Notre Dame Journal of Formal Logic Volume 45, Number 1, 2004

A Simple Embedding of T into Double S5

Steven Kuhn

Abstract The system obtained by adding full propositional quantification to **S5** is known to be decidable, while that obtained by doing so for **T** is known to be recursively intertranslatable with full second-order logic. Recently it was shown that the system with two **S5** operators and full propositional quantification is also recursively intertranslatable with second-order logic. This note establishes that the map assigning [1][2] p to $\Box p$ provides a validity and satisfaction preserving translation between the **T** system and the double **S5** system, thus providing an easier proof of the recent result.

1 Introduction

For a natural number n, an n-modal system is a language with operators $[1], \ldots, [n]$ interpreted by world-world relations R_1, \ldots, R_n according to the familiar Kripke semantics. **Double S5** is the 2-modal system determined by all frames (W, R_1, R_2) such that R_1 and R_2 are equivalence relations. (The nomenclature system envisioned here would, for example, take **S5S4K** to be the 3-modal system determined by frames (W, R_1, R_2, R_3) where R_1 is an equivalence relation and R_2 is symmetric and transitive and it would take **Double S5** to be **S5S5**.) In this paper we give a simple embedding of **T** into **Double S5** that extends to the case where both systems are supplemented by propositional quantifiers ranging over all subsets of worlds. This provides a quick proof that **Double S5** with such quantifiers is recursively intertranslatable with full second-order logic, a result that was recently obtained by more arduous methods in Antonelli and Thomason [1]. The result is noteworthy because ordinary **S5** with full propositional quantifiers is known to be decidable. (See Fine [2].)

2 Languages, Interpretations, and Systems

The *formulas* of \mathcal{L}_{\Box} are built up in the usual way from a countable set p_1, p_2, \ldots of propositional variables by the classical connectives \neg and \lor and the unary modal

Received June 24, 2003; accepted February 5, 2004; printed September 1, 2004 2000 Mathematics Subject Classification: Primary, 03B45 Keywords: propositional quantifier, 2S5 ©2004 University of Notre Dame Steven Kuhn

operator \Box . The formulas of $\mathcal{L}_{[1][2]}$ are defined similarly using the unary modal operators [1] and [2] in place of \Box . The formulas of \mathcal{L}_{\Box}^{π} and $\mathcal{L}_{[1][2]}^{\pi}$ are defined by adding to the definitions of the formulas of \mathcal{L}_{\Box} and $\mathcal{L}_{[1][2]}$ the clause: if *p* is a propositional variable and *A* is a formula then $\forall pA$ is a formula.

A *frame* for \mathcal{L}_{\Box} or \mathcal{L}_{\Box}^{π} is a pair F = (W, R) where W is a nonempty set (the *worlds* of F) and R is a binary relation (*accessibility*) on W. A frame for $\mathcal{L}_{[1][2]}$ or $\mathcal{L}_{[1][2]}^{\pi}$ is a triple $F = (W, R_1, R_2)$ where W is a nonempty set, $R_1 \subseteq W \times W$, and $R_2 \subseteq W \times W$. A model for \mathcal{L}_{\Box} or \mathcal{L}_{\Box}^{π} is a triple M = (W, R, V) where (W, R) is a frame for that language and $V : N \to 2^W$. V is the *valuation function* of M. If V(i) = U we say that U is the *proposition* expressed by p_i in M. A model (W, R, V) is said to be a model *on the frame* (W, R). Similarly, a model for $\mathcal{L}_{[1][2]}$ or $\mathcal{L}_{[1][2]}^{\pi}$ is a quadruple (W, R_1, R_2, V) where (W, R_1, R_2) is a frame for that language and V is a valuation function as above.

Definition 2.1 Suppose M = (W, R, V) is a model for \mathcal{L}_{\Box} and $w \in W$. The notion that A is true at w in M (written $M, w \models A$) is defined by the following clauses:

- 1. $M, w \models p_i$ iff $w \in V(i)$;
- 2. $M, w \models (B \lor C)$ iff $M, w \models B$ or $M, w \models C$ (or both);
- 3. $M, w \models \neg B$ iff it is not the case that $M, w \models B$;
- 4. $M, w \models \Box B$ iff, for all v such that $w Rv, M, v \models B$.

To define truth for formulas of \mathcal{L}_{\Box}^{π} we add an additional clause.

5. $M, w \models \forall p_j B$ iff, for every $X \subseteq W, M_j^X, w \models B$ where M_j^X is the model (W, R, V^*) such that $V^*(i) = V(i)$ for $i \neq j$ and V(j) = X.

To define truth for formulas of $\mathcal{L}_{[1][2]}$ and $\mathcal{L}_{[1][2]}^{\pi}$ we replace clause (4) with two similar clauses with R_1 and R_2 playing the role of R and [1] and [2] playing the role of \Box .

If *M* is a model with worlds *W* for any of these systems then *A* is valid in *M* (written $M \models A$) if $M, w \models A$ for all $w \in W$. If *F* is a frame then *A* is valid in *F* ($F \models A$) if *A* is valid in every model on *F*.

Definition 2.2

- 1. **T** is the set of formulas of \mathcal{L}_{\Box} valid on all frames (W, R) such that R is reflexive.
- 2. **Double S5** (or **S5S5** or **2S5**) is the set of all formulas of $\mathcal{L}_{[1][2]}$ valid on all frames (W, R_1, R_2) such that R_1 and R_2 are equivalence relations.
- T^π is the set of all formulas of L^π_□ valid on all frames with reflexive accessibility relations.
- 4. **2S5**^{π} is the set of all formulas of $\mathcal{L}^{\pi}_{[1][2]}$ valid on all frames (*W*, *R*₁, *R*₂) such that *R*₁ and *R*₂ are equivalence relations.

3 Generated Models

For *R* a binary relation, let $x R^0 y$ if and only if x = y and $x R^{n+1} y$ if and only if, for some *z*, xRz and $zR^n y$. The *ancestral of R* (written R^*) is the relation that holds between *x* and *y* if and only if $xR^k y$ for some k.

Let M = (W, R, V) be a model for \mathcal{L}_{\Box} or \mathcal{L}_{\Box}^{π} and let $w \in W$. The model generated by M from w (written M^w) is the model (W^w, R^w, V^w) where

 $W^w = \{x \in W : wR^*x\}, R^w = R \cap (W^w \times W^w)$, and, for every natural number *i*, $V^w(i) = V(i) \cap W^w$

The following result is well known in \mathcal{L}_{\Box} and extends easily to \mathcal{L}_{\Box}^{π} .

Theorem 3.1 For every formula A of \mathcal{L}_{\Box}^{π} , $M, w \models A$ if and only if $M^{w}, w \models A$.

Proof By induction on A. We do the quantifier case.

 $M, w \models \forall p_j A \text{ iff } M_j^X, w \models A \text{ for all } X \subseteq W \quad \text{(by truth definition)}$ $\text{iff } (M_j^X)^w, w \models A \text{ for all } X \subseteq W \quad \text{(by induction hypothesis)}$ $\text{iff } (M_j^{X \cap W^w})^w, w \models A \text{ for all } X \subseteq W$ (by definition of model generated from w) $\text{iff } (M_j^Y)^w w \models A \text{ for all } Y \subseteq W^w \quad \text{(because } Y \cap W^w \subseteq W^w)$

iff
$$(M_j^c)^w$$
, $w \models A$ for all $Y \subseteq W^w$ (because $X \cap W^w \subseteq W^w$)
iff $M^w \models \forall p_j A$ (by truth definition).

4 Mappings

Definition 4.1 The translation *t* from \mathcal{L}_{\Box} to $\mathcal{L}_{[1][2]}$ is defined by the following clauses:

1. $t(p_i) = p_i$, 2. $t(B \lor C) = t(B) \lor t(C)$, 3. $t(\neg B) = \neg t(B)$, 4. $t(\Box B) = [1][2]t(B)$.

t extends to a map from \mathcal{L}_{\Box}^{π} to $\mathcal{L}_{\Pi|\Omega|}^{\pi}$ with the addition of the clause,

5. $t(\forall pA) = \forall pt(a)$.

For any model $M = (W, R_1, R_2, V)$ for $\mathcal{L}_{[1][2]}$ (or $\mathcal{L}_{[1][2]}^{\pi}$), the *product of* M (written M^p) is the model (W, R, V) for \mathcal{L}_{\Box} (or \mathcal{L}_{\Box}^{π}) where W and V are as in M and $R = R_1 R_2$, that is, w Rv if and only if, for some x in W, $w R_1 x$ and $x R_2 v$.

Notice that if the accessibility relations in M are reflexive, the accessibility relation in M^p is also reflexive.

Theorem 4.2 Let $M = (W, R_1, R_2, V)$ be a model for $\mathcal{L}_{[1][2]}$ or $\mathcal{L}_{[1][2]}^{\pi}$ and $w \in W$. Then $M, w \models tA$ if and only if $M^p, w \models A$.

Proof By induction on A. We do the \Box case.

 $M, w \models t(\Box B)$ iff $M, w \models [1][2]t(B)$ (by definition of t)

- iff, for all x, wR_1x implies $M, x \models [2]t(B)$ (by truth definition) iff, for all x, wR_1x implies, for all y, xR_2y implies $M, y \models t(B)$ (by truth definition)
- iff, for all $y, wR^p y$ implies $M, y \models t(B)$ (by definition of R^p) iff, for all $y, wR^p y$ implies $M^p, y \models B$ (by induction hypothesis) iff $M^p, w \models \Box B$ (by truth definition definition).

Steven Kuhn

The product provides a mapping from $\mathcal{L}_{[1][2]}$ or $\mathcal{L}_{[1][2]}^{\pi}$ models to \mathcal{L}_{\Box} or \mathcal{L}_{\Box}^{π} models. Now we define a kind of inverse mapping. The idea is that whenever uRv in a frame for the 1-modal system we insert a world x so that uR_1x and xR_2v in the corresponding frame of the 2-modal system. More precisely, suppose F = (W, R)is a frame for \mathcal{L}_{\Box} or \mathcal{L}_{\Box}^{π} and M = (W, R, V) is a frame on F. Let W^i be the result of adding to W, a new world i(u, v) for each pair of distinct worlds u and v in W such that uRv. (We call these *infill* worlds and the remaining worlds of W^{i} the original worlds.) For any original world u, let $right(u) = \{u\} \cup \{i(u, x) : uRx\}$ and let $left(u) = \{u\} \cup \{i(x, u) : xRu\}$. For all x and y in W^i , let xR_1y if and only if x = y or, for some original world w, x and y are both in right(w). Similarly, let $x R_2 y$ if and only if x = y or, for some original world w, x and y are both in left(w). The *infill of F* is the frame $F^i = (W^i, R_1, R_2)$ (unique up to isomorphism), where W^i , R_1 , R_2 are as defined above. An *infill of* M is a model $M^i = (W^i, R_1, R_2, V^i)$ on F^i in which, for all natural numbers $i, V^i(i) \cap W = V(i)$ (so the truth value of propositional variables in M^i on the original worlds agrees with their truth value in *M*).

Theorem 4.3 Suppose M = (W, R, V) is a model for \mathcal{L}_{\Box} or \mathcal{L}_{\Box}^{π} with R reflexive and $M^{i} = (W^{i}, R_{1}, R_{2}, V^{i})$ is an infill of M.

- 1. R_1 and R_2 are equivalence relations.
- 2. For all u and v in W, uRv if and only if uR_1R_2v .
- 3. For all $w \in W$, $M^w = (((M^w)^i)^p)^w$.

Proof (1) Observe first that if $u \neq v$ then right(u) and right(v) are disjoint. For suppose they had a world w in common. Since the only original world in right(u) is u and the only original world in right(v) is v, w cannot be an original world. But if w were an infill world it would have to be i(u, x) for some x and i(v, y) for some y which is not possible when $u \neq v$. Since each original world u is in right(u) and each infill world i(x, y) is in right(x), the sets right(u) partition W^i into disjoint sets containing u. It follows that R_1 is an equivalence relation. A similar argument establishes that R_2 is an equivalence relation.

(2) Suppose uRv. By the definition of R_1 , $uR_1i(u, v)$. By the definition of R_2 , $i(u, v)R_2v$. Hence uR_1R_2v . Conversely, suppose uR_1R_2v for u and v in W. Then, for some x, uR_1x and xR_2v . If x is an original world then u = x and x = v and so u = v. By the reflexivity of R, uRv as was to be shown. If x is an infill world, then x = i(u, y) for some y and x = i(z, v) for some z. Hence x = i(u, v) and uRv as was to be shown.

(3) Let M' = (W', R', V') be the model $(((M^w)^i)^p)^w$. We must prove that each component of M' is identical to the corresponding component of M^w . Let Q_1 and Q_2 be the accessibility relations of $(M^w)^i$ and let Q be the accessibility relation of $((M^w)^i)^p$. Then

(i)	$x \in W^w$	iff $w R^* x$	(by definition of W^w)
		iff $w(R^w)^*x$	(by definition of R^w)
		iff $w(Q_1Q_2)^*x$	(by 2 above)
		iff wQ^*x	(by definition of the product of a model)
		iff $x \in W'$	(by the definition of W').

- (ii) $uR^w v$ iff uQ_1Q_2v (by 2 above) iff uQv (by the definition of the product of a model) iff uR'v since u and v are both in W^w and hence in W' by i.
- (iii) Since the generation, product, and infill constructions never change the valuation function on any world, it is clear that $x \in V^w(i)$ if and only if $x \in V'(i)$ for all natural numbers *i* and all $x \in W^w$.

5 The Embedding Result

Theorem 5.1 (1) $A \in T$ if and only if $t(A) \in 2S5$; (2) $A \in T^{\pi}$ if and only if $t(A) \in 2S5^{\pi}$.

Proof Suppose $A \notin 2S5$. Then there is a model $M = (W, R_1, R_2, V)$ with R_1 and R_2 equivalence relations and some $w \in W$ such that $M^w \not\models t(A)$. By Theorem 4.2, $M^p, w \not\models A$. By an earlier observation, M^p is reflexive. Hence $A \notin T$. Conversely, suppose $A \notin T$. Then there is some model M = (W, R, V) with reflexive R and some $w \in W$ such that $M, w \not\models A$. By Theorem 3.1, $M^w, w \not\models A$. By part 3 of Theorem 4.3, $(((M^w)^i)^p)^w, w \not\models A$. By Theorem 3.1 again, $((M^w)^i)^p, w \not\models A$. By Theorem 4.2, $(M^w)^i \not\models t(A)$. By part 1 of Theorem 4.3 the relations in this model are equivalence relations. It follows that $t(A) \notin 2S5$. This proves (1). Since all the results appealed to carry over in the presence of full propositional quantifiers, this proof also suffices for (2).

Corollary 5.2 $2S5^{\pi}$ is recursively intertranslatable with full second-order logic.

Proof Well-known methods assure that any simple *n*-modal system with propositional quantifiers can be recursively embedded in second-order logic. More particularly, take any such system *S* determined by the class of all frames (W, R_1, \ldots, R_n) meeting some first- or second-order condition $\Phi(R_1, \ldots, R_n)$. Then we first define a base function *s* from $\mathcal{L}_{[1],\ldots,[n]}$ to the formulas of second-order logic with *x* as the only individual variable by a simple induction:

- 1. $s(p_i) = P_i x$ (where P_i is the *i*th one-place predicate symbol),
- 2. $s(B \lor C) = s(B) \lor s(C)$,
- 3. $s(\neg B) = \neg s(B)$,
- 4. $s([i]B) = \forall y(xR_iy \rightarrow (s(B))_x^y)$ where y is the first individual variable that does not occur in s(B), and D_x^y is the result of replacing x in D by y,
- 5. $s(\forall p_i B) = \forall P_i s(B)$.

Now, for any formula A of $\mathcal{L}_{[1],...,[n]}^{\pi}$, let t(A) be the formula

$$\forall R_1 \dots \forall R_n (\Phi(R_1, \dots, R_n) \to \forall P_{i_1} \dots \forall P_{i_m} \forall x s(A)),$$

where p_{i_1}, \ldots, p_{i_m} are all the propositional variables that occur free in *A* and then, by the truth definition for $\mathcal{L}_{[1],\ldots,[n]}^{\pi}$, $\models A$ if and only if $\models t(A)$. So to show that such systems are recursively intertranslatable with second-order logic it is sufficient to find a recursive embedding in the other direction, that is, from second-order logic to the modal system. This is done for \mathbf{T}^{π} , (among other systems) in [2]. Since Theorem 5.1 provides a recursive embedding of \mathbf{T}^{π} into $\mathbf{2S5}^{\pi}$, it follows that the same can be done for $\mathbf{2S5}^{\pi}$.

Steven Kuhn

References

- Antonelli, G. A., and R. H. Thomason, "Representability in second-order propositional poly-modal logic," *The Journal of Symbolic Logic*, vol. 67 (2002), pp. 1039–1054. Zbl 1034.03014. MR 2003i:03020. 13
- [2] Fine, K., "Propositional quantifiers in modal logic," *Theoria*, vol. 36 (1970), pp. 336–46.
 Zbl 0302.02005. MR 48:5824. 13, 17

Department of Philosophy Georgetown University Washington DC 20015 kuhns@georgetown.edu