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A Simple Embedding of T into Double S5

Steven Kuhn

Abstract The system obtained by adding full propositional quantification to S5

is known to be decidable, while that obtained by doing so for T is known to be

recursively intertranslatable with full second-order logic. Recently it was shown

that the system with two S5 operators and full propositional quantification is also

recursively intertranslatable with second-order logic. This note establishes that

the map assigning [1][2]p to �p provides a validity and satisfaction preserving

translation between the T system and the double S5 system, thus providing an

easier proof of the recent result.

1 Introduction

For a natural number n, an n-modal system is a language with operators [1], . . . , [n]

interpreted by world-world relations R1, . . . , Rn according to the familiar Kripke

semantics. Double S5 is the 2-modal system determined by all frames (W, R1, R2)

such that R1 and R2 are equivalence relations. (The nomenclature system envisioned

here would, for example, take S5S4K to be the 3-modal system determined by frames

(W, R1, R2, R3) where R1 is an equivalence relation and R2 is symmetric and tran-

sitive and it would take Double S5 to be S5S5.) In this paper we give a simple

embedding of T into Double S5 that extends to the case where both systems are sup-

plemented by propositional quantifiers ranging over all subsets of worlds. This pro-

vides a quick proof that Double S5 with such quantifiers is recursively intertranslat-

able with full second-order logic, a result that was recently obtained by more arduous

methods in Antonelli and Thomason [1]. The result is noteworthy because ordinary

S5 with full propositional quantifiers is known to be decidable. (See Fine [2].)

2 Languages, Interpretations, and Systems

The formulas of L� are built up in the usual way from a countable set p1, p2, . . .

of propositional variables by the classical connectives ¬ and ∨ and the unary modal
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operator �. The formulas of L[1][2] are defined similarly using the unary modal

operators [1] and [2] in place of �. The formulas of L
π
�

and L
π
[1][2] are defined

by adding to the definitions of the formulas of L� and L[1][2] the clause: if p is a

propositional variable and A is a formula then ∀p A is a formula.

A frame for L� or L
π
�

is a pair F = (W, R) where W is a nonempty set (the

worlds of F) and R is a binary relation (accessibility) on W . A frame for L[1][2] or

L
π
[1][2] is a triple F = (W, R1, R2) where W is a nonempty set, R1 ⊆ W × W , and

R2 ⊆ W × W . A model for L� or L
π
�

is a triple M = (W, R, V ) where (W, R)

is a frame for that language and V : N → 2W . V is the valuation function of

M . If V (i) = U we say that U is the proposition expressed by pi in M . A model

(W, R, V ) is said to be a model on the frame (W, R). Similarly, a model for L[1][2] or

L
π
[1][2] is a quadruple (W, R1, R2, V ) where (W, R1, R2) is a frame for that language

and V is a valuation function as above.

Definition 2.1 Suppose M = (W, R, V ) is a model for L� and w ∈ W . The

notion that A is true at w in M (written M, w |H A) is defined by the following

clauses:

1. M, w |H pi iff w ∈ V (i);

2. M, w |H (B ∨ C) iff M, w |H B or M, w |H C (or both);

3. M, w |H ¬B iff it is not the case that M, w |H B;

4. M, w |H �B iff, for all v such that wRv, M, v |H B .

To define truth for formulas of L
π
�

we add an additional clause.

5. M, w |H ∀p j B iff, for every X ⊆ W, M X
j , w |H B where M X

j is the model

(W, R, V ∗) such that V ∗(i) = V (i) for i 6= j and V ( j) = X .

To define truth for formulas of L[1][2] and L
π
[1][2] we replace clause (4) with two similar

clauses with R1 and R2 playing the role of R and [1] and [2] playing the role of �.

If M is a model with worlds W for any of these systems then A is valid in M (written

M |H A) if M, w |H A for all w ∈ W . If F is a frame then A is valid in F (F |H A)

if A is valid in every model on F .

Definition 2.2

1. T is the set of formulas of L� valid on all frames (W, R) such that R is

reflexive.

2. Double S5 (or S5S5 or 2S5) is the set of all formulas of L[1][2] valid on all

frames (W, R1, R2) such that R1 and R2 are equivalence relations.

3. T
π is the set of all formulas of L

π
�

valid on all frames with reflexive accessi-

bility relations.

4. 2S5
π is the set of all formulas of L

π
[1][2] valid on all frames (W, R1, R2) such

that R1 and R2 are equivalence relations.

3 Generated Models

For R a binary relation, let x R0y if and only if x = y and x Rn+1 y if and only if, for

some z, x Rz and z Rn y. The ancestral of R (written R∗) is the relation that holds

between x and y if and only if x Rk y for some k.

Let M = (W, R, V ) be a model for L� or L
π
�

and let w ∈ W . The

model generated by M from w (written Mw) is the model (Ww, Rw, V w) where
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Ww = {x ∈ W : wR∗x}, Rw = R ∩ (Ww × Ww), and, for every natural number i ,

V w(i) = V (i) ∩ Ww

The following result is well known in L� and extends easily to L
π
�

.

Theorem 3.1 For every formula A of L
π
�

, M, w |H A if and only if Mw, w |H A.

Proof By induction on A. We do the quantifier case.

M, w |H ∀p j A iff M X
j , w |H A for all X ⊆ W (by truth definition)

iff (M X
j )w, w |H A for all X ⊆ W (by induction hypothesis)

iff (M X∩W w

j )w, w |H A for all X ⊆ W

(by definition of model generated from w)

iff (MY
j )w, w |H A for all Y ⊆ Ww (because X ∩ Ww ⊆ Ww)

iff Mw |H ∀p j A (by truth definition).

�

4 Mappings

Definition 4.1 The translation t from L� to L[1][2] is defined by the following

clauses:

1. t (pi ) = pi ,

2. t (B ∨ C) = t (B) ∨ t (C),

3. t (¬B) = ¬t (B),

4. t (�B) = [1][2]t (B).

t extends to a map from L
π
�

to L
π
[1][2]

with the addition of the clause,

5. t (∀p A) = ∀pt (a).

For any model M = (W, R1, R2, V ) for L[1][2] (or L
π
[1][2]), the product of M (written

M p) is the model (W, R, V ) for L� (or L
π
�

) where W and V are as in M and

R = R1 R2, that is, wRv if and only if, for some x in W , wR1x and x R2v.

Notice that if the accessibility relations in M are reflexive, the accessibility rela-

tion in M p is also reflexive.

Theorem 4.2 Let M = (W, R1, R2, V ) be a model for L[1][2] or L
π
[1][2]

, and w ∈ W.

Then M, w |H t A if and only if M p, w |H A.

Proof By induction on A. We do the � case.

M, w |H t (�B) iff M, w |H [1][2]t (B) (by definition of t)

iff, for all x, wR1x implies M, x |H [2]t (B) (by truth definition)

iff, for all x, wR1x implies, for all y, x R2 y implies M, y |H t (B)

(by truth definition)

iff, for all y, wR p y implies M, y |H t (B) (by definition of R p)

iff, for all y, wR p y implies M p, y |H B (by induction hypothesis)

iff M p, w |H �B (by truth definition definition).

�



16 Steven Kuhn

The product provides a mapping from L[1][2] or L
π
[1][2]

models to L� or L
π
�

models.

Now we define a kind of inverse mapping. The idea is that whenever u Rv in a

frame for the 1-modal system we insert a world x so that u R1x and x R2v in the

corresponding frame of the 2-modal system. More precisely, suppose F = (W, R)

is a frame for L� or L
π
�

and M = (W, R, V ) is a frame on F . Let W i be the

result of adding to W , a new world i(u, v) for each pair of distinct worlds u and v in

W such that u Rv. (We call these infill worlds and the remaining worlds of W i the

original worlds.) For any original world u, let right(u) = {u} ∪ {i(u, x) : u Rx} and

let left(u) = {u} ∪ {i(x, u) : x Ru}. For all x and y in W i , let x R1 y if and only if

x = y or, for some original world w, x and y are both in right(w). Similarly, let

x R2 y if and only if x = y or, for some original world w, x and y are both in left(w).

The infill of F is the frame F i = (W i , R1, R2) (unique up to isomorphism), where

W i , R1, R2 are as defined above. An infill of M is a model M i = (W i , R1, R2, V i )

on F i in which, for all natural numbers i , V i (i) ∩ W = V (i) (so the truth value of

propositional variables in M i on the original worlds agrees with their truth value in

M).

Theorem 4.3 Suppose M = (W, R, V ) is a model for L� or L
π
�

with R reflexive

and M i = (W i , R1, R2, V i ) is an infill of M.

1. R1 and R2 are equivalence relations.

2. For all u and v in W, u Rv if and only if u R1 R2v.

3. For all w ∈ W, Mw = (((Mw)i )p)w.

Proof (1) Observe first that if u 6= v then right(u) and right(v) are disjoint. For

suppose they had a world w in common. Since the only original world in right(u) is

u and the only original world in right(v) is v, w cannot be an original world. But if

w were an infill world it would have to be i(u, x) for some x and i(v, y) for some

y which is not possible when u 6= v. Since each original world u is in right(u) and

each infill world i(x, y) is in right(x), the sets right(u) partition W i into disjoint

sets containing u. It follows that R1 is an equivalence relation. A similar argument

establishes that R2 is an equivalence relation.

(2) Suppose u Rv. By the definition of R1, u R1i(u, v). By the definition of R2,

i(u, v)R2v. Hence u R1 R2v. Conversely, suppose u R1 R2v for u and v in W . Then,

for some x , u R1x and x R2v. If x is an original world then u = x and x = v and so

u = v. By the reflexivity of R, u Rv as was to be shown. If x is an infill world, then

x = i(u, y) for some y and x = i(z, v) for some z. Hence x = i(u, v) and u Rv as

was to be shown.

(3) Let M ′ = (W ′, R′, V ′) be the model (((Mw)i )p)w . We must prove that each

component of M ′ is identical to the corresponding component of Mw . Let Q1 and

Q2 be the accessibility relations of (Mw)i and let Q be the accessibility relation of

((Mw)i )p . Then

(i) x ∈ Ww iff wR∗x (by definition of Ww)

iff w(Rw)∗x (by definition of Rw)

iff w(Q1 Q2)
∗x (by 2 above)

iff wQ∗x (by definition of the product of a model)

iff x ∈ W ′ (by the definition of W ′).



Embedding T into Double S5 17

(ii) u Rwv iff u Q1 Q2v (by 2 above)

iff u Qv (by the definition of the product of a model)

iff u R′v since u and v are both in Ww and hence in W ′ by i .

(iii) Since the generation, product, and infill constructions never change the

valuation function on any world, it is clear that x ∈ V w(i) if and only

if x ∈ V ′(i) for all natural numbers i and all x ∈ Ww .
�

5 The Embedding Result

Theorem 5.1 (1) A ∈ T if and only if t (A) ∈ 2S5; (2) A ∈ T π if and only if

t (A) ∈ 2S5
π .

Proof Suppose A 6∈ 2S5. Then there is a model M = (W, R1, R2, V ) with R1 and

R2 equivalence relations and some w ∈ W such that Mw 6|H t (A). By Theorem 4.2,

M p, w 6|H A. By an earlier observation, M p is reflexive. Hence A 6∈ T. Conversely,

suppose A 6∈ T. Then there is some model M = (W, R, V ) with reflexive R and

some w ∈ W such that M, w 6|H A. By Theorem 3.1, Mw, w 6|H A. By part 3 of

Theorem 4.3, (((Mw)i )p)w, w 6|H A. By Theorem 3.1 again, ((Mw)i )p, w 6|H A. By

Theorem 4.2, (Mw)i 6|H t (A). By part 1 of Theorem 4.3 the relations in this model

are equivalence relations. It follows that t (A) 6∈ 2S5. This proves (1). Since all the

results appealed to carry over in the presence of full propositional quantifiers, this

proof also suffices for (2). �

Corollary 5.2 2S5
π is recursively intertranslatable with full second-order logic.

Proof Well-known methods assure that any simple n-modal system with proposi-

tional quantifiers can be recursively embedded in second-order logic. More particu-

larly, take any such system S determined by the class of all frames (W, R1, . . . , Rn)

meeting some first- or second-order condition 8(R1, . . . , Rn). Then we first define

a base function s from L[1],...,[n] to the formulas of second-order logic with x as the

only individual variable by a simple induction:

1. s(pi ) = Pi x (where Pi is the i th one-place predicate symbol),

2. s(B ∨ C) = s(B) ∨ s(C),

3. s(¬B) = ¬s(B),

4. s([i ]B) = ∀y(x Ri y → (s(B))
y
x) where y is the first individual variable that

does not occur in s(B), and D
y
x is the result of replacing x in D by y,

5. s(∀p j B) = ∀Pj s(B).

Now, for any formula A of L
π
[1],...,[n], let t (A) be the formula

∀R1 . . .∀Rn(8(R1, . . . , Rn) → ∀Pi1 . . .∀Pim ∀xs(A)),

where pi1 , . . . , pim are all the propositional variables that occur free in A and then,

by the truth definition for L
π
[1],...,[n], |H A if and only if |H t (A). So to show that

such systems are recursively intertranslatable with second-order logic it is sufficient

to find a recursive embedding in the other direction, that is, from second-order logic

to the modal system. This is done for T
π , (among other systems) in [2]. Since

Theorem 5.1 provides a recursive embedding of T
π into 2S5

π , it follows that the

same can be done for 2S5
π . �
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