ 3, the reduct (C; R) is not proper.

The others mentioned above are all proper, though this is not obvious. The right

way to regard the Pythagorean reduct (5) is as a “finite cover” of (C; +). Consider

the definable (on this structure M) equivalence relation x Ey if and only if x2 = y2;

the map x 7→ x2 induces an identification of M/E and (C; +). As for (7), it is

more or less the image of (C; +) under the fractional linear transformation x 7→ x−1

(that is, R is approximately the image of the graph of + under this map). (8) is what

happens to (C; ·) when you factor out the equivalence relation x = y ∨ x = y−1 and

identify the quotient with C using the map x 7→ x + x−1. Details on all of the above

later.

It should be mentioned right here that subsets of C
n which are definable in the

structure (C; +, ·) are no more nor less than what are classically known as con-

structible sets. That is, they are Boolean combinations of the solution sets of poly-

nomial equations in n (or fewer) variables. This is true because, like any alge-

braically closed field, the complex field admits what model theorists call “elimi-

nation of quantifiers”—any definable set is in fact definable by a formula that makes

no use of quantifiers. (Actually, this is false the way we’ve presented things; it be-

comes true if we add predicates for all polynomial equations with natural number

coefficients, or use function symbols for + and · . We won’t worry about this here,

because this terminology is mentioned here purely for the purpose of general cul-

ture.) This is not true of an arbitrary reduct of this structure, however, at least not

in any language that can be found in a natural manner. We will frequently use the

terminology “constructible” to emphasize that while something may be definable in

the full field structure, there is no reason it must be definable in the reduct currently

under consideration.

We now make our only semi-formal mention of the peculiarly-titled object M
eq.

M as usual is some first-order structure. For any definable A ⊆ Mn and defin-

able E ⊆ A × A which is the graph of an equivalence relation on A, the quotient

A/E inherits in a natural manner a structure from M. Fix some parameters ā so

that A and E are ā-definable; we will suppress these in our description. For every

formula χ(x̄1, x̄2, . . . , x̄m) with mn free variables (as indicated), we have a basic

predicate Pχ (x1, . . . , xm) for the structure A with universe A/E . We declare that

A |H Pχ (b̄1/E, . . . , b̄m/E) exactly if for some c̄1 Eb̄1, . . . , c̄m Eb̄m (all tuples in A)

we have that M |H χ(c̄1, . . . , c̄m). We call this the structure induced on A/E by M,

or just the induced structure. Any such A/E (with the induced structure) is said be

definable in (or just in) M
eq.

That is, we restrict ā-definable predicates to A, and then project onto A/E . We

allow the possibility that either A = Mn or that E is the identity. The choice of ā

affects what this structure is in a literal sense, but we shall be playing so fast and

loose with parameters that this will be irrelevant for us. The elements of A/E are
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known as “imaginary elements” of M, and if we create a multi-sorted structure with

all such A’s, we have what model theorists know as M
eq.

For a classical example, consider the construction of the rational field in the struc-

ture (Z; +, ·), the ring of integers. It occurs in Z
eq.

In fact, if M is the field of complex numbers, we never need to consider equiv-

alence relations E as above. Specifically, for any A and E as above, there is a

constructible function (using the same parameters ā) f : A −→ Mk for some (pos-

sibly large) k so that f (b̄) = f (c̄) if and only if b̄Ec̄. This phenomenon is known to

model theorists as “elimination of imaginaries.” It does not always hold (with “con-

structible” replaced by “definable in the given structure”) for reducts of the complex

field, however.

Definition 1.4 Suppose that M is a structure and that g is a function with domain

M . The image of M under g is the structure g(M) with underlying set g(M) and

for each 0-definable subset A of Mn a predicate PA for g(A). That is, the basic 0-

definable subsets of g(M) are exactly these g(A)’s. For N = g(M) we say that M

is a cover of N via g. If the fibers of g are finite, we call M a finite cover of N .

In practice, we will only use these notions when all objects in question are con-

structible and the equivalence relation g(x) = g(y) is definable in M. We do not

necessarily assume that g itself is definable in M though, even if its range is con-

tained in M . Also, in practice, when we use the term “cover”, we will be assuming

that it is a finite cover, and both M and N are the set of complex numbers. The

notation g(M) will be used in other contexts, however.

Given any g from M onto N and structure N on N , we have in particular the

canonical cover of N by g−1(N ) = M via g. The basic 0-definable sets of this

structure are g−1(A) for every basic 0-definable A ⊆ Nn . We could have taken all

g−1(B)’s for all 0-definable B’s, but in this case we would get no more 0-definable

(and hence no more definable) predicates on M this way. We leave this as an exercise;

it uses trivial facts like g−1(B \ C) = g−1(B) \ g−1(C).

By contrast, if we just took as basic in g(M) only the images of the basic 0-

definable predicates of M, we would in general lose a lot. For example, consider

the two structures (C; ·) and (C; P) where P is the complement of the graph of

multiplication. For our purposes, these are really the same structure. However, for

g : C −→ C, where g(x) = x + x−1 (say g(0) = 0), the image of the graph of

multiplication is the relation R indicated in item (8) of the examples above. However,

g(P) is cofinite in C
3, which makes it easy to see that R is not definable in the

structure with g(P) as the sole basic 0-definable set. We will see below in Section 8

that, in fact, everything 0-definable in g((C; ·)) is, in fact, 0-definable in (C; R).

2 Strongly Minimal Sets, Linearity, etc.

In this section we will delineate precisely those reducts of the complex field that are

of interest to us. They are those which are in a well-defined sense “geometrically

simple,” but not too simple. We operate in a more general setting, occasionally

bringing ourselves back down to earth.

Definition 2.1 Let M be a structure and A ⊆ M be any set. For any b ∈ M , we

say that b is in the algebraic closure of A and write b ∈ acl(A) if there is a formula

without parameters χ(x, ȳ) and some ā with each ai ∈ A so that the formula χ(x, ā)

has finitely many solutions in M , one of which is b.
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That is, M |H χ(b, ā) and for only finitely many (possibly no) other elements c do

we have M |H χ(c, ā). The paradigm for this definition is none other than the field

of complex numbers. In this, our favorite structure, the algebraic closure of any set

A is simply the smallest algebraically closed subfield containing A. If our structure

is an infinite vector space over some field F (so the graph of scalar multiplication by

a ∈ F is regarded as a basic 0-definable set, as is the graph of addition), the algebraic

closure of A is the subspace it generates. In the structure (C; ·), the algebraic closure

of the empty set is the collection of torsion elements; the algebraic closure of any

set A is the pure subgroup it generates. (That is, the smallest subgroup containing A

that is closed under taking nth roots for every n.)

The following are the most basic properties of the algebraic closure operation.

Proposition 2.2 Let M be any structure, and A, B be arbitrary subsets of M.

1. A ⊆ acl(A);

2. if A ⊆ B, then acl(A) ⊆ acl(B) (this property is called monotonicity);

3. if a ∈ acl(A), then there is a finite set C ⊆ A with a ∈ acl(C) (finite basis);

4. if a ∈ acl(A) and A ⊆ acl(B), then a ∈ acl(B) (transitivity);

5. acl(acl(A)) = acl(A).

6. Suppose that N is an elementary extension of M and A ⊆ M. Then if we

calculate acl(A) in the two structures separately, we get exactly the same set;

in particular, M = acl(M) calculated in N .

These are all easy exercises in the definitions. For (6), we note that if b ∈ acl(A)

taken in N , find a formula χ(x, ā) witnessing this fact. If it has exactly 33 solutions

in N , there is a first-order formula true of ā in N stating this fact. It is also true of

ā in M and the solutions in M are also solutions in N . We leave the others to the

reader. The reader is warned that even for finite (or definable) sets A, the set acl(A)

is not usually definable.

The examples mentioned above all satisfy a further property of the algebraic clo-

sure operation, namely, for any A ⊆ M and a, b ∈ M ,

if a ∈ acl(A ∪ {b}) but a /∈ acl(A), then b ∈ acl(A ∪ {a}). (exchange)

The exchange property is far from true in most structures, but it is for the mentioned

examples because they are all what is known as strongly minimal structures, which

we now define. The reader is cautioned that there are indeed nonstrongly minimal

structures on which the algebraic closure operation satisfies exchange.

Definition 2.3 Let M be any infinite structure and suppose that the following is

true for any elementary extension N of M: every definable subset of N is either

finite or cofinite. Then we call the structure M a strongly minimal structure.

Several points should be made here; first, the subsets must be of N itself, not of Nk

(the diagonal is always infinite and coinfinite). We are definitely allowing parame-

ters in the definition of these sets. In every structure the finite and cofinite sets are

definable (hence the “minimal”). It is not hard to check that the property of being

strongly minimal passes to reducts. And, as mentioned above, the structure (C; +, ·)
is strongly minimal. (This is an easy exercise from the “quantifier elimination” result

mentioned above.)

The mention of elementary extensions of M in this definition is a little awkward,

but necessary, as we want it really to be a property of the first-order theory of the



Linear Reducts of Complex Field 167

structure. The standard example of a structure with no infinite, coinfinite definable

subsets, but with elementary extensions that have such subsets, is (N ; <), the natural

numbers with the usual order. But the initiated might find the following exercise

amusing, and the uninitiated may find it reassuring. (As far as the author knows, it is

due to Hrushovski, and unpublished.)

Proposition 2.4 Suppose M is a structure and M is uncountable. Suppose also that

every definable subset of M is either finite or cofinite. Then M is strongly minimal.

More to the point, here is, as promised.

Proposition 2.5 Suppose that M is a strongly minimal structure. Then in any

elementary extension of M, the algebraic closure operation satisfies the exchange

property. (See above.)

A pair (S, cl) where S is a set and cl an operation on the subsets of S satisfying

(1) – (5) of Proposition 2.2 and the exchange property is known as an exchange pre-

geometry or a matroid. The “pre” refers to two things; we do not necessarily have

acl(∅) = ∅, nor do we have that the closure of a singleton is itself. If we did,

we would have an exchange geometry. We can easily create one out of our pre-

geometry by stripping off acl(∅) and identifying mutually algebraic elements, but

we don’t really want to do that. (Imagine what the complex field would look like

after such surgery!) The complexity of this geometry is a measure of the complexity

of the collection of definable predicates on any strongly minimal structure.

It is routine to check from these properties that any algebraically closed set—A

such that A = acl(A)—has a well-defined dimension, dim(A). This number is the

size of a minimal subset B so that A = acl(B); equivalently, it is the size of a max-

imal C so that for c ∈ C , c /∈ acl(C \ {c}). The collection of closed subsets of

any strongly minimal structure naturally forms a lattice. We give several versions of

simplicity of the geometry in the following definition. The necessity of shifting to el-

ementary extensions is exemplified by considering the structure (C; +, · , c : c ∈ C),

the complex field with names for all the elements. Surely this structure is no sim-

pler than the field itself, but its geometry trivializes entirely. The complexity returns

once we pass to an elementary extension, which in this case is exactly the same thing

as an algebraically closed field extension, as long this extension has suitably large

transcendence degree.

Definition 2.6 Let M be a strongly minimal structure.

1. We say that M is (geometrically) trivial if for every elementary extension N

of M and A ⊆ N , we have that acl(A) = ∪a∈Aacl({a}).
2. We say that M is locally modular if for any elementary extension N of M

and any algebraically closed subsets A and B of N such that A ∩ B contains

some element not in acl(∅), we have that

dim(A) + dim(B) = dim(A ∩ B) + dim(A ∪ B).

3. If we can remove the restriction that A ∩ B has a nonalgebraic element in the

last clause, we call M modular.

4. If M is not trivial, but is locally modular (possibly modular) we call it linear.

Our structure M is modular exactly if the lattice of algebraically closed sets in any

elementary extension of M is modular in the lattice-theoretic sense; hence the term.
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It is immediate that trivial structures are modular. The distinction between those

structures that are locally modular but not modular and those that are modular but

nontrivial is a technical point. It can have significant model-theoretic impact (see

Laskowski [3]), but will be of no concern to us here. Hrushovski calls trivial strongly

minimal structures “combinatorial”; we have here used the more traditional termi-

nology. He has a definite point; these structures do have trivial geometries but can

otherwise be far from transparent. He uses the word linear to refer to strongly min-

imal structures that are locally modular but nontrivial. From now on we will do the

same. All other strongly minimal structures he calls “geometrical”.

There are so many trivial reducts of the complex field that describing them in

any sensible fashion may be a hopeless cause. If we throw in as basic predicates

any collection {Pi : i ∈ I } whatsoever of subsets of C
2, the result will be a trivial

structure, and how do we tell them apart? We will leave them out of our discussion

altogether, except for one example.

Much of the work up to the present on reducts of the complex field has been mo-

tivated by something known as “Zil’ber’s Conjecture”, which stated (approximately)

that any nonlocally modular strongly minimal structure M must interpret an alge-

braically closed field. That is, for some definable (in the structure M) A ⊆ Mn and

some definable equivalence relation E on A, the structure A on A/E inherited from

M is that of an algebraically closed field. I say “approximately” because nobody,

Zil’ber included, seems to know the exact content of the purported conjecture. At

this level, it is of historical interest anyway, because it has been rather resoundingly

refuted by Hrushovski, whatever it was. (See Hrushovski [1].)

Even since Hrushovski’s counterexample machine came into being, there remains

interest in the “restricted Zil’ber conjecture”. This restricts itself to those strongly

minimal sets which are of the form A/E as above, where M is the complex field

(more generally, any algebraically closed field). There have been several positive

results in this direction, and there is good reason to believe it true. By far the most

spectacular result to date in this direction is the following, due to Rabinovitch [7]).

Theorem 2.7 Suppose that M is a reduct of the complex field that is neither linear

nor trivial. Then it is not a proper reduct.

That is, if we are interested in reducts of the complex field, we may as well restrict

ourselves to those that are linear or trivial. Having already dismissed the latter, we

come to our (relatively) happy medium. The above is not the way Rabinovitch stated

her result, but it is equivalent.

We remind the reader of the slight discussion of M
eq in Section 1. The most

striking general result about linear strongly minimal structures known to the author is

the following, due to Hrushovski. (Actually, it holds in considerably more generality,

with appropriate modifications.) We will call a structure a strongly minimal group

if it is strongly minimal, and one of its basic definable predicates happens to be the

graph of a group operation. That is, the structure has a definable group operation,

and conceivably other definable predicates, and is as well strongly minimal. It is

known that in this case the group structure is necessarily Abelian (see Poizat [6]).

Theorem 2.8 Suppose that M is a linear strongly minimal structure. Then there

is, in M
eq, another strongly minimal structure, which is in fact a strongly minimal

group. That is, there is a definable A ⊆ Mn and a definable equivalence relation E

so that A/E, with its induced structure, is a strongly minimal group. It is also linear.
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The possibilities for the full structure of linear strongly minimal groups are known,

but for our purposes we note only what follows below. It turns out that all the strongly

minimal groups definable in C
eq are of unbounded exponent. We will list the possi-

bilities later. The next result is in Loveys [4].

Theorem 2.9 Let A be a strongly minimal group of unbounded exponent, which

is also a linear structure. Let R be the ring of all definable (in the structure A)

endomorphisms of (A; +). Then any predicate definable in the structure A is in fact

definable in its reduct (A; +, r : r ∈ R).

The result in [4] is both more precise and more general than this, but for our needs

this is sufficient.

Our situation is as follows; we have some given strongly minimal linear structure

M, and we know that there is a strongly minimal Abelian group A somewhere in

M
eq. Under these hypotheses, the following is demonstated in Loveys [5].

Proposition 2.10 With the notation of the last paragraph, there are definable equiv-

alence relations E on M and ∼ on A with finite classes and a definable bijection

between M/E and A/∼.

That is, M and A have what can reasonably be called a “definable common fac-

tor”. The “factors” of such a structure A are rather constrained. Suppose that

A = (A; +, r : r ∈ R) is, as above, a strongly minimal module and that ∼ is a

definable equivalence relation on A with finite classes. Suppose that R contains all

the definable endomorphisms of the group. The following is shown in [5].

Proposition 2.11 We use the notation of the previous paragraph. Suppose that ∼
is defined via parameters ā. Then whenever x ∼ y, there is a nonzero integer m, an

r ∈ R, and an element b of A in acl(ā) so that mx = ry + b. The ring R embeds

into a division ring D and in D we have that m−1r is a root of unity.

Note that in this proposition we are not saying that r = ms for some element s ∈ R.

Occasionally we will need to compare two groups both in M
eq for one of our

structures M. The following is what we will need; it is a very special case of the

results in Hrushovski and Pillay [2].

Proposition 2.12 Let M be a strongly minimal linear structure and A1 and A2 be

strongly minimal groups in M
eq. Then any subset of A1 × A2 definable in M

eq is a

Boolean combination of cosets of definable subgroups of A1 × A2. The parameters

needed to define the subgroups in question can always be chosen algebraic over

those needed to define the groups.

As advertised, we now describe what the candidates for the Abelian group are. A

strongly minimal group definable from the structure (C; +, ·) is nothing more or

less than what is known to algebraic geometers as a “one-dimensional, irreducible,

algebraic group”. The following classical result lists all these. It can be found in

Silverman [9] (Theorem IV.1.6, p. 293).

Theorem 2.13 Let (A; ∗) be an irreducible, one-dimensional algebraic group.

Then there is a constructible isomorphism between (A; ∗) and one of the following:

1. (C; +);

2. (C \ {0}; ·);
3. an elliptic curve with its canonical group operation.
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Now, if a group is definable from a reduct of C, it is certainly definable from C itself.

A slightly more subtle point is that one could conceivably define sets in C
eq that are

definable and strongly minimal in some reduct, but not strongly minimal in the full

structure, so by restricting ourselves to the ones above, we would not get the full

story. The following says that this does not happen.

Proposition 2.14 If a group definable in a reduct of the complex field is strongly

minimal in the reduct, it must also be strongly minimal in C
eq with the full algebraic

structure.

Proof For such a set S ⊆ C
n , clearly there can only be at most a ∈ C such that

the set {x̄ ∈ C
n−1 : (a, x̄) ∈ S} is infinite. If there is such an a and we throw away

the rest of S—which will be finite—we finish by induction on n by projecting. So

suppose that for every a ∈ C, this set is finite. Then clearly S has “Morley rank one”,

or in more standard terminology, is one-dimensional.

In the full field structure, a basic result (see, e.g., [6], Lemma 2.1, p. 41) tells us

that if S is a group, it has a definable subgroup S0 of finite index which is strongly

minimal in the full structure, so S0 must be one of the three types mentioned above.

They are all divisible groups so in each case S0 is just mS for some natural number m.

In particular, S0 is definable purely from the group structure, and thus in the reduct.

If it weren’t the whole of S, strong minimality in the reduct would be contradicted;

consider its cosets.

The assumption that S lives in C
n is easily removed to complete the proof. �

It should be noted that the only place where the group operation comes in is in show-

ing that the Morley rank one set S (in the full field) is, in fact, strongly minimal. In

the trivial or bounded exponent cases, we may not get this, as the following illustrate.

Example 2.15

1. Let R = {(x, y) ∈ C
2 : x2+y2 = 0}. In the trivial reduct (C; R) the definable

set R is strongly minimal. (This easily follows from quantifier elimination,

which we get once we adjoin a constant symbol for 0, and a function symbol,

the definable unary function x 7→ −x , to the language.) But R split definably

into {(x, i x) : x ∈ C} and {(x,−i x) : x ∈ C} over (C; +, ·)—indeed these

sets are definable in the linear structure (C; +, R).

2. Let V be an infinite-dimension vector space over the field GF4

of four elements, and V0 a one-dimensional subspace of V . M =
(V ; +, λa, v0 : a ∈ GF4, v0 ∈ V0). Let α 6= 0, 1 be in GF4 and

R(x, y) ⇔ y − αx ∈ V0. Let M0 = (V ; +, R, v0 : v0 ∈ V0). Then

R is a strongly minimal group when regarded in M
eq
0 ; again, this can be seen

using quantifier elimination for M0, or by using automorphisms of M0. But

of course it has degree 4 in M.

Theorem 2.13 mentions a constructible (therefore definable in the field structure)

isomorphism between the given group and one on the list. But even if the group is

definable in some reduct of C, there is no reason the isomorphism must be definable

in said reduct. It usually will not be.

About the groups themselves, nothing need be said about either the additive or

multiplicative groups of C. However, as we are assuming no knowledge of elliptic

curves, our next project is to describe them in sufficient detail for our purposes.
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3 A Few Words about Elliptic Curves

We summarize here for the unacquainted certain (mostly quite basic) facts about el-

liptic curves. Everything in this section can be found in, for example, Silverman [8],

especially Chapter 3. Elliptic curves over C are curves (that is, defined by an equa-

tion) in projective 2-space over the complex field which have genus 1 with a dis-

tinguished base point. We will not attempt to present the definition in this form,

however. It is known that any elliptic curve over C is definably isomorphic to one

with an equation in simplified Weierstrass form. That is, up to a (locally rational)

definable map, the curve has an equation of this form: Y 2 Z = X3 + a X Z2 + bZ3,

where a and b are complex numbers. Also, the discriminant (1 = −16(4a3+27b2))

must be nonzero—equivalently, the equation x3 + ax + b = 0 must have 3 distinct

solutions. Here we have written the equation with homogeneous variables, as is cus-

tomary when discussing projective space. However, as is customary when discussing

elliptic curves, we will in fact write the equation of the curve as

y2 = x3 + ax + b

and regard it as living in C
2. We must, of course, remember that there is a “point at

infinity” on the curve, as well. It may be worthwhile to note that two elliptic curves

are definably isomorphic exactly if they have the same j -invariant, a number defined

as j = 1728(4a)3/1 for the given equation. From this it is easily seen that if Ei is

the curve y2 = x3 + ai x + bi for i = 1, 2 and E1 and E2 are isomorphic, then there

is a complex number c so that a1 = c4a2 and b1 = c6b2. An isomorphism in this

case is (x, y) 7→ (c2x, c3y); any other isomorphism is the composition of this with

an automorphism of E2.

An elliptic curve has a definable group operation on it, which we will now de-

scribe. The identity O is the point at infinity. Three distinct points (x0, y0), (x1, y1),

and (x2,−y2) on the curve are collinear exactly if (x0, y0)⊕(x1, y1)⊕(x2,−y2) = O.

That is, to calculate (x0, y0) ⊕ (x1, y1) for two distinct points on the curve, one first

draws the line through them to find a (uniquely defined) third point (x2,−y2) on the

intersection of the curve and the line; then the sum is (x2, y2), which is the inverse

of (x2,−y2) under this operation. To find (x0, y0) ⊕ (x0, y0) one first takes the

tangent line to the curve at the point, finds the other point (x2,−y2) where this line

intersects the curve (if there is no other point, (x0, y0) is an element of order 2 in the

group), and defines the sum as (x2, y2). If one works out the details for the curve

y2 = x3 + ax + b, for (x0, y0) and (x1, y1) distinct points, the sum is the point

(x2, y2), where

x2 = (
y1 − y0

x1 − x0
)2 − x0 − x1

and

y2 = −(y0 +
(x2 − x0)(y1 − y0)

x1 − x0
).

It turns out that, abstractly, all the groups arising as above from an elliptic curve over

C are isomorphic to the direct product of two copies of the multiplicative group of

C. We will also be interested (for reasons indicated in Section 2) in the ring R of all

definable endomorphisms of an elliptic curve. There are certain obvious ones; for a

positive integer m, the map [m] where [m](x, y) = (x, y) ⊕ (x, y) ⊕ · · · ⊕ (x, y)

(m times) is, of course, a definable endomorphism. Given that the inverse of (x, y)

is (x,−y) the map [−m] where [−m](x, y) = (x,−y) ⊕ · · · ⊕ (x,−y) (m times)
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is also a definable endomorphism. This provides an embedding of the integers into

the ring R. Usually (e.g., for generic a and b) this embedding is onto; there are no

definable endomorphisms but the obvious ones. In case there are further definable

endomorphisms, we say the curve has complex multiplication. We outline exactly

the possibilities for R in this case.

Let d be a square-free positive integer. If d is not equivalent to 3 (mod 4), an

integer in the field Q[
√

−d] is an element of the form m + n
√

−d for standard

integers m, n. If d is equivalent to 3 (mod 4), an integer in Q[
√

−d] is of the form

m + n( 1
2

+ 1
2

√
−d) for standard integers m, n.

Proposition 3.1 Let E be an elliptic curve over C which has complex multiplication

and let R be its ring of definable endomorphisms. Then for some square-free positive

integer d, R is isomorphic to a subring of the ring of all integers in Q[
√

−d].

Notice (this will be relevant for us) that Q[
√

−d] has no roots of unity except 1 and

−1 unless d = 1 or d = 3. Notice also that any such R is generated over Z, as an

Abelian group, by a single element.

Example 3.2

1. Consider the elliptic curve with equation y2 = x3 + b. Let η be a primitive

3rd root of unity. The map [η] given by (x, y) 7→ (ηx, y) is easily seen to be

an endomorphism of the curve. The ring R mentioned above is isomorphic

to Z[η] in this case.

2. Consider the curve y2 = x3 + ax . The map [i ] given by (x, y) 7→ (−x, iy)

is a definable endomorphism of this curve. R here is isomorphic to Z[i ].

Definition 3.3 Let E1 and E2 be elliptic curves. A definable (i.e., constructible)

map f : E1 −→ E2 is an isogeny if it preserves the group operation. If there is a

nonzero isogeny from E1 to E2, we say that the curves are isogenous.

It turns out that any nonzero isogeny is necessarily onto and has finite kernel. Further,

it has a dual; that is, there is another nonzero isogeny g : E2 −→ E1 and for some

natural number m, we have that g f : E1 −→ E1 is the map [m] mentioned above

and f g : E2 −→ E2 is the map [m] for this curve.

The following is listed an exercise in [8] (6.9, p. 168).

Proposition 3.4 Let E1 and E2 be elliptic curves over C with complex multiplica-

tion. Let R1 and R2 be their respective rings of definable endomorphisms. Then E1

and E2 are isogenous if and only if the rings of quotients of R1 and R2 are isomor-

phic.

We finally record the following direct corollary of the classical theorem of Hurvitz

on genus (see Theorem 5.9 in [8]). We will not explain the concept of “genus”

mentioned in (1), as the corollary (2) is all we need.

Proposition 3.5

1. If there is a constructible map from the curve C1 to the curve C2 with infinite

range, then the genus of C1 is at least that of C2 (assuming we are working

over the field C, as usual).

2. There does not exist any constructible map from C onto an elliptic curve.
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4 In Case the Group is Multiplication

We are assuming that we are starting out with a linear reduct of the complex field.

We know that there is a strongly minimal group close by, which is also a linear

structure. We know it is constructibly isomorphic to one of three things: the multi-

plicative group of C, the additive group of same, or an elliptic curve with addition

as spelled out in Section 3. In this section, we will deal with the first of these pos-

sibilities. So we have a structure M which is a reduct of the complex field, and we

are given that there is a definable equivalence relation E (in said structure) on M ,

a constructible equivalence relation ∼ on (C; ·) and a constructible isomorphism of

C/∼ and N = M/E .

We present the first of several diagrams to help indicate what is going on. We

introduce here and throughout certain conventions for our diagrams. First, every

structure and map (arrow) is constructible. Second, every map is a surjection. Third,

all the strictly vertical and curved maps are definable in the structure at the top of

them; thus if one structure S is directly above another T , then T exists in S
eq.

M�

�-

A -∼= (C; ·)

? ?
N -C/∼

We will be repeatedly using the following simple observation: Suppose that M1

and M2 are two structures definable in C
eq and that f is a constructible function

mapping M1 onto M2. Suppose that E is a definable equivalence relation on M1 and

that whenever f (x) = f (y) we have that x Ey. Then the image E ′ of E under f

is a constructible equivalence relation on M2 and f induces a definable bijection of

M1/E and M2/E ′.
We must first investigate the possibilities for ∼. We remind the reader that any

reduct of the complex field which has (the graph of) multiplication among its defin-

able predicates and is also linear must be really nothing more than (C; ·) itself. That

is, anything definable in such a reduct is already definable in the pure multiplicative

group structure. (This follows easily from Theorem 2.9 above, and the well-known

fact that the only constructible maps from C to itself which are multiplicative group

homomorphisms are the maps x 7→ xn for n an integer.)

In the notation of Section 2, the ring R here is just the integers. As pointed

out in Proposition 2.11, if ∼ is a definable equivalence relation on (C; ·), then for

any x, y ∈ C if x ∼ y we must then have xn = yma for some a algebraic in

the parameters ā used to define ∼. We also must have n = m or n = −m, again

by 2.11, and we may assume that n is positive. Fix any x1 not algebraic in ā. Let

x1, . . . , xk list the ∼-class of x . For j = 1, . . . , k choose nk, mk, ak with nk positive,

ak algebraic in ā, and x
nk

k = x
mk

1 ak ; further, choose such a triple with nk minimal

possible. Then it’s easy to see that, in fact, every nk = 1 and every mk is then either

1 or −1.
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So the class of x1 consists of x1, x1a2, . . . , x1aℓ and x−1
1 aℓ+1, . . . , x−1

1 ak . (The

second part of this list may be empty. We may have reordered the xi s, and we have set

a1 = 1.) Notice now that {a1, . . . aℓ} must be a multiplicative subgroup of C. To see

this, notice that nothing in the class is algebraic in ā, so the elements all realize the

formula xa j ∼ x for each j = 1, . . . , ℓ. For similar reasons, the set {aℓ+1, . . . , ak}
is either empty or a coset of said group. We can thus choose a generator γ for the

group and a single element a so that the class of x1 is either {x1, γ x1, . . . , γ
ℓ−1x1}

or this together with {x−1a, x−1
1 γ a, . . . , x−1

1 γ ℓ−1a}.
We assume we are in the first case for the moment, so k = ℓ. By strong min-

imality, for all but finitely many elements x , the ∼-class of x consists precisely of

the elements {x, γ x, . . . , γ ℓ−1x}. For our purposes, there is no loss of generality

in assuming that all the classes have exactly this form. That is, we are interested

in the structure that C/∼ inherits, which will have the same definable sets as C/∼′

where we adjust finitely many of the ∼-classes. Consider f : C −→ C defined by

x 7→ xn . The image of ∼ under this map is simply the identity. Again, without loss

of generality, we may assume that ∼ itself was the identity. What we are doing here

is adding the following diagram to the one above, and then ignoring the top line by

considering A/S instead of A and so on. Here H = {x ∈ C : xn = 1} and S is the

corresponding subgroup of A.

A -∼= (C; ·)

? ?
@

@
@R

f

A/S -C/H -(C; ·)

Thus we are in the following situation. There is a constructible function g : C −→ C

such that if our reduct is M, the structure g(M) is nothing more or less than the

multiplicative group of the complex numbers. Put another way, in this case our

reduct is just the multiplicative group, up to a finite definable cover. (We remind the

reader that g may not be definable in the reduct M; the relation x Ey ⇔ g(x) = g(y)

is, however.)

So assume we are in the other case. Just as in the last paragraph, we may assume

that ℓ = 1 and that every class is of the form {x, x−1a} for some fixed a. (We put

0 in a class by itself.) Choose b so that b2 = a and consider the map h : C −→ C

where h(x) = xb−1 + bx−1 (and h(0) = 0). We have h(x) = h(y) if and only if

x ∼ y, so that h induces a constructible bijection of C/∼ and C.

M

A

�

�-

-∼= (C; ·)

? ?
@

@
@R

h

N -C/∼ - (C; . . .)

Clearly, the binary function (x, y) 7→ x ·∗ y = xyb−1 is definable in (C; ·),
and the image of this function under the map h is the graph of the relation
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P(x, y, z) ⇔ x2 + y2 + z2 = 4 + xyz. (This is left as an exercise, basically

in high-school algebra, as are similar claims below; we don’t really need the specific

polynomial defining P , but it was fun to find it. Also, here we have essentially

“moved the identity” of the group to b.)

It turns out (see Section 8) that anything definable in the structure h((C; ·)) is in

fact definable in the structure (C; P). Thus up to a finite definable cover, our reduct

is precisely (C; P).

5 In Case the Group is Addition

In this section we do the same as in the last, except for the case where the group we

have is constructibly isomorphic to the additive group of the complex field. One fac-

tor that makes this case a little more involved than that of the previous section is that

there are reducts of (C; +, ·) strictly between (C; +) and the whole field. But they are

easily described. Indeed, let F be any subfield of C. The reduct (C; +, λa : a ∈ F)

is linear, and every reduct of the field which contains + and is linear has this form.

(Again, use 2.9 for this.) Once more, we use λa to represent the function x 7→ ax .

Now suppose that we have an equivalence relation ∼ definable (using parameters

ā) in the vector space (C; +, λa : a ∈ F). By 2.11 again, if x ∼ y, we must have a

natural number m, an element a ∈ F and some b ∈ acl(ā) so that my = ax + b. In

fact, it is easy to see that one can again always choose m = 1; in that case, a must be

a root of unity. Fix some particular x1 not in the algebraic closure of ā (we may have

to shift to an elementary extension of the vector space to do this) and let x1, . . . , xk

list the ∼-class of x1. For each j = 1, . . . , k choose a root of unity γ j ∈ F and an

element b j in the algebraic closure of ā with x j = γ j x1+b j . It is not hard to see that

{γ j : j = 1, . . . , k} is a multiplicative subgroup of F . Also, we may check that for

j 6= ℓ, that γ j 6= γℓ. Let γ be a generator for this group. Without loss of generality,

then, x j = γ j−1x1 + b j . (We reorder the x j ’s if necessary.)

Write b for b2. Our next claim is that, in fact, for each j = 2, . . . , k we have that

b j = (1 + γ + · · · + γ j−2)b. Indeed, suppose that this is true for j . We have that

x j is also not algebraic in ā, so it also satisfies the formula γ x + b ∼ x ; thus, one

of the xℓ’s is γ (x j + b). It is apparent that the only possibility is x j+1. Thus, our

equivalence class is

{x1, . . . , γ
j x1 +

γ j − 1

γ − 1
(b), . . . , γ k−1x1 +

γ k−1 − 1

γ − 1
(b)}.

Here we have assumed that γ 6= 1, of course; the possibility also exists that the

equivalence relation is the identity. By altering a finite number of classes, we may

assume that every equivalence class has the above form. If we set c = 1
γ−1

b, it is

easily seen that we then have x ∼ y if and only if (x + c)k = (y + c)k .

Our next objective is to observe that we may assume that c = 0. Indeed, if we

replace (C; +, λa : a ∈ F) by its image under the map x 7→ x + d for d = 1
γ−1

c,

the graph of + goes to the graph of the function (x, y) 7→ x +∗ y = x + y − d and

the graph of λa goes to the graph of λa(x − d) + d , which function we call λ∗
a . In

particular, the graph of the equivalence relation

x + c = y + c ∨ x + c = γ (y + c) ∨ · · · ∨ x + c = γ k−1(y + c)
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is taken to the graph of the equivalence relation

x = y ∨ x = γ ∗y ∨ · · · ∨ x = (γ ∗)k−1 y.

M�

�-

A -∼= (C; +) -(C; +∗)

? ? ?

@
@

@
@@R

h

N - C/∼ -C/∼∗ - (C; . . .)

Under this replacement, then, we effectively have c = 0. (This trick, again, is “mov-

ing the identity” of the group.) Of course then, the function h : C −→ C where

h(x) = xn induces a definable bijection between C/∼ and C.

The upshot of our observations to date is that, under the assumption that the group

we have in M
eq is constructibly isomorphic to the additive group of the complex

numbers, we have the following characterization up to a finite definable cover of

the reduct: it is the image under the function h(x) = xn of a structure of the form

(C; +, λa : a ∈ F) as described above. The nth roots of unity must be in F .

It should be mentioned that the image under h of the graph of λa is the graph

of λan . The image of the graph of + is the zero set of the following homogeneous

polynomial of degree n:

5n−1
i=0 (z − (x

1
n + γ i y

1
n )n).

For n = 2, this polynomial is x2 + y2 + z2 − 2(xy + xz + yz). Finally, it is worth

noting here that including the image of the graph of + and of the λas is sufficient to

give all the structure on the image of the vector space. (Section 8, again.)

6 In Case the Group is an Elliptic Curve

Here our aim is to give a description of those linear reducts M of the complex field

in which the group we find in M
eq is constructibly isomorphic to an elliptic curve

with its group operation. As always, our description will be complete only up to a

finite constructible cover.

Our first observation is that to get a complete list of all such reducts (up to a finite

definable cover), it is not necessary to consider every elliptic curve. One represen-

tative from each isogeny class is sufficient, and we can choose whichever represen-

tative we like. To see this, notice that if E1 and E2 are isogenous then there is a

definable bijection between E1/A1 and E2 for some finite subgroup A1 of E1. Thus

for any quotient of E2 by an equivalence relation definable in some linear expansion

of the group structure, there is a constructibly isomorphic quotient of some linear

expansion of E1. This remark will be of use to us later. See the following picture.
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E1

�
�

�
����

�
�

��	 ?
E2 -E1/A1

? ?
E2/∼2 -E1/∼1

Notice that if E is an elliptic curve, given by the equation y2 = x3 + ax + b, then

the equivalence relation ∼ on E given by (x, y) ∼ (z, w) if and only if x = z is

definable in the pure group structure. This is because (x, y) and (x,−y) are inverses

of one another. Obviously, there is a constructible isomorphism between E/∼ and

C given by the projection πx of E onto the x-coordinate. Therefore πx(E; ⊕) is a

linear structure on C.

M�

�-

A -∼= (E ; ⊕)

? ?

@
@

@
@@R

πx

N - E/∼ -πx(E)

Similarly, if E has complex multiplication, say its ring of definable endomorphisms

is R and R′ is some subring of R, then πx(E; ⊕, r : r ∈ R′) is also linear. We will

see that up to a finite cover, this gives a nearly complete list of the reducts arising in

this way.

Recall that the ring R embeds into Q[
√

−d] for some square-free positive integer

d . In case d 6= 1, 3 (or in case E does not have complex multiplication) the only

elements of R which are natural number multiples of roots of unity are the (ordinary)

integers. So, as above for the case where the group was the multiplicative group of

the field, if ∼ is a definable equivalence relation with finite classes on E and (x1, y1)

is an element of E not algebraic over the parameters used in the definition of ∼, we

can write the ∼-class of (x1, y1) as a union of two sets. One of them will be the

coset (x1, y1) ⊕ S for some finite subgroup S of E . The other is either empty or

has the form (x1,−y1) ⊕ (c, d) ⊕ S for a constant (c, d) in the algebraic closure of

parameters mentioned.

First notice that we may assume that S is trivial. In case E doesn’t have complex

multiplication, it is immediate that the groups E and E/S are definably isomorphic;

since the group is the full structure, we just pass to E/S.
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If we do have complex multiplication, the full structure on E may also involve the

scalar multiplications from some R′ contained in the ring R of definable endomor-

phisms. S may not be an R′-submodule, but S +[r ]S is, if R′ is generated by r as an

Abelian group over Z. Suppose that we first “fatten” the equivalence relation so that

a typical class is (x1, y1) ⊕ (S + [r ]S) ∪ (x1,−y1) ⊕ (c, d) ⊕ (S + [r ]S). We then

replace N by N / ∼= for some definable equivalence relation ∼= on N . Then pass to

E/(S + [r ]S). In either case, we lose no generality in assuming S = {0}.
Now we see that the first of the two possibilities (that the equivalence classes are

exactly the S-cosets) is out. There is no constructible bijection between a definable

factor of C and an elliptic curve. This follows from the bowdlerized result (3.5.2.)

of Hurvitz quoted above.

Now we try a trick similar to one we used in the multiplicative case (and

in the additive case, too). That is, we find an element (c′, d ′) ∈ E so that

(c′, d ′)⊕(c′, d ′) = (c, d) and consider the addition with (c′, d ′) as the new zero. That

is, we look at the image of our structure E under the map (x, y) 7→ (x, y) ⊕ (c′, d ′).
(Actually, because this map is definable in the group (E; ⊕), we haven’t really

altered our structure at all, but this is the right way to regard it.) The effect of this

is to allow us to assume without loss of generality that (c, d) is zero. With these

two assumptions, we have indeed that our equivalence relation is just the one which

identifies (x, y) and (x,−y) after all, just as in the previous diagram.

It may be worth noting that the image of the graph of ⊕ under the projection πx

is the relation R(x, y, z) which holds if and only if

(xy + xz + yz − a)2 = 4(xyz + b)(x + y + z).

(This for the curve y2 = x3 + ax + b, as usual.)

We are left with the cases when we have complex multiplication and the ring em-

beds into Q[i ] or into Q[
√

−3]. For each of these two possibilities, there is a single

isogeny class, so we may choose our favorite representative for each to investigate

what happens for these situations. A good candidate in the first case is the curve

y2 = x3 + x , for the second y2 = x3 + 1.

Now suppose that ∼ is an equivalence relation definable on the structure

(E; +, r : r ∈ R) where E is the elliptic curve y2 = x3 + x and R its ring of

all definable endomorphisms. Note that R is generated as an additive group by the

identity and the map [i ] where [i ](x, y) = (−x, iy). Then we can find a fixed finite

set of elements

{(c0, d0), . . . , (c j−1, d j−1), (c j , d j ), . . . , (ck−1, dk−1),

(ck, dk), . . . , (cℓ−1, dℓ−1), (cℓ, dℓ), . . . , (cm−1, dm−1)}
so that for almost every (x0, y0) ∈ E , the ∼-class of (x0, y0) is the union of the

following four sets:

1. {(x0, y0) ⊕ (cn, dn) : n < j},
2. {[−1](x0, y0) ⊕ (cn, dn) : j ≤ n < k},
3. {[i ](x0, y0) ⊕ (cn, dn) : k ≤ n < ℓ}, and

4. {[−i ](x0, y0) ⊕ (cn, dn) : ℓ ≤ n < m}.
We have dealt with the cases where the sets in (3) and (4) are empty, so assume that

the set in (3) is not, or the one in (4) is not; this implies that all are nonempty. As

usual, we must have that {(cn, dn) : n < j} is a subgroup of E and the other three

collections of (cn, dn)’s are cosets of this group.



Linear Reducts of Complex Field 179

Altering notation slightly, we have that there is a finite subgroup S of E and e ∈ E

so that for (almost all) x, y ∈ E , we have x ∼ y if and only if

y ⊕[−1]x ∈ S ∨ y ⊕[−i ]x ∈ e ⊕ S ∨ y ⊕ x ∈ ([i ]+ [1])e ⊕ S ∨ y ⊕[i ]x ∈ [i ]e ⊕ S.

(For x generic, suppose that the coset in (3) above is [i ]x ⊕ e ⊕ S; then x ∼ [i ]x ⊕ e

∼ [i ]([i ]x ⊕ e) ⊕ e = [−1]x ⊕ ([1] + [i ])e ∼ [i ]([−1]x ⊕ ([1] + [i ])e) ⊕ e =
[−i ]x ⊕ [i ]e.)

I claim that in fact S must be a submodule of E ; that is, S is closed under [i ].
For fix x ∈ E not algebraic in e. If s ∈ S and y = [i ]x ⊕ e ⊕ s, then y ∼ x

and also x ⊕ [i ]y = [i ]e ⊕ [i ]s. Further, y is not algebraic in e. As x ∼ y,

one of x ⊕ [−1]y ∈ S, x ⊕ [−i ]y ∈ e ⊕ S, x ⊕ y ∈ ([1] + [i ])e ⊕ S, or

x ⊕ [i ]y ∈ [i ]e ⊕ S must hold. We cannot have x ⊕ [−1]y ∈ S because that would

imply that ([1]+[i ])y = [i ]e+[i ]s+s′ for s′ ∈ S, which contradicts our choice of x ;

y must also be independent from e. Similarly it is impossible that x ∈ [−i ]y ⊕ e ⊕ S

or x ∈ [−1]y ⊕([1]+[i ])e+ S. This tells us that we must have [i ]s ∈ S, establishing

our claim.

By the usual trick, we may now assume that S is trivial. Again, altering a finite

number of ∼-classes and moving the identity, we get that (without loss of generality)

(x0, y0) ∼ (x1, y1) if and only if (x1, y1) is [r ](x0, y0) for r ∈ {1,−1, i,−i}.
How to describe E/ ∼ ? The easiest way is as follows; it is a quotient of the

structure M = πx(E) as described above via the identification of x and −x for every

x . Thus, if g is the map (on the complex numbers) x 7→ x2, we see that E/∼ is

constructibly isomorphic to g(M).

Now consider the curve E defined by y2 = x3 + 1. The ring R here is generated

by [1] and [η], where η ∈ C is a primitive cube root of unity and [η](x, y) = (ηx, y).

Upon factoring out a subgroup (as above it is an R-submodule), moving the iden-

tity, and altering finitely many classes, we get (x, y) ∼ (z, w) if and only if

(z, w) = [r ](x, y) for r ∈ R0, where R0 is either {1}, {1,−1}, {1, η, η2}, or

{1,−1, η,−η, η2,−η2}. We have dealt with the first two cases. Case 3 is most

easily described as πy(E); this is the only curve (up to isogeny) where when we

project to the y-coordinate we get a linear structure. In the fourth case, we can

describe the structure as g(πy(E)) for the function g(x) = x2.

Notice that in all cases we have identified our quotient structure with a linear

structure on C itself.

7 Summary, So Far

Here we give the bottom line, so far as we have it. The mention of the function f at

the beginning of the statement means that our description is complete only up to a

finite cover.

Theorem 7.1 Let M be a linear reduct of the complex field. Then there is a con-

structible function f : C −→ C such that f (M) is one of the following structures:

1. (C; ·).
2. g((C; ·)), where g : C −→ C is the function g(x) = x + x−1.

3. Let F be a subfield of C containing the nth roots of unity and gn be the

function gn(x) = xn . The structure (obviously depending on F and n) is

gn((C; +, λa : a ∈ F)).
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4. Let E = (E; ⊕, r : r ∈ R′) be an elliptic curve with the usual addition, where

R′ is some subring of the ring of all definable endomorphisms of (E; ⊕). Let

πx be the projection onto the first coordinate. Our structure is πx(E).

5. Let E be the curve with equation y2 = x3 + x and g : C −→ C the function

g(x) = x2. The structure is g(πx(E)) for E as in the last item.

6. Let E be the elliptic curve with equation y2 = x3 + 1 and E as in (4). The

structure is πy(E), the projection onto the second coordinate.

7. Let g(x) = x2 and E as (6). The structure here is g(πy(E)).

We remind the reader of several things; the structure in (2) is (C; P) where P(x, y, z)

holds if and only if x2 + y2 + z2 = 4 + xyz. In (3), for n = 1, we get just the

vector space. In general in (3), we need only include predicates for the image of

the graph of + and the λa’s to give the full structure here. Always gn(graph of λa)

is the graph of λan ; we have no nice description of the image of the graph of + in

general, but for n = 2, it is the relation P where P(x, y, z) holds if and only if

x2 + y2 + z2 = 2(xy + xz + yz).

The structure in case (4) is just (C; Pa,b) for the curve y2 = x3 + ax + b

if it doesn’t have complex multiplication. Here Pa,b(x, y, z) if and only if

(xy + xz + yz − a)2 = 4(xyz + b)(x + y + z). To get a full list of these

structures, we need only one E from each isogeny class; if E1 and E2 are isogenous,

there is a constructible isomorphism between πx(E1) and πx (E2). It is of course

given by a fractional linear transformation and can be absorbed into the function f

mentioned at the beginning.

There are several as yet unproved claims in the past two paragraphs. They will be

settled in Section 8.

There is clearly some redundancy on this list. (1) is a finite cover of (2), so could

have been left off; for the same reason, we could have omitted (6), a finite cover of

(7). Also, several special cases of the others could be omitted. We chose not to do

so, for the reason that the list is minimally complete in the following sense. Suppose

that A is a constructible linear group and ∼ a definable equivalence relation on A.

We don’t necessarily have A/∼ on our list, but our constructions tell us there is

something constructibly isomorphic to it on this list. So if we have a reduct M of C

which happens to be such an A/∼, there is a fractional linear transformation σ such

that σ(M) is on this list.

There are two major shortcomings of this list, as I see it. The most obvious is this

business of the cover by some structure M via f . Given any constructible function

f : C −→ C, we can always endow the second copy of C with any of the structures

here and lift it to get the canonical (minimal) cover via f . But there are in general

surely many other covers via f , at least in some cases; what are the possibilities?

I think this may be a very difficult question indeed, but perhaps there is something

sensible to be said about it.

Another flaw is that we have not made clear when two differently presented

reducts on our list are in fact the same. A related question is when one of them

is a reduct of another. And of course these questions can be asked of the covers as

well. For the moment, we will mention a few simple facts about this situation. See

Section 9 for more information.

We note first that it makes sense to ask these questions on three different levels:

the abstract, the constructible, and as actual reducts of the field. For example, for
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a, b independent transcendentals, it is quite clear that all the structures mentioned

in item (4) above are abstractly isomorphic. They are not constructibly isomorphic,

however, unless the corresponding curves are isogenous; in that case, they are. When

they give exactly the same reduct, that is, when Pc,d is definable in (C; Pa,b) and vice

versa, will be explored below; in fact, it almost never happens.

Observe that the group that one finds in M
eq of a linear reduct is essentially unique

in the constructible sense. That is, if there were to be a constructible isomorphism

between M1 and (even a reduct of) M2, both as in the statement of the theorem, they

would both have to be covers of the structures in (1) or (2), or both of structures in

(3), or both of one of the later items on the list; further, in the latter case, the elliptic

curves in question would have to be isogenous.

8 On Squashed Modules

All the reducts identified above are of the following form, up to a constructible iso-

morphism and a finite cover: We start with a strongly minimal module

M = (M; +, r : r ∈ R) such that the underlying group has unbounded expo-

nent. We let γ ∈ R be a primitive nth root of unity in the center of R. Let ∼ be the

relation on M defined by

x ∼ y ⇔ y = x ∨ y = γ x ∨ y = γ 2x ∨ · · · ∨ y = γ n−1x .

Our structure is then M/∼. We will find a natural language for such a structure and

investigate it somewhat.

First we recall a few facts about the module itself. We may assume that R acts

faithfully on M , so that for any nonzero r ∈ R, r is onto and has finite kernel. (This

uses strong minimality.) R will embed into a division ring D. For any nonzero r ∈ R,

there is, definable in the structure M, an endomorphism s such that rs = sr = m for

some positive integer m; call s a semi-inverse for r . We will assume, with no loss

of generality, that s ∈ R for some such s. This implies that if ra = sb for some

r, s ∈ R with s nonzero and a, b ∈ M , then r ′a = mb for some positive integer m

and some r ′ ∈ R. Note that the collection of torsion elements of M is either just {0}
or is countably infinite, as M must be divisible as an Abelian group.

Let P be the image of the graph of + under the map x 7→ x/∼ from M to M/∼.

So (a/∼, b/∼, c/∼) ∈ P exactly if c = γ i a + γ j b for some natural numbers i

and j . For any r ∈ R, let r∗ be the image of the graph of r ; note that r∗ is the

graph of a function on M/∼. We call the structure N = (M/∼; P, r∗ : r ∈ R)

a squashed module. It is clearly a reduct of M/∼ and so any automorphism of the

module induces an automorphism of N . In fact, the reverse is also true, and this fact

easily implies that the squashed module structure is the entire structure of M/∼.

Proposition 8.1 Let M be a module as specified above, and N the corresponding

squashed module for the root of unity γ . Let α be an automorphism of N . Then α

lifts to an automorphism ᾱ of M; that is, ᾱ is an automorphism of the module, and

ᾱ(a) ∈ α(a/∼) for every a ∈ M.

Proof Actually, there will be exactly n possible choices for ᾱ, as will soon be clear.

We may assume that there is some nontorsion element a ∈ M by passing if necessary

to an elementary extension of M; fix such an a. Let ᾱ(a) be any element of α(a/∼).

We define ᾱ(b) in one of two ways, depending on whether or not a and b are related

in the module structure.
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First suppose that there is a positive integer m and some nonzero r ∈ R so

that mb = ra; note that b must be nontorsion, too. Choose such an m, r with m

minimal. Now we choose ᾱ(b) in α(b/∼) so that mᾱ(b) = r ᾱ(a). To see that

this is possible, note that because we have m∗(b/ ∼) = r∗(a/ ∼) we have also

m∗(α(b/∼)) = r∗(α(a/∼)) = α(ra/∼). Letting c, γ c, . . . , γ n−1c list α(b/∼),

we must have γ ir ᾱ(a) = mγ j c for some i, j . But then r ᾱ(a) = mγ j−ic. On the

other hand, mγ i c 6= mγ j c for i, j different mod n, because otherwise c is torsion,

which easily implies that b is torsion. Thus ᾱ(b) is well defined. Also, if γ i 6= 1,

we will have mᾱ(γ i b) = rγ i ᾱ(a); if we had ᾱ(γ i b) = ᾱ(b), we would also have

mᾱ(γ i b) = r ᾱ(a), so that ᾱ(a) would be torsion, which it isn’t. Thus, our definition

of ᾱ(b) is, so far, one-to-one.

Now suppose that b does not satisfy the condition above. We choose

ᾱ(b) ∈ α(b/ ∼) so that ᾱ(b) + ᾱ(a) ∈ α(a + b/ ∼). This is possible because

we have P(a/ ∼, b/∼, a + b/∼) and hence P(α(a/ ∼), α(b/ ∼), α(a + b/∼)).

Choose c ∈ α(b/ ∼) and d ∈ α(a + b/ ∼); we must have γ i ᾱ(a) + γ j c = d

for some i, j ; ᾱ(b) is then γ j−i c. To see that this is well defined, note that

if we have ᾱ(a) + γ i c and ᾱ(a) + γ j c in the same ∼-class, we would have

ᾱ(a)+γ ic = γ k(ᾱ(a)+γ j c). If γ k 6= 1, we get that (1−γ k)ᾱ(a) = (γ j+k−γ i )c so

that (1−γ k)∗α(a/∼) = (γ j+k−γ i )∗α(b) and hence (1−γ k)a/∼= (γ j+k−γ i )b/∼.

This implies that (1−γ k)a = rb for some r ∈ R and this contradicts our assumption

on b. So γ k = 1 and γ i c = γ j c.

The demonstration that ᾱ remains one-to-one is quite similar to this proof that

it is well defined. This shows that it is onto, as well. Every class is α(b/∼) for

some b and we have ᾱ(b) ∈ α(b/∼). Also, distinct elements of b/∼ go to distinct

elements of α(b/∼). One final point: for those elements b such that γ i b = γ j b

where γ i 6= γ j , the class α(b/∼) is easily seen to have fewer than n elements as

well.

Assume for the moment that there are infinitely many torsion elements. Next

we show that ᾱ, when restricted to the torsion elements, is an endomorphism. It

should be noted first that it permutes the torsion elements, because α must per-

mute the set {b/ ∼: mb = 0} for every natural number m. (In fact α permutes

the set {b/ ∼: rb = 0} for any r ∈ R.) Suppose that mb = 0 and m is mini-

mal (b is fixed for now). Then ma = m(a + b) so that by definition, we have that

mᾱ(a) = mᾱ(a + b). Also m(2a + b) = 2ma, so that mᾱ(2a + b) = 2mᾱ(a);

put these together and we get that m[ᾱ(2a + b) − ᾱ(a) − ᾱ(a + b)] = 0. Now

because we have P(α(a/∼), α(b/∼), α(a + b/∼)) and ᾱ(x) ∈ α(x/∼) for ev-

ery x , we must have that ᾱ(2a + b) = γ i ᾱ(2a) + γ j ᾱ(b) for some i, j . Because

ᾱ(a) + ᾱ(b) ∈ α(a + b/∼) we have that ᾱ(a + b) = γ k[ᾱ(a) + ᾱ(b)] for some k.

Now we have ᾱ(2a) = 2ᾱ(a), too. Putting all these together yields

m[(2γ i − 1 − γ k)ᾱ(a) + (γ j − γ k)ᾱ(b)] = 0.

As b is torsion but a is not, we must have 2γ i − 1 − γ k = 0. Embedding the subring

Z[γ ] of R into the complexes is the easiest way to see that this can only happen if

γ k = γ i = 1 and thus that ᾱ(a + b) = ᾱ(a) + ᾱ(b).

Now let b, c be any torsion elements; we know that

ᾱ(a + b + c) = ᾱ(a) + ᾱ(b + c) = γ i ᾱ(a + b) + γ j ᾱ(c)

= γ i [ᾱ(a) + ᾱ(b)] + γ j ᾱ(c).
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We must have γ i = 1 as a is not torsion. If γ j = 1, too, then of course

ᾱ(b + c) = ᾱ(b)+ ᾱ(c). So suppose not. Similarly, we find k so that ᾱ(a + b + c) =
ᾱ(a)+ ᾱ(c) + γ k ᾱ(b) and we may assume that γ k 6= 1. Canceling the ᾱ(a)s we see

that for any torsion element b, the set

Sb =def {c : c torsion and ᾱ(b + c) 6= ᾱ(b) + ᾱ(c)}

is finite. For our given b and c, choose a torsion element d so that d /∈ Sc ∪ Sb+c and

c + d /∈ Sb . Then

ᾱ(b + c + d) = ᾱ(b + c) + ᾱ(d) = ᾱ(b) + ᾱ(c + d) = ᾱ(b) + ᾱ(c) + ᾱ(d)

and so ᾱ is an additive automorphism of the torsion subgroup.

Now for any r ∈ R and torsion b, we must have that ᾱ(rb) = γ ir ᾱ(b) because

we have r∗(α(b/∼)) = α(rb/∼). Similarly, ᾱ((r − 1)b) = γ j (r − 1)ᾱ(b). So

γ ir ᾱ(b) = [γ j (r − 1) + 1]ᾱ(b). That is, [(γ i − γ j )r + 1 − γ i ]ᾱ(b) = 0. Suppose

that r is not one of the finitely many elements of R so that (γ i − γ j )r + 1 − γ i = 0

for some i, j . Then the set of torsion elements c so that ᾱ(rc) 6= r ᾱ(c) is finite.

Choosing some d such that neither d nor b + d is in this set, we see that in fact it is

empty by calculating ᾱ(rb + rd) in two ways. So for all but finitely many elements

r ∈ R, we have that ᾱ respects multiplication by r . So for arbitrary r ∈ R find

nonzero s ∈ R so that neither s nor rs is in the set of exceptions. For torsion b find

c so that sc = b. Calculating ᾱ(rsc) = rsᾱ(c) = r ᾱ(sc) shows that, indeed, ᾱ

restricted to the torsion elements is a module automorphism.

Now we “alter” the definition of ᾱ on the nontorsion elements. (In fact, the “new”

ᾱ will turn out to be the same, after the fact.) We temporarily rename the “old”

purported automorphism ᾱ′ and define a new one ᾱ as follows: it agrees with ᾱ′

on the torsion elements. Fix any torsion element b not in the kernel of any nonzero

γ i −1, nor in the kernel of 2−γ i −γ j unless it is zero. For any nontorsion c, choose

ᾱ(c) ∈ α(c/∼) so that ᾱ(c) + ᾱ(b) ∈ α(b + c/∼). As above, this is possible, and

our assumptions on b assure us that it is well defined.

Simply because every ᾱ(c) is in the right class, we have for any c, d that

ᾱ(c + d) = γ i ᾱ(c) + γ j ᾱ(d) for some i, j . Similarly, ᾱ(rc) = γ kr ᾱ(c). Now we

show that for any c, we have that ᾱ(b + c) = ᾱ(b) + ᾱ(c). We may assume that c is

nontorsion. We have that ᾱ(b + c) = γ ℓ[ᾱ(b) + ᾱ(c)]; also

ᾱ(2b+c) = 2γ i ᾱ(b)+γ j ᾱ(c) = γ k[ᾱ(b)+ᾱ(b+c)] = γ k[ᾱ(b)+γ ℓ(ᾱ(b)+ᾱ(c))].

We must have γ j = γ k+ℓ and then that ᾱ(b) is in the kernel of 2γ i − γ k − γ k+ℓ, so

γ i = γ k = γ k+ℓ and γ ℓ = 1.

Fix c and consider the set Sc = {d : ᾱ(c + d) 6= ᾱ(c) + ᾱ(d)}. We show first

that for only finitely many torsion elements c can this set be infinite. We know that

ᾱ(c + d) = γ i ᾱ(c) + γ j ᾱ(d) and also that

ᾱ(b +c +d)= ᾱ(b)+ ᾱ(c +d)=γ kᾱ(b +d)+γ ℓᾱ(c)=γ k(ᾱ(b)+ ᾱ(d))+γ ℓᾱ(c).

The exponents, which we may assume are all between 0 and n − 1, depend on d , but

for only finitely many d can we have k 6= j . Similarly,

ᾱ(b + c + d) = γ m[ᾱ(b) + ᾱ(c)] + γ pᾱ(d)

and again for only finitely many d can we have p 6= j . Fix d ∈ Sc so that j = k = p

and then cancel ᾱ(d). Unless m = ℓ = i , we have our claim. But if m = ℓ = i ,
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by canceling the ᾱ(c)’s, too, we see that we must have m = 1 for this choice of d , a

contradiction. Let us call S the set of such c’s.

Now, given arbitrary c, d we show that ᾱ(c + d) = ᾱ(c)+ ᾱ(d). We may assume

that d is not torsion, and it suffices as above to find e /∈ Sd ∪ Sc+d so that d + e /∈ Sc.

If neither c nor c + d is in S, this is easy. At most one is in S. If c ∈ S, we can

easily choose an element e /∈ Sc ∪ Sc+d so that d + e is torsion and hence not in Sc.

If c + d ∈ S, we can choose e torsion so that e /∈ Sd and d + e /∈ Sc. Thus ᾱ is an

additive automorphism of M .

Now we show that ᾱ is a module automorphism of M by considering the set

{r ∈ R : for some c, ᾱ(rc) 6= r ᾱ(c)}.

Any witness c that r is in this must be nontorsion, and we will have

ᾱ(rc) = γ ir ᾱ(c) = ᾱ((r − 1)c) + ᾱ(c) = [γ j (r − 1) + 1]ᾱ(c).

This leaves only finitely many possibilities for r ; we dispose of these exactly as

above. This completes the proof of the proposition in case there are nonzero torsion

elements.

If 0 is the only torsion element, then our module is a vector space. The proof

in this case is virtually identical to the above, but easier; we don’t have to alter our

original ᾱ. Instead we verify directly that ᾱ as defined initially is a vector space

automorphism of the subspace generated by a (easy) and then use elements of this

subspace as we employed torsion elements in the above proof. We leave the details

to the reader. The proposition is proved. �

From this proposition (applied to some elementary extension of M) and Proposi-

tion 1.2 the following is immediate.

Corollary 8.2 Fix notation as in Proposition 8.1. Then the squashed module struc-

ture is the entire structure of M/∼; the squashed module is not a proper reduct.

In certain cases, we have claimed more than the above. We stated that we need

only the predicate P in case M is the multiplicative group of the complexes, or any

elliptic curve without complex multiplication. Both of these cases are dealt with in

the following.

Corollary 8.3 Fix notation as in Proposition 8.1. Suppose that the ring R is just the

integers. Then the squashed module structure is the same as the structure (M/∼; P).

Proof We need to check that for every integer m, the function m∗ on M/ ∼ is

definable from P . For m = 0, 1 this is clear (1∗ is just the identity). For positive m

we prove this by induction, so suppose that it is true for every positive integer less

than m and m > 1. We must have γ = −1 and then we have P(a/∼, b/∼, c/∼)

exactly if c is either a + b, a − b, b − a, or −a − b. We have then that y = m∗(x) if

and only if P(x, (m − 1)∗x, y)∧ y 6= (m − 2)∗x . For negative m, it is now sufficient

to show that −1∗ is definable. But y = (−1)∗x exactly if P(x, y, 0/∼) ∧ y 6= x .

This finishes the proof of the corollary. �

The next result is actually a corollary of the proof of our proposition. We will natu-

rally be applying this in case α is a constructible map.
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Corollary 8.4 Again, we use the notation of the proposition. Suppose that our

automorphism α of the squashed module is definable in M
′eq for some expansion M

′

of M. Then the lifted automorphism ᾱ is also definable in M
′.

Proof Essentially this is because there are only finitely many possibilities for ᾱ,

but we can be more explicit. Fix some a outside the kernel of γ i − 1 for any

i = 1, . . . , n − 1 and let b = ᾱ(a). Consider the subset G of M2 defined by

(x, y) ∈ G ⇔ y/∼= α(x/∼) ∧ (y + b)/∼= α(x + a/∼).

It is easily checked that the symmetric difference of G and the graph of ᾱ is finite.

�

The following will be used at the end of Section 9.

Proposition 8.5 Let M/∼ be a squashed module, P the image of the graph of

addition, and c any nonalgebraic element.

1. Suppose that b is not algebraic in c and we have that the solutions to

P(c/∼, b/∼, x) are the same as those to P(c′/∼, b/∼, x). Then c/∼= c′/∼.

2. Any automorphism of M/∼ that fixes every point independent from c/∼ must

fix c/∼, too.

Proof (1) We may obviously assume that ∼ is not trivial. Say it has classes of size

n. Then there are n solutions to P(c′/∼, b/∼, x), say, di/∼ for i < n. Let γ be

an nth root of unity. For each i < n, by perhaps altering each di in its ∼-class and

reordering them, we may assume that c′ + γ i b = di . For each i , there are k and ℓ so

that γ kc +γ ℓb = di . We claim first that k doesn’t depend on i . Suppose for instance

that γ kc + γ ℓb = d0 and γ mc + γ r b = d1. Then

γ kc − c′ + (γ ℓ − 1)b = γ mc − c′ + (γ r − γ )b = 0.

Subtracting again gives a contradiction on our assumptions about c and b unless

γ k = γ m . We can of course assume that k = 0 for each i , at the cost of moving c

within its ∼-class.

So for some permutation ρ of {0, . . . , n−1} we have that c+γ ρ(i)b = di . Making

two additions and noting that 6n−1
0 γ i = 0, we see that nc′ = nc = 6di . So c − c′

is algebraic. Let i = ρ(0). Then c′ + b = d0 = c + γ i b and c′ − c = (γ i − 1)b.

As b is not algebraic, we must have i = 0. Thus c = c′, proving (1). (2) is now

automatic. �

9 When Are Two of Our Reducts the Same?

Suppose that M and N are two of the items on our list and σ and τ are fractional

linear transformations. We investigate here the possibility that σ(M) = τ (N ). That

is, these two structures (both with universe C) have the same definable sets.

We make two trivial observations that will be useful in what comes. We may

assume that σ (or τ , if we prefer) is the identity. It is clear that σ(M) = τ (N ) if and

only if M = σ−1τ (N ). Similarly, for a particular predicate P , σ(P) = τ (P) if and

only if P = σ−1τ (P).

We begin with a general setup, eventually getting down to cases. Each of our

structures M arises as (something constructibly isomorphic to) A/∼ where A is one

of our particular three kinds of groups and ∼ identifies x, γ x, . . . , γ n−1x for γ some

primitive nth root of unity. The main structure on M is given by the image P of the
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graph of the group operation under the projection π : A −→ M. Inside the structure

(C; P)eq we can find the group A and the projection π . Thus if M and N come

from our list and M = τ (N ), we have two predicates P1 and P2 = τ (P1). Inside

M
eq we can find Abelian groups (Ai ; ⊕i ) and projections πi : Ai −→ C so that the

image of the graph of ⊕i is Pi . The fibers of πi have the form {x, γi x, . . . , γ
ni −1
i x}

as above.

Now A1 × A2 is an Abelian structure (being an Abelian group defined in a lin-

ear structure) and π−1
2 π1 is a definable subset. As usual, we suppress mention of

the parameters necessary to define it. Thus, according to [2], it is a Boolean com-

bination of cosets of definable subgroups. Pick x ∈ A1 generic and then y so that

(x, y) ∈ π−1
2 π1; so there is a definable subgroup B ≤ A1 × A2 with (x, y)+ B con-

tained in π−1
2 π1 except for finitely many elements. We also have (x, γ i

2 y) ∈ π−1
2 π1

for each i = 0, . . . , n2 −1 and so there is Bi ≤ A1 × A2 definable with (x, γ i
2 y)+ Bi

contained in π−1
2 π1 for each i . Now we cannot have (x, γ i

2 y) + Bi = (x, γ
j

2 y) + B j

for i 6= j as this would imply that (0, (γ i
2 − γ

j

2 )y) ∈ Bi , contradicting the genericity

of y (hence of x).

From the above, it should be clear that the symmetric difference of π−1
2 π1 and the

union of the (x, γ i
2 y)+ Bis is finite and that each Bi is the graph of a homomorphism

from A1 to A2. Considering the cosets (γ i
1 x, y)+ Bi for i = 0, . . . , n1 − 1 we come

to two quick conclusions. First, each Bi is the graph of an isomorphism from A1 to

A2. Second, n1 = n2; we will call it n in what follows.

We have f , a definable isomorphism of the groups A1 and A2, and it is the

graph of B0, where (x, y) + B0 is contained in π−1
2 π1 except for finitely many

points. So (0, y − f (x)) ∈ (x, y) + Bi , too. Let e = y − f (x); it is algebraic

in the parameters needed to define π1 and π2. x is not, so e doesn’t depend on the

choice of x . Because (z, γ2y) ∈ π−1
2 π1 exactly if z = γ

j

1 x for some j , we must

have that γ2y − f (γ
j

1 x) = e for some j . Thus (γ2 − 1)e = f (γ
j

1 x) − γ2 f (x).

Now fix an independent (from everything so far) element x ′; we must also have

(γ2 − 1)e = f (γ
j

1 x ′) − γ2 f (x ′). Subtracting, we get

f (γ
j

1 (x − x ′)) = γ2 f (x − x ′).

But x −x ′ is just as generic as x , so f (γ
j

1 (x −x ′))−γ2(x −x ′) = (γ2−1)e. This tells

us that γ2e = e and the calculation tells us that x ∼1 z if and only if f (x) ∼2 f (z).

Let’s take stock before proceeding to exploit this picture further. If M = τ (N )

and M and N both come from our list, then they must both come from the same item

on our list. There is a definable isomorphism between the corresponding groups, and

it takes ∼1 to ∼2. Thus if for instance we had g((C; ·)) = τ (C; ·) (items 1 and 2), we

would have a bijection carrying the trivial equivalence relation to one with classes

of size two, obviously nonsense. Also, if both M and N come from item 3, say

M = gm((C; +, λa : a ∈ F1)) and N = gn((C; +, λa : a ∈ F2)) we must have that

m = n and F1 is isomorphic to F2. (It’s hard to say here what it means for them to

be the “same”, as they act on different copies of the group.)

Also, if both groups are elliptic curves (item 4), they must be isomorphic (in the

sense of algebraic geometry). That is, there is a constructible isomorphism between

them. But we will see below that if E1 and E2 are distinct (even isomorphic) elliptic
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curves, the reducts corresponding to them in the sense of item 4 are distinct. (But

one will be the image of the other under some f.l.t. τ , of course.)

We return to our general picture for a moment; the relation π2 f π−1
1 on C is

actually the graph of a bijection. This bijection takes P1 to P2. Also π1(z) = x if

and only if π2( f (z)⊕2 e) = x ; that is, if g(z) = f (z)⊕2 e, then the relation π2gπ−1
1

is the identity. This fact will allow us to compute π2 f π−1
1 , given e. As γ2e = e,

there are (usually) only a few possibilities for it, depending on the particular case,

which we now get to.

We will actually be assuming that A1 is one of our specified groups (the multi-

plicative group, the additive group, or an elliptic curve in the form y2 = x3 +ax +b)

and then use the identification made above with such A1/∼1 and the appropriate

structure on our list to draw conclusions about the latter.

Suppose we are in situation 1; as γ2 = 1, there’s no constraint on e. π1 is the

identity. The function π2 f is easily seen to be just multiplication by b = π2(e)
−1.

So τ (graph of ·) is the graph of (x, y) 7→ xyb−1; of course this graph is definable in

(C; ·). A straightforward calculation tells us that τ is either x 7→ bx or x 7→ bx−1.

Thus by the first observation, σ(C; ·) = τ (C; ·) if and only if σ(x) = τ (bx) or

σ(x) = τ (bx−1) for some particular b. (In the following cases, we will omit this

final, trivial step.)

In case 2, we have e2 = 1 in the copy A2 of (C; ·). If e is the identity, then so

is π2 f π−1
1 , so τ (P) = P where P is as usual the image of the graph of · under

π1. So by Corollary 8.4, τ lifts to a definable automorphism of A1. The only such

are the identity and x 7→ x−1, and both of these project to the identity under π1.

Using our identification x/∼1 7→ x + x−1 of C/∼1 and M = (C; P) we see that

in this case τ is the identity. If e is A2’s version of −1, then f −1g(x) = −x for

every x ∈ A1. So g−1 f (x) = −x , too. So π2 f (x) = π2g(−x) which gives us that

π2 f π−1
1 (x/∼1) = −x/∼1. Using the identification again, we see that this function

remains x 7→ −x , so we have τ (P) = σ(P) where σ(x) = −x . But this implies

τ = σ just as above. Now x 7→ −x is definable in (C; P); recall that P(x, y, z) if

and only if x2 + y2 + z2 = 4 + xyz, so that P(x, y,−2) ⇔ y = −x . Bottom line

in this case: τ (C; P) = (C; P) if and only if τ is the identity or x 7→ −x .

We move to case 3, and assume for the moment that n > 1, so γ2 is not the

identity. Then e = 0 and π2 f π−1
1 is the identity. So τ is a constructible isomorphism

of the structure (C; +)/∼1. Now τ lifts to a constructible isomorphism of (C; +) and

these are precisely the scalar multiplications λa for a ∈ C. Under π1, λa becomes

x/∼1 7→ (ax/∼1). The identification of C/∼1 with (C; P), where P is the image of

+, is x 7→ xn . The image under the map x/∼1 7→ ax/∼1 under this identification is

λn
a . Now it’s clear that the ternary polynomial which is zero if and only if P(x, y, z)

holds is homogeneous, which implies that the map λb fixes the predicate P . In the

language of item 3 in the summary,

τ (gn(C; +, λc : c ∈ F ′)) = gn(C; +, λc : c ∈ F)

if and only if F ′ = F and τ = λb for some b.

In case 3 when n = 1, what we want to know is when

τ ((C : +, λb : b ∈ F ′)) = (C; +, λb : b ∈ F).

τ applied to the graph of + is a group operation defined in the vector space, so it

must be the graph of (x, y) 7→ x + y − c for some c. One verifies with no difficulty
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that this occurs exactly if τ (x) = λb(x) + c for some b; we must also have F ′ = F .

Notice that in this case as in the last paragraph, τ itself need not be definable in the

structure.

Now suppose that we are in item 4, so A1 is the elliptic curve y2 = x3 + ax + b

and ∼1 identifies (x, y) with (x,−y). e must be the identity or an element of order

2 in A2. In the first case, π2 f π−1
1 is the identity on A1/∼1 and τ lifts to an addi-

tive automorphism of the elliptic curve. If we suppose that ab 6= 0, the only such

automorphisms are [1] and [−1] and both of these induce the identity. If b = 0,

we have the extra automorphisms [i ] and [−i ], both of which induce the function

x 7→ −x . (Recall that [i ](x, y) = (−x, iy). Also the identification of A1/ ∼1

and (C; Pa,b) is so immediate in this case that we don’t mention it.) If a = 0, we

have automorphisms [η], [−η], [η2], [−η2] where η is a primitive cube root of unity.

As [η](x, y) = (ηx, y) the first two induce the function x 7→ ηx and the last two

x 7→ η2x .

Now suppose that e has order 2; then f −1g(x, y) = (x, y)⊕1 (x0, 0) for some x0

that solves x3 + ax + b = 0; this is because the points (x0, 0) are the elements

of order 2 in the elliptic curve. Again, this function is its own inverse, so that

g−1 f (x, y) = (σ (x), y ′) = (x, y) ⊕1 (x0, 0). Using the addition formula on the

curve, we see that

σ(x) =
x0x + 2x2

0 + a

x − x0
.

From this and the fact that π2gπ−1
1 is the identity, we see that π2 f π−1

1 = σ . It

should come as no surprise that y = σ(x) holds if and only if Pa,b(x, y, x0). So if

ab 6= 0, we have that τ (C; Pa,b) = (C; Pa,b) exactly if τ is the identity or one of

the 3 σ ’s mentioned. Clearly such a σ never arises from an isomorphism of elliptic

curves (it has the wrong form). So if (a1, b1) 6= (a2, b2), then for no τ do we have

τ (C; Pa1,b1
) = (C; Pa2,b2

).

Two more points on item 4. We leave to the reader the straightforward calculation

of possible τ ’s when ab = 0; the necessary information is contained in the two

preceding paragraphs. Also, if the curve has complex multiplication, it should be

clear that the rings R′ mentioned must be the same for M and N , when τ (M) = N .

For item 5, we must have that [i ]e = e. If e is the identity, then τ lifts to

an additive automorphism of the curve y2 = x3 + x ; the only 4 of these are

[1], [−1], [i ], and [−i ], and they all project to the identity. Otherwise, recalling

that [i ](x, y) = (−x, iy), we must have that e is A2’s copy of (0, 0) and thus that

f −1g(x, y) = (x, y) ⊕1 (0, 0). The projection of this onto the first coordinate is

x−1. The map x 7→ x2 (the identification in this case) takes the map x 7→ x−1 to

itself. In this case, then, τ must be either the identity or x 7→ x−1.

In item 6, we have [η]e = e. If e is the identity, τ lifts to an automorphism

of y2 = x3 + 1. Of these, [1], [η], and [η2] project to the identity on our struc-

ture πy(E). [−1], [−η], and [−η2] all project to y 7→ −y. Otherwise e is A2’s

copy of either (0, 1) or (0,−1). In the first case, f −1g(x, y) = (x, y) ⊕1 (0, 1),

which projects to y 7→ −y+3
y+1

; this is its own inverse again. In the second case,

f −1g(x, y) = (x, y) ⊕1 (0,−1), which projects to y 7→ y+3
y−1

. Thus, in this case, if

M = τ (N ), we have N = M and τ is one of six possibilities.

Finally, in item 7, we must have that [−η]e = e; regarding A2 as a copy

of the curve y2 = x3 + 1, we would then have (for e not the identity) that
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e = (x, y) = (ηx,−y) so e = (0, 0). But (0, 0) is not on the curve, so e

must then be the identity. τ must lift to an automorphism of the curve, and all 6 of

these project to the identity on M. The only possibility in this case is that τ is the

identity.

Now we turn to the possibility that, for arbitrary M and N on our list, and

arbitrary definable functions f, g from C onto C, f −1(M) = g−1(N ). That

is, the canonical cover of M via f is the same reduct as the canonical cover

of N via g. Recall that while f need not be definable in f −1(M) the relation

x ∼ f y ⇔ f (x) = f (y) is; it is the pre-image of the identity on M. Also note

that if S is any generic fiber of f and α is any bijection of C fixing the complement

of S pointwise, then α is an automorphism of f −1(M). This immediately implies

that the generic fibers of f and g cannot overlap nontrivially: if x is generic, either

x/ ∼ f = x/ ∼g or one of them is just {x}. In the second case both equivalence

relations are trivial.

Thus, if f −1(M) = g−1(N ), f and g have the same fibers (except for finitely

many). This implies that g f −1 is a definable bijection (modulo a finite set of ex-

ceptions) and thus a fractional linear transformation τ . Making a finite number of

adjustments, we have that τ (M) = N . We summarize all our observations in this

section.

Proposition 9.1 Suppose that M and N are items from the list in 7.1. Suppose that

f and g are constructible functions from C onto C so that the reducts f −1(M) and

g−1(N ) are the same. Then M = N and f (x) = τg(x) for some fractional linear

transformation τ , except for finitely many x. In each case, we list the possibilities

for τ :

1. For some fixed c, either τ (x) = cx for all x or τ (x) = cx−1 for all x .

2. Either τ (x) = x for all x or τ (x) = −x for all x .

3. If n 6= 1 then for some fixed c, τ (x) = cx for all x . If n = 1, there are fixed c

and d so that τ (x) = cx + d for all x .

4. Suppose the elliptic curve in question is given by y2 = x3 + ax + b; let x1,

x2, and x3 be (distinct) solutions of x3 + ax + b = 0. For j = 1, 2, 3, let

σ j (x) =
x j x+2x2

j +a

x−x j
. In any case, τ may be the identity or one of the σ j ’s.

(a) If ab 6= 0, these four functions are the only possible τ ’s.

(b) If b = 0, we have 4 more possibilities for τ : x 7→ −x and x 7→ σ j (−x)

for j = 1, 2, 3.

(c) If a = 0, τ may be x 7→ ηx, x 7→ η2x, x 7→ σ j (ηx), or x 7→ σ j (η
2x)

for j = 1, 2, 3, where η is a primitive cube root of 1. (There are 12 τ ’s

in all in this case.)

5. τ is either the identity or x 7→ x−1.

6. τ (x) = σ(x) for all x or τ (x) = −σ(x) for all x , where σ is either the

identity, x 7→ −x+3
x+1

, or x 7→ x+3
x−1

.

7. τ is the identity.



190 James Loveys

References

[1] Hrushovski, E., “A new strongly minimal set,” Annals of Pure and Applied Logic,

vol. 62 (1993), pp. 147–66. Stability in model theory, III (Trento, 1991). Zbl 0804.03020.

MR 94d:03064. 168

[2] Hrushovski, U., and A. Pillay, “Weakly normal groups,” pp. 233–44 in Logic Colloquium

’85 (Orsay, 1985), vol. 122 of Studies in Logic and the Foundations of Mathematics,

North-Holland, Amsterdam, 1987. Zbl 0636.03028. MR 88e:03051. 169, 186

[3] Laskowski, M. C., “Uncountable theories that are categorical in a higher power,” The

Journal of Symbolic Logic, vol. 53 (1988), pp. 512–30. Zbl 0653.03019. MR 90d:03059.

168

[4] Loveys, J., “Weakly minimal groups of unbounded exponent,” The Journal of Symbolic

Logic, vol. 55 (1990), pp. 928–37. Zbl 0718.03027. MR 92e:03045. 169

[5] Loveys, J., “On locally modular, weakly minimal theories,” Archive for Mathematical

Logic, vol. 32 (1993), pp. 173–94. Zbl 0797.03035. MR 94a:03056. 169

[6] Poizat, B., Groupes Stables, Nur al-Mantiq wal-Ma’rifah [Light of Logic and Knowl-

edge], 2. Bruno Poizat, Lyon, 1987. Une tentative de conciliation entre la géométrie al-

gébrique et la logique mathématique. [An attempt at reconciling algebraic geometry and

mathematical logic]. Zbl 0633.03019. MR 89b:03056. 168, 170

[7] Rabinovitch, E., Definability in a Field with Sufficiently Rich Incidence Systems, Queen

Mary and Westfield College, School of Mathematical Sciences, London, 1993. 168

[8] Silverman, J. H., The Arithmetic of Elliptic Curves, vol. 106 of Graduate Texts in Mathe-

matics, Springer-Verlag, New York, 1986. Zbl 0585.14026. MR 87g:11070. 171, 172

[9] Silverman, J. H., Advanced Topics in the Arithmetic of Elliptic Curves, vol. 151 of

Graduate Texts in Mathematics, Springer-Verlag, New York, 1994. Zbl 0911.14015.

MR 96b:11074. 169

Department of Mathematics and Statistics
McGill University
805 Sherbrooke St West
Montreal QC H3A 2K6
CANADA
loveys@math.mcgill.ca

http://www.emis.de/cgi-bin/MATH-item?0804.03020
http://www.ams.org/mathscinet-getitem?mr=94d:03064
http://www.emis.de/cgi-bin/MATH-item?0636.03028
http://www.ams.org/mathscinet-getitem?mr=88e:03051
http://www.emis.de/cgi-bin/MATH-item?0653.03019
http://www.ams.org/mathscinet-getitem?mr=90d:03059
http://www.emis.de/cgi-bin/MATH-item?0718.03027
http://www.ams.org/mathscinet-getitem?mr=92e:03045
http://www.emis.de/cgi-bin/MATH-item?0797.03035
http://www.ams.org/mathscinet-getitem?mr=94a:03056
http://www.emis.de/cgi-bin/MATH-item?0633.03019
http://www.ams.org/mathscinet-getitem?mr=89b:03056
http://www.emis.de/cgi-bin/MATH-item?0585.14026
http://www.ams.org/mathscinet-getitem?mr=87g:11070
http://www.emis.de/cgi-bin/MATH-item?0911.14015
http://www.ams.org/mathscinet-getitem?mr=96b:11074
mailto:loveys@math.mcgill.ca

	1. A Little Basic Model Theory
	2. Strongly Minimal Sets, Linearity, etc.
	3. A Few Words about Elliptic Curves
	4. In Case the Group is Multiplication
	5. In Case the Group is Addition
	6. In Case the Group is an Elliptic Curve
	7. Summary, So Far
	8. On Squashed Modules
	9. When Are Two of Our Reducts the Same?
	References

