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Types in Abstract Elementary Classes

Tapani Hyttinen

Abstract We suggest a method of finding a notion of type to abstract elemen-

tary classes and determine under what assumption on these types the class has

a well-behaved homogeneous and universal “monster” model, where homoge-

neous and universal are defined relative to our notion of type.

1 Introduction

Let (K,⊆) be an abstract elementary class (see below) such that K = K
µ

0 is a class

of bicolored (rank 2) fields (see Baldwin and Holland [1]; in Example 4.1 below,

for technical reasons, a bit simplified case is studied) and ⊆ is the submodel relation.

Then (K,⊆) behaves very badly; it is almost impossible to analyze K via the abstract

elementary class (K,⊆). However, if ⊆ is replaced by ‘strong submodel relation’

≤ (see [1]), we get a very nice abstract elementary class (K,≤) and by working in

it, one can see that K is a relatively simple class of structures: it is a class of all

strong submodels of a well-behaved homogeneous (in fact “≤-homogeneous”, see

below) monster model (not always saturated) and a lot is known about such classes

of models.

It is easy to find examples like the one above from the recent studies in model

theory: Zilber’s weak Schanuel structures, Banach spaces, and so on. In fact, of-

ten finding the right submodel relation is the key problem in getting a good model

theoretic analysis for a given class of structures. Notice also that the considerations

like the one above tie in closely with the classical Robinson school studies in model

theory.

In this paper we study the question of finding right submodel relations. Abstract

elementary classes (K,≤) provide a natural context to carry out such studies. Our

criteria for a good submodel relation is that it should give rise to a well-behaved ho-

mogeneous and universal “monster” model M for the abstract elementary class. To

give a meaning for the notions homogeneous and universal, we need a reasonable
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notion of type for the class (types can be seen as equivalence classes of some mean-

ingful equivalence relation on pairs (a,A), where A ∈ K and a is a sequence of

elements of A).

Definition 1.1 Suppose we have a notion of type for sequences of elements of

models from K. Then we say that a model M ∈ K is homogeneous if any two

sequences of elements of M of length < |M| which have the same type are mapped

to each other by an automorphism of M and we say that M is universal if for all

B ∈ K of power ≤ |M|, there is a type-preserving embedding of B into M.

Now suppose that we have defined types for our class and that the class has a well-

behaved homogeneous and universal monster model relative to these types. Then the

types must satisfy the following:

1. A complete type of an infinite sequence is determined by its restrictions to

finite subsequences.

2. There is only one type of the empty sequence.

3. There are only set many types of finite sequences.

This is for the following reason: of course, types must be preserved under isomor-

phisms and so (1) follows from type compactness which is the key model theoretic

property of the first-order homogeneous structures and which we want our homoge-

neous structures to share (so we aim to have really homogeneous monster models,

not just model homogeneous).

Fact 1.2 Assume A is a model and E is the following equivalence relation on
<|A|

A: sequences a and b are E-equivalent if and only if there is an automorphism

f of A such that f (a) = b. Then the following are equivalent:

(i) The E-equivalence class of a sequence a of elements of A is determined by

the E-equivalence classes of the finite subsequences of a.

(ii) Suppose (ai )i<γ ∈ <|A|
A and that for all finite X ⊆ γ , there is a finite

sequence aX of elements of A such that if X ⊆ Y , then (aX , ai )i∈X is E-

equivalent with (aY , ai )i∈X (in particular, the length of aX does not depend

on X). Then there is a finite sequence a of elements of A such that for all

finite X ⊆ γ , (a, ai)i∈X is E-equivalent with (aX , ai )i∈X .

Notice that if A is a monster model of a complete first-order theory, then a and b are

E-equivalent if they have the same first-order type (over ∅) and so (i) holds. Also

then (ii) says that if p is a complete type over A (= {ai | i < γ }) and for all finite

B ⊆ A, p ↾ B is realized in A, then p is realized in A. Thus also (ii) holds.

Proof The implication from (i) to (ii) can be proved as the analogous result was

proved, for example, in Hyttinen [2]. We prove the other direction: Assume that

(ai )i<γ , (bi )i<γ ∈ <|A|
A are such that for all finite X ⊆ γ , (ai)i∈X and (bi )i∈X

are E-equivalent. We need to find an automorphism f such that for all i < γ ,

f (ai ) = bi . For this it is enough to show the following: for all a ∈ A, there is b ∈ A

such that for all finite X ⊆ γ , (a, ai )i∈X and (b, bi)i∈X are E-equivalent. But this is

immediate by (ii). �

The properties (2) and (3) follow from universality and our wish that the number of

types of finite sequences of elements of the monster model M is < |M| (without this

the monster model is rather useless).
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In this paper we will introduce a new notion of type to abstract elementary classes

and we will show that if the types (as we will define them) satisfy (1) – (3), then the

class has a well-behaved homogeneous and universal monster model.

Our method of finding types will be intuitive but we are not able to show that it

works whenever there is some method that works. In the last section we give two

examples in which our type-construction works. The second example shows also

that besides our construction, there may be other methods that work and that there

need not be a weakest notion of type that gives rise to a well-behaved homogeneous

and universal monster model.

We want to point out that the word “elementary” is used in this paper in an abstract

sense, that is, in the sense of abstract elementary classes. It has nothing to do with

the usual meaning of the word.

2 Construction of Types

In this section we give our type construction. In order to simplify the notation, unless

otherwise stated, a ∈ A means that a is a sequence of elements of A.

Shelah has defined the concept of an abstract elementary class: We let K be a class

of structures in a fixed similarity type τ such that it is closed under isomorphism. By

a K-model we mean a member of K (and similarly for other classes of models). We

let ≤ be a partial order on K and assume the following.

Assumptions on (K, ≤) For all K-models A, B, and C, the following hold:

(a) A ≤ A;

(b) A ≤ B implies that A is a substructure of B;

(c) if A is a substructure of B, A ≤ C and B ≤ C, then A ≤ B;

(d) ≤ is preserved under isomorphisms;

(e) if (Ai )i<γ is a continuous ≤-increasing sequence of K-models, then for all

i < γ , Ai ≤ ∪ j<γ A j ∈ K;

(f) if (Ai )i<γ is a continuous ≤-increasing sequence of K-models and for all

i < γ , Ai ≤ A, then ∪ j<γ A j ≤ A;

(g) there is a cardinal LS(K) such that LS(K) ≥ |τ | and for all K-models A

and subsets A ⊆ A of power ≤ LS(K), there is a K-model A ⊆ B ≤ A of

power ≤ LS(K).

If in addition (K,≤) has the property (h) below, we say that (K,≤) is an

abstract elementary class with the amalgamation property;

(h) for all K-models Ai , i < 3, the following holds: if A0 ≤ A1 and

A0 ≤ A2 then there is a K-model A3 and embeddings f : A1 → A3

and g : A2 → A3 such that f ↾ A0 = g ↾ A0, f (A1) ≤ A3 and

g(A2) ≤ A3.

The assumption (g) is not needed in the main theorems (2.8 and 3.2), but notice that

it gives the following.

Fact 2.1 For all cardinals λ ≥ LS(K), K-models A and subsets A ⊆ A of power

≤ λ, there is a K-model A ⊆ B ≤ A of power ≤ λ.

Proof Easy induction on λ using (c), (f), and (g). �

Prior to us Shelah has pointed out that if (K,≤) has the amalgamation property,

then a meaningful notion of a type over K-models can be defined (strictly speaking,
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Shelah’s definition of equality of types does not assume the amalgamation property,

but it gives rise to a meaningful notion of type only if the relevant models are amal-

gamation bases). We push Shelah’s idea a bit further. We define a notion of type

over arbitrary sets and our notion is meaningful also without the amalgamation prop-

erty. And we will determine under which conditions our notion of type makes K a

homogeneous class of structures.

Definition 2.2

(i) By induction on ordinals α we define an α-elementary submodel relation

≺α⊆ K × K and the notion α-elementary embedding as follows:

(a) We say that K-model A is a 0-elementary submodel of K-model B, if

A ≤ B and for limit α, we say that A is an α-elementary submodel of

B, if A ≺β B for all β < α.

(b) We say that f : A → B is an α-elementary embedding if f is an

isomorphism between A and some C ≺α B.

(c) We say that K-model A is an α + 1-elementary submodel of K-model

B if the following holds: A ≺α B and if C is a K-model and A ≺α C,

then there are a K-model D and α-elementary embeddings f : B → D

and g : C → D such that f ↾ A = g ↾ A.

(ii) We say that (possibly infinite) sequences a ∈ A and b ∈ B have the same

α-type, tα
A

(a, ∅) = tα
B

(b, ∅), if there are a K-model D and α-elementary

embeddings f : A → D and g : B → D such that f (a) = g(b).

(iii) For K-models A and B, we say that (possibly infinite) sequences a ∈ A and

b ∈ B have the same type, tA(a, ∅) = tB(b, ∅), if for all α they have the

same α-type. We say that a function is elementary if it preserves the types

and A is an elementary submodel of B (A ≺ B) if idA is elementary.

(iv) If a, b ∈ A are sequences and A ⊆ A, then we write tA(a, A) = tA(b, A) if

for some enumeration of A, a ⌢ A and b ⌢ A have the same type.

So ≺ is some kind of an inflationary fixed point of ≤ relative to amalgamation. In

addition to the assumptions (a) – (g) above, we define the following properties.

Definition 2.3 Ax1: For all α and infinite cardinals γ , if (ai )i<γ and (bi)i<γ

are sequences of elements of K-models A and B, respectively, and for all i < γ ,

(a j ) j<i and (b j ) j<i have the same α-type, then (ai )i<γ and (bi )i<γ have the same

α-type.

Ax2: For all K-models A and B there exist a K-model D and elementary embed-

dings f : A → D and g : B → D .

Ax3: There is a cardinal κ such that for all α, if ai , i < κ are finite sequences of el-

ements of K-models Ai , then there are i < j < κ such that tα
Ai

(ai , ∅) = tα
A j

(a j , ∅).

Notice that Ax2 says that all K-models are “elementarily equivalent,” that is, there

is only one type of the empty sequence. Notice also that Ax1 can be seen as a strong

form of tameness for the class (K,≺α).

We will show that Ax1, Ax2, and Ax3 imply the existence of a nice monster

model and that excluding (g), (K,≺) satisfies all the requirements of an abstract

elementary class with the amalgamation property (a weak version of (g) holds, see

Corollary 3.3). For notational reasons, we define also the following properties.
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Ax1−: For all α, Ax1−
α holds, where Ax1−

α is the following property: for all in-

finite cardinals γ , if (Ai )i<γ is a continuous ≺α-increasing sequence of K-models

and for all i < γ , Ai ≺α A, then ∪ j<γ A j ≺α A.

Ax3−: For some α, ≺α+1=≺α.

We will show that Ax1 and Ax3 together imply Ax3− and that Ax1 implies Ax1−.

Lemma 2.4

(i) For all α < β, A ≺β B implies A ≺α B and t
β

A
(a, ∅) = t

β

B
(b, ∅) implies

tα
A

(a, ∅) = tα
B

(b, ∅).

(ii) For all α, ≺α is transitive and if A is a substructure of B, A ≺α C and

B ≺α C, then A ≺α B.

(iii) Suppose that Ax1−
β holds for all β < α. If (Ai )i<γ is a continuous ≺α-

increasing sequence of K-models, then for all i < γ , Ai ≺α ∪ j<γ A j ∈ Kα.

(iv) Suppose Ax3− holds. There is α such that

(a) if tα
A

(a, ∅) = tα
B

(b, ∅), then tA(a, ∅) = tB(b, ∅),

(b) ≺α implies ≺,

(c) α-elementary implies elementary.

(v) If Ax3− holds, then tA(a, ∅) = tB(b, ∅) is a transitive relation.

Proof (i) Immediate.

(ii) The case α = 0 follows from the assumptions on ≤ (≤ is a partial order and

(c)) and the rest can be proved by an easy induction on α.

(iii) We prove these by induction on α. The case α = 0 follows from the assump-

tion (e) on ≤ and limit cases are immediate. So assume α = β + 1. For simplicity

we assume that γ = ω. Now ∪ j<γ A j ∈ K follows from (ii). So is enough to

show that if Ak ≺β C, k < γ , then there are a K-model D and β-elementary em-

beddings f : ∪i<γ Ai → D and g : C → D such that f ↾ Ak = g ↾ Ak . By

induction on i < j < γ we can find a K-model D j and β-elementary embeddings

f j : ∪i< j Ai → D j and g j : C → D j such that ( f j ↾ Ak = g j ↾ Ak and) for

j < j ′, f ⊆ f j ⊆ f j ′ g j = g j ′ = g and D j ≺β D j ′ (amalgamate over A j−1). By

the induction assumption (ii) and Ax1−
β , ∪i< j<γ f j , g and ∪i< j<γ D j are as wanted.

(iv) Let α be as in Ax3−. By an easy induction, one can see that A ≺α B implies

A ≺β B for all β. Thus (a) follows. For (b) and (c) it is now enough to notice that

if A ≺α B, then by the definition of α-type, for all sequences a of elements of A,

tα
A

(a, ∅) = tα
B

(a, ∅).

(v) Amalgamate twice and use (iv). �

Notice that by Lemma 2.4(v), tA(a, ∅) can be defined as an equivalence class of the

relation tB(b, ∅) = tC(c, ∅). Since in general tα
B

(b, ∅) = tα
C
(c, ∅) is not a transi-

tive relation, (ii) in Lemma 2.5 below is not quite as strong as it seems. However,

notice also that if α is a limit ordinal, then the relation t
β
B

(b, ∅) = t
β
C
(c, ∅), for all

β < α, is transitive and so an equivalence relation.

Lemma 2.5 Assume Ax1 holds.

(i) Let a = (ai )i<γ and b = (bi)i<γ be sequences of elements of K-models A

and B, respectively. If for all finite X ⊆ γ , tα
A

((ai )i∈X , ∅) = tα
B

((bi )i∈X , ∅),

then tα
A

(a, ∅) = tα
B

(b, ∅).
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(ii) A ≺α B if and only if for all finite sequences a of elements of A,

tα
A

(a, ∅) = tα
B

(a, ∅).

(iii) Ax1− holds.

Proof (i) Easy induction on |γ |.

(ii) From left to right the claim is clear. For the other direction, assume that

for all finite sequences a of elements of A, tα
A

(a, ∅) = tα
B

(a, ∅). By (i),

tα
A

(A, ∅) = tα
B

(A, ∅) and so there is C such that A ≺α C and B ≺α C. By

Lemma 2.4(ii) (and assumption (b)), A ≺α B.

(iii) Assume not. Let α be the least ordinal in which Ax1−
α fails and let A and

Ai , i < γ , witness the failure. Then α = β + 1 for some β and there is C

such that ∪i<γ Ai ≺β C but t
β

A
(∪i<γ Ai , ∅) 6= t

β

C
(∪i<γ Ai , ∅). By Ax1, there

is finite sequence a from ∪i<γ Ai such that t
β

A
(a, ∅) 6= t

β

C
(a, ∅). Let i < γ be

such that a ∈ Ai . By the choice of α, Ai ≺β ∪i<γ Ai ≺β C. This means that

t
β

Ai
(a, ∅) = t

β

C
(a, ∅). Since Ai ≺α A, t

β

A
(a, ∅) = t

β

C
(a, ∅), a contradiction. �

Remark 2.6

(i) Assume that Ax1 and Ax3− hold. If for all finite sequences c of elements of

A∩B, tA(c, ∅) = tB(c, ∅), then there are a K-model C and f : A∪B → C

such that f ↾ A and f ↾ B are elementary.

(ii) Assume that Ax1 and Ax3 hold. Then A ≺α+1 B if and only if A ≺α B

and the following holds: for all A ⊆ A and K-models C ⊇ A, if

tα
A

(A, ∅) = tα
C
(A, ∅), then tα

B
(A, ∅) = tα

C
(A, ∅).

Proof (ii) is immediate by the definitions and (i) follows from Lemma 2.4(iv) and

Lemma 2.5(i). �

Lemma 2.7 Assume Ax1 and Ax3 hold.

(i) Ax3− holds.

(ii) Let A and B be K-models and a = (ai)i<γ and b = (bi )i<γ se-

quences of elements of A and B, respectively. If for all finite X ⊆ γ ,

tA((ai)i∈X , ∅) = tB((bi )i∈X , ∅), then tA(a, ∅) = tB(b, ∅).

(iii) A ≺ B if and only if (A ≤ B and) for all finite sequences a of elements of

A, tA(a, ∅) = tB(a, ∅).

(iv) If for all finite sequences c of elements of A ∩ B, tA(c, ∅) = tB(c, ∅), then

there are a K-model C and f : A ∪ B → C such that f ↾ A and f ↾ B are

elementary.

Proof We prove (i); the rest follows immediately from this and the lemmas

above. Let tAi (ai , ∅), i < ξ , list all types of finite sequences, that is, for all

a, A and α, there is i < ξ such that tα
A

(a, ∅) = tα
Ai

(ai , ∅) (this is possible by

Lemma 2.4(i)). For all i < j < ξ , let αi j be such that t
αi j

Ai
(ai , ∅) 6= t

αi j

A j
(a j , ∅) and

let β = sup{αi j | i < j < ξ} and α = β + 1. We claim that α is as wanted. For this,

by Lemma 2.5(ii), it is enough to show that if i < j < ξ , tB(b, ∅) = tAi (ai , ∅)

and tC(c, ∅) = tA j (a j , ∅), then tα
B

(b, ∅) 6= tα
C
(c, ∅). Assume not. Clearly we may

assume that b = ai , c = a j and

(a) there is Di such that Ai ≺α+1 Di and B ≺α+1 Di ,

(b) there is D j such that A j ≺α+1 D j and C ≺α+1 D j .
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Since tα
B

(b, ∅) = tα
C
(c, ∅), by (a) and (b) and Remark 2.6(ii), we may assume that

b = c and that there is D such that Di ≺β D and D j ≺β D (amalgamate three

times). But then t
β

Ai
(ai , ∅) = t

β

A j
(a j , ∅), a contradiction. �

Theorem 2.8 Assume Ax1 and Ax3. Then excluding property (g) (the Löwenheim-

Skolem property), (K,≺) satisfies all the requirements of an abstract elementary

class with the amalgamation property.

Proof The properties follow from the lemmas above. �

In the next section we show that Ax1 and Ax3 imply a weak version of (g).

Remark 2.9 If (K,≤) has the amalgamation property then ≺=≤ and Ax3 holds.

Proof The claim ≺=≤ is clear by the definitions and the number of types of finite

sequences realized in K-models is ≤ 2L S(K) by Lemma 2.5(ii) and (g). �

3 Homogeneous and Universal Models

In this section we look at the existence of a well-behaved monster model.

Definition 3.1

(i) We say that a K-model A is λ-saturated if the following holds: For all

A ⊆ A of power < λ, B ≻ A and b ∈ B, there is a ∈ A such that

tA(a, A) = tB(b, A) (i.e., tA(a ⌢ A, ∅) = tB(b ⌢ A, ∅)).

(ii) We say that a K-model A is strongly λ-homogeneous, if for all sequences a

and b of elements of A of length < λ, tA(a, ∅) = tA(b, ∅) implies that there

is an automorphism f of A such that f (a) = b.

(iii) We say that a K-model A is λ-universal if for all K-models B of power ≤ λ

there is an elementary embedding f : B → A.

Theorem 3.2 Assume that Ax1 and Ax3 hold. Let A be a K-model and λ a cardi-

nal.

(i) A is λ-saturated if and only if the following holds: For all A ⊆ A of power

< λ, K-models B, B ⊆ B and b ∈ B, if tA(A, ∅) = tB(B, ∅), then there

is a ∈ A such that tA(a ⌢ A, ∅) = tB(b ⌢ B, ∅).

(ii) There is a λ-saturated strongly λ-homogeneous K-model B such that

A ≺ B.

(iii) If in addition Ax2 holds, then every λ-saturated K-model is λ-universal.

Proof (i) Immediate by Lemma 2.7(iv) and the definitions.

(ii) and (iii) Usual argument (Fraïssé or Morley-Vaught) using Lemma 2.7(iv) and

Theorem 2.8. �

Corollary 3.3 Assume that Ax1 and Ax3 hold. There is an infinite cardinal

LS∗(K) such that if B is an LS∗(K)-saturated K-model, then the following

holds: For all A ⊆ B, there is a K-model A ≺ B such that A ⊆ A and

|A| = |A| + LS∗(K).

Proof Let κ0 = ω and κi+1 be such that for all A ⊆ A ∈ K, if |A| ≤ κi , then there

is C ∈ K such that A ⊆ C, tC(A, ∅) = tA(A, ∅) and |C| ≤ κi+1. Since there are

no class many types tA(A, ∅), κi+1 exists. Let LS∗(K) = ∪i<ωκi .
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Suppose B is LS∗(K)-saturated. We show that for all A ⊆ B of power

≤ LS∗(K), there is A ≺ B of power ≤ LS∗(K) such that A ⊆ A. As in Fact 2.1,

an easy induction shows that this suffices.

Choose Ai ⊆ A, i < ω, so that ∪i<ω Ai = A and for all i , |Ai | ≤ κi . For

all i < ω, by the choice of κi+1 (and LS∗(K)-saturation of B), we can choose

Ai ≺ B of power ≤ κi+1 such that Ai ⊆ Ai and if j < i , then also A j ⊆ Ai . Let

A = ∪i<ωAi . By Theorem 2.8, A ≺ B. �

Assume now that Ax1, Ax2 and Ax3 hold. Let M be a monster model for K given

by Theorem 2.2. We extend τ to τ ∗ by adding new predicate symbols in the ob-

vious way: For each k < ω and each equivalence class of pairs (a,A), a ∈ A
k ,

under the equivalence relation tA(a, ∅) = tB(b, ∅), we add a new k-ary relation

symbol R[a,A], where [a,A] denotes the equivalence class of (a,A). For all K-

models B we define a τ ∗-expansion B
∗ so that B

∗ |H R[a,A](b) if and only if

tB(b, ∅) = tA(a, ∅).

Then M
∗ is a monster model for the class K

∗ = {A∗| A ∈ K} in the sense that

it is first-order homogeneous and every K
∗-model is embeddable into M

∗. Further

more (the finite diagram of) M
∗ has the semi-elimination of quantifiers, that is, for all

first-order τ ∗-formulas ϕ(x) there are atomic or negated atomic τ ∗-formulas θi j (x),

i ∈ I and j ∈ Ji , such that for all τ ∗-models A, if the finite diagram of A is a subset

of that of M
∗, then

A |H ∀x(ϕ(x) ↔ ∨i∈I ∧ j∈Ji θi j (x)).

So if A is an ω-saturated K-model, then A
∗ can be embedded to M

∗ first-order

elementarily.

This reduction allows us to transfer results from the theory of good finite diagrams

to (K,≤) (see Shelah [4]). As an example we show the stability hierarchy theorem.

We say that K is λ-stable if for all K-models A and A ⊆ A of power ≤ λ, the

number of types (of finite sequences) over A realized in A is ≤ λ.

Corollary 3.4 Assume Ax1, Ax2, and Ax3 hold. If K is λ-stable for some λ,

then there are cardinals λ(K) and κ(K) such that K is ξ -stable if and only if

ξ = λ(K) + ξ<κ(K).

Proof By the reduction above, this follows immediately from [4]. �

Question 3.5 Do Ax1, (Ax2), and Ax3 imply that (K,≺) satisfies the property (g)

from the definition of an abstract elementary class?

4 Examples

As an example of our construction of types, we look at bicolored fields. This example

is based on a construction due to Poizat (see [1]).

Example 4.1 Let K
′ be the class of all algebraically closed fields of char 0 with

additional unary predicate P . For all finite (or finitely generated algebraically closed

subfields) X ⊆ A ∈ K
′, we define δ(X) = 2 · d f (X) − |PA ∩ X |, where d f (X)

is the transcendence degree of X . We let K consist of those A ∈ K
′ for which the

following holds: For all finite X ⊆ A, δ(X) ≥ 0. We let ≤ be the submodel relation.

Then it is easy to see that (K,≤) is an abstract elementary class, Ax1, Ax2, and

Ax3 hold, and ≺=≺1=≤s , where A ≤s B if A is a submodel of B and for all finite

X ⊆ B, δ(X/X ∩ A) = δ(X) − δ(X ∩ A) ≥ 0.
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Sketch of proof It is trivial to verify that (K,≤) is an abstract elementary class.

From [1] (with small additional work) it follows that (K,≤s) is a homogeneous class

of structures, in particular (K,≤s) has the amalgamation property. Thus when we

establish that ≺1=≤s (see Definition 1.2), it follows that Ax1, Ax2, and Ax3 hold

and ≺=≤s (we do need to establish that ≺1=≤s , since it might happen, for example,

that ≺1 is strictly stronger than ≤s in which case the observation that (K,≤s) is a

nice class of structures tells us nothing).

Suppose first that A ≤s B. Let C be such that A ≤ C. Clearly we may assume

that C ∩ B = A. Let D be the algebraically closed field we get by amalgamating

fields B and C over A freely (tensor product over A). Let PD = PB ∪ PC . An

easy predimension calculation shows that D ∈ K. Thus A ≺1 B.

Suppose then that A 6≤s B. Let X ⊆ B witness this. We may assume that

X ⊆ PB and that for all Z ⊆ X , if X ∩ A ⊆ Z and Z 6= X , then δ(X/Z) < 0.

Let q < 0 be such that for all such Z , δ(X/Z) < q . Then one can find C ∈ K and

finite Y ⊆ PC such that A ≤ C, X ∩ A ⊆ Y and δ(Y ) < −q . In addition we can

choose these so that if FY is the subfield of C generated by Y and FX is the subfield

generated by X ∪ (Y ∩ A), then there is no field embedding h : FX → FY such that

h ↾ (Y ∩ A) = id and h(X) ⊆ Y . But then there is no D ∈ K and embeddings

f : B → D and g : C → D such that f ↾ A = g ↾ A. Thus A 6≺1 B. �

Our second example shows that there need not exist a weakest notion of type that

gives rise to a nice monster model for the class of structures. For the terminology

used in the example, see Hyttinen [3].

Example 4.2 Let the similarity type consist of unary predicates Pi , i < 3, and

unary functions Fi , i < 2. We let K be a class of those models A, which satisfy

(i) PA

i , i < 3, is a partition of the universe of A,

(ii) for all x , FA

0 (x) ∈ PA

0 if x ∈ PA

1 and otherwise FA

0 (x) = x ,

(iii) for all x , FA

1 (x) ∈ PA

0 if x ∈ PA

2 and otherwise FA

1 (x) = x ,

(iv) there are no elements x ∈ PA

0 , y ∈ PA

1 , and z ∈ PA

2 such that FA

0 (y) = x

and FA

1 (z) = x .

Notice that K is first-order axiomatizable by universal sentences. Let ≤ be the sub-

model relation. Then (K,≤) is an abstract elementary class.

Let L0 be the least collection of first-order formulas, which is closed under nega-

tion and replacing free variables by terms and which contains all atomic formulas

together with

(0) ∃y(F0(y) = x ∧ y 6= x).

L1 is defined similarly except that (0) is replaced by

(1) ∃y(F1(y) = x ∧ y 6= x).

For i ∈ {0, 1}, let ≤i (=�Li ) be the Li -elementary submodel relation (A ≤i B

if for all ϕ ∈ Li and sequences a of elements of A, A |H ϕ(a) if and only if

B |H ϕ(a)). Then (K,≤i ) is an abstract elementary class which has a (first-order)

saturated monster (= universal and homogeneous with respect to ≤i ) model Mi with

Li -elimination of quantifiers (= elimination of quantifiers with atomic formulas re-

placed by Li -formulas). Note that M0 is isomorphic to M1 (if they have the same

cardinality). In particular, a model A ∈ K is L0-1-existentially closed if and only if
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it is L1-1-existentially closed and in such models A for all sequences a and b of ele-

ments of A, a and b have the same L0-type if and only if they have the same L1-type

(Li -1-existentially closed is defined as 1-existentially closed but with atomic formu-

las replaced by Li -formulas). Still these notions of type do not have a reasonable

lower bound:

For a contradiction, assume that there is some notion of type such that relative

to this notion of type, K has a homogeneous and universal model and such that the

notion of type is weaker than both L0-type and L1-type. We define models Ai ,

i < 3, so that they belong to K and, in addition,

1. the universe of Ai is {0, i},

2. 0 ∈ P
Ai

0 ,

3. F
A1

0 (1) = 0 and F
A2

1 (2) = 0.

Then A0 ≤1 A1 and A0 ≤0 A2. Since the notion of type is weaker than both L0-

type and L1-type and there is a homogeneous and universal model relative to it, we

should be able to amalgamate A1 and A2 over A0, which is clearly impossible.

Finally, we point out that in Example 4.2, our construction of types will give the

notion of type which is the same as L0∪L1-type. Thus the monster model that results

is not even first-order elementarily equivalent with M0 (the model is the natural one

though).

References

[1] Baldwin, J. T., and K. Holland, “Constructing ω-stable structures: Rank 2

fields,” The Journal of Symbolic Logic, vol. 65 (2000), pp. 371–91. Zbl 0957.03044.

MR 2001k:03070. 99, 106, 107

[2] Hyttinen, T., “On nonstructure of elementary submodels of a stable homogeneous

structure,” Fundamenta Mathematicae, vol. 156 (1998), pp. 167–82. Zbl 0918.03021.

MR 99i:03034. 100

[3] Hyttinen, T., “Canonical finite diagrams and quantifier elimination,” Mathematical Logic

Quarterly, vol. 48 (2002), pp. 533–54. Zbl 1024.03033. MR 2003k:03049. 107

[4] Shelah, S., “Finite diagrams stable in power,” Annals of Mathematical Logic, vol. 2

(1970/1971), pp. 69–118. Zbl 0204.31104. MR 44:2593. 106

Acknowledgments

Partially supported by the Academy of Finland, grant 40734, and the Mittag-Leffler Insti-

tute. The author wishes to express his gratitude to the (latter) referee for his/her patience

and suggestions for improvements.

Department of Mathematics
PO Box 4
University of Helsinki
00014 Helsinki
FINLAND
tapani.hyttinen@helsinki.fi

http://www.emis.de/cgi-bin/MATH-item?0957.03044
http://www.ams.org/mathscinet-getitem?mr=2001k:03070
http://www.emis.de/cgi-bin/MATH-item?0918.03021
http://www.ams.org/mathscinet-getitem?mr=99i:03034
http://www.emis.de/cgi-bin/MATH-item?1024.03033
http://www.ams.org/mathscinet-getitem?mr=2003k:03049
http://www.emis.de/cgi-bin/MATH-item?0204.31104
http://www.ams.org/mathscinet-getitem?mr=44:2593
mailto:tapani.hyttinen@helsinki.fi

	1. Introduction
	2. Construction of Types
	3. Homogeneous and Universal Models
	4. Examples
	References
	Acknowledgments

