A Simple Embedding of T into Double S5

Steven Kuhn

Abstract

The system obtained by adding full propositional quantification to $\mathbf{S 5}$ is known to be decidable, while that obtained by doing so for \mathbf{T} is known to be recursively intertranslatable with full second-order logic. Recently it was shown that the system with two $\mathbf{S 5}$ operators and full propositional quantification is also recursively intertranslatable with second-order logic. This note establishes that the map assigning [1][2] p to $\square p$ provides a validity and satisfaction preserving translation between the \mathbf{T} system and the double $\mathbf{S 5}$ system, thus providing an easier proof of the recent result.

1 Introduction

For a natural number n, an n-modal system is a language with operators [1], $\ldots,[n]$ interpreted by world-world relations R_{1}, \ldots, R_{n} according to the familiar Kripke semantics. Double $\mathbf{S 5}$ is the 2-modal system determined by all frames (W, R_{1}, R_{2}) such that R_{1} and R_{2} are equivalence relations. (The nomenclature system envisioned here would, for example, take $\mathbf{S 5 S 4 K}$ to be the 3-modal system determined by frames (W, R_{1}, R_{2}, R_{3}) where R_{1} is an equivalence relation and R_{2} is symmetric and transitive and it would take Double $\mathbf{S 5}$ to be $\mathbf{S 5 S 5}$.) In this paper we give a simple embedding of \mathbf{T} into Double $\mathbf{S 5}$ that extends to the case where both systems are supplemented by propositional quantifiers ranging over all subsets of worlds. This provides a quick proof that Double $\mathbf{S 5}$ with such quantifiers is recursively intertranslatable with full second-order logic, a result that was recently obtained by more arduous methods in Antonelli and Thomason [1]. The result is noteworthy because ordinary $\mathbf{S 5}$ with full propositional quantifiers is known to be decidable. (See Fine [2].)

2 Languages, Interpretations, and Systems

The formulas of \mathcal{L}_{\square} are built up in the usual way from a countable set p_{1}, p_{2}, \ldots of propositional variables by the classical connectives \neg and \vee and the unary modal
operator \square. The formulas of $\mathcal{L}_{[1][2]}$ are defined similarly using the unary modal operators [1] and [2] in place of \square. The formulas of $\mathscr{L}_{\square}^{\pi}$ and $\mathscr{L}_{[1][2]}^{\pi}$ are defined by adding to the definitions of the formulas of \mathcal{L}_{\square} and $\mathscr{L}_{[1][2]}$ the clause: if p is a propositional variable and A is a formula then $\forall p A$ is a formula.

A frame for \mathcal{L}_{\square} or $\mathscr{L}_{\square}^{\pi}$ is a pair $F=(W, R)$ where W is a nonempty set (the worlds of F) and R is a binary relation (accessibility) on W. A frame for $\mathcal{L}_{[1][2]}$ or $\mathcal{L}_{[1][2]}^{\pi}$ is a triple $F=\left(W, R_{1}, R_{2}\right)$ where W is a nonempty set, $R_{1} \subseteq W \times W$, and $R_{2} \subseteq W \times W$. A model for \mathcal{L}_{\square} or $\mathscr{L}_{\square}^{\pi}$ is a triple $M=(W, R, V)$ where (W, R) is a frame for that language and $V: N \rightarrow 2^{W} . V$ is the valuation function of M. If $V(i)=U$ we say that U is the proposition expressed by p_{i} in M. A model (W, R, V) is said to be a model on the frame (W, R). Similarly, a model for $\mathcal{L}_{[1][2]}$ or $\mathcal{L}_{[1][2]}^{\pi}$ is a quadruple $\left(W, R_{1}, R_{2}, V\right)$ where $\left(W, R_{1}, R_{2}\right)$ is a frame for that language and V is a valuation function as above.

Definition 2.1 Suppose $M=(W, R, V)$ is a model for \mathcal{L}_{\square} and $w \in W$. The notion that A is true at w in M (written $M, w \models A$) is defined by the following clauses:

1. $M, w \models p_{i}$ iff $w \in V(i)$;
2. $M, w \models(B \vee C)$ iff $M, w \models B$ or $M, w \models C$ (or both);
3. $M, w \models \neg B$ iff it is not the case that $M, w \models B$;
4. $M, w \models \square B$ iff, for all v such that $w R v, M, v \models B$.

To define truth for formulas of $\mathscr{L}_{\square}^{\pi}$ we add an additional clause.
5. $M, w \models \forall p_{j} B$ iff, for every $X \subseteq W, M_{j}^{X}, w \models B$ where M_{j}^{X} is the model $\left(W, R, V^{*}\right)$ such that $V^{*}(i)=V(i)$ for $i \neq j$ and $V(j)=X$.
To define truth for formulas of $\mathscr{L}_{[1][2]}$ and $\mathscr{L}_{[1][2]}^{\pi}$ we replace clause (4) with two similar clauses with R_{1} and R_{2} playing the role of R and [1] and [2] playing the role of \square.

If M is a model with worlds W for any of these systems then A is valid in M (written $M \models A)$ if $M, w \models A$ for all $w \in W$. If F is a frame then A is valid in $F(F \models A)$ if A is valid in every model on F.

Definition 2.2

1. \mathbf{T} is the set of formulas of \mathcal{L}_{\square} valid on all frames (W, R) such that R is reflexive.
2. Double $\mathbf{S 5}$ (or $\mathbf{S 5 S 5}$ or 2S5) is the set of all formulas of $\mathscr{L}_{[1][2]}$ valid on all frames (W, R_{1}, R_{2}) such that R_{1} and R_{2} are equivalence relations.
3. \mathbf{T}^{π} is the set of all formulas of $\mathcal{L}_{\square}^{\pi}$ valid on all frames with reflexive accessibility relations.
4. $\mathbf{2 S 5}{ }^{\pi}$ is the set of all formulas of $\mathcal{L}_{[1][2]}^{\pi}$ valid on all frames $\left(W, R_{1}, R_{2}\right)$ such that R_{1} and R_{2} are equivalence relations.

3 Generated Models

For R a binary relation, let $x R^{0} y$ if and only if $x=y$ and $x R^{n+1} y$ if and only if, for some $z, x R z$ and $z R^{n} y$. The ancestral of R (written R^{*}) is the relation that holds between x and y if and only if $x R^{k} y$ for some k .

Let $M=(W, R, V)$ be a model for \mathcal{L}_{\square} or $\mathcal{L}_{\square}^{\pi}$ and let $w \in W$. The model generated by M from w (written M^{w}) is the model $\left(W^{w}, R^{w}, V^{w}\right)$ where
$W^{w}=\left\{x \in W: w R^{*} x\right\}, R^{w}=R \cap\left(W^{w} \times W^{w}\right)$, and, for every natural number i, $V^{w}(i)=V(i) \cap W^{w}$

The following result is well known in \mathcal{L}_{\square} and extends easily to $\mathcal{L}_{\square}^{\pi}$.
Theorem 3.1 For every formula A of $\mathscr{L}_{\square}^{\pi}, M, w \models A$ if and only if $M^{w}, w \models A$.
Proof By induction on A . We do the quantifier case.

$$
\begin{aligned}
& M, w \models \forall p_{j} A \text { iff } M_{j}^{X}, w \models A \text { for all } X \subseteq W \quad \text { (by truth definition) } \\
& \\
& \quad \text { iff }\left(M_{j}^{X}\right)^{w}, w \models A \text { for all } X \subseteq W \quad \text { (by induction hypothesis) } \\
& \\
& \quad \text { iff }\left(M_{j}^{X \cap W^{w}}\right)^{w}, w \models A \text { for all } X \subseteq W \\
& \quad \text { (by definition of model generated from w) } \\
& \\
& \quad \text { iff }\left(M_{j}^{Y}\right)^{w}, w \models A \text { for all } Y \subseteq W^{w} \quad \text { (because } X \cap W^{w} \subseteq W^{w} \text {) } \\
& \\
& \text { iff } M^{w} \models \forall p_{j} A \quad \text { (by truth definition). }
\end{aligned}
$$

4 Mappings

Definition 4.1 The translation t from \mathcal{L}_{\square} to $\mathcal{L}_{[1][2]}$ is defined by the following clauses:

1. $t\left(p_{i}\right)=p_{i}$,
2. $t(B \vee C)=t(B) \vee t(C)$,
3. $t(\neg B)=\neg t(B)$,
4. $t(\square B)=[1][2] t(B)$.
t extends to a map from $\mathscr{L}_{\square}^{\pi}$ to $\mathscr{L}_{[1][2]}^{\pi}$ with the addition of the clause,
5. $t(\forall p A)=\forall p t(a)$.

For any model $M=\left(W, R_{1}, R_{2}, V\right)$ for $\mathscr{L}_{[1][2]}\left(\right.$ or $\left.\mathscr{L}_{[1][2]}^{\pi}\right)$, the product of M (written M^{p}) is the model (W, R, V) for $\mathcal{L}_{\square}\left(\right.$ or $\left.\mathcal{L}_{\square}^{\pi}\right)$ where W and V are as in M and $R=R_{1} R_{2}$, that is, $w R v$ if and only if, for some x in $W, w R_{1} x$ and $x R_{2} v$.

Notice that if the accessibility relations in M are reflexive, the accessibility relation in M^{p} is also reflexive.

Theorem 4.2 Let $M=\left(W, R_{1}, R_{2}, V\right)$ be a model for $\mathscr{L}_{[1][2]}$ or $\mathscr{L}_{[1][2]}^{\pi}$, and $w \in W$. Then $M, w \models t A$ if and only if $M^{p}, w \models A$.

Proof By induction on A. We do the \square case.

$$
\begin{aligned}
& M, w \models t(\square B) \text { iff } M, w \models[1][2] t(B) \quad \text { (by definition of } \mathrm{t} \text {) } \\
& \text { iff, for all } x, w R_{1} x \text { implies } M, x \models[2] t(B) \quad \text { (by truth definition) } \\
& \text { iff, for all } x, w R_{1} x \text { implies, for all } y, x R_{2} y \text { implies } M, y \models t(B) \\
& \quad \text { (by truth definition) } \\
& \\
& \text { iff, for all } y, w R^{p} y \text { implies } M, y \models t(B) \quad \text { (by definition of } R^{p} \text {) } \\
& \text { iff, for all } y, w R^{p} y \text { implies } M^{p}, y \models B \text { (by induction hypothesis) } \\
& \\
& \text { iff } M^{p}, w \models \square B \quad \text { (by truth definition definition). }
\end{aligned}
$$

The product provides a mapping from $\mathscr{L}_{[1][2]}$ or $\mathscr{L}_{[1][2]}^{\pi}$ models to \mathscr{L}_{\square} or $\mathscr{L}_{\square}^{\pi}$ models. Now we define a kind of inverse mapping. The idea is that whenever $u R v$ in a frame for the 1-modal system we insert a world x so that $u R_{1} x$ and $x R_{2} v$ in the corresponding frame of the 2-modal system. More precisely, suppose $F=(W, R)$ is a frame for \mathcal{L}_{\square} or $\mathscr{L}_{\square}^{\pi}$ and $M=(W, R, V)$ is a frame on F. Let W^{i} be the result of adding to W, a new world $i(u, v)$ for each pair of distinct worlds u and v in W such that $u R v$. (We call these infill worlds and the remaining worlds of W^{i} the original worlds.) For any original world u, let $\operatorname{right}(u)=\{u\} \cup\{i(u, x): u R x\}$ and let left $(u)=\{u\} \cup\{i(x, u): x R u\}$. For all x and y in W^{i}, let $x R_{1} y$ if and only if $x=y$ or, for some original world w, x and y are both in right (w). Similarly, let $x R_{2} y$ if and only if $x=y$ or, for some original world w, x and y are both in left (w). The infill of F is the frame $F^{i}=\left(W^{i}, R_{1}, R_{2}\right)$ (unique up to isomorphism), where W^{i}, R_{1}, R_{2} are as defined above. An infill of M is a model $M^{i}=\left(W^{i}, R_{1}, R_{2}, V^{i}\right)$ on F^{i} in which, for all natural numbers $i, V^{i}(i) \cap W=V(i)$ (so the truth value of propositional variables in M^{i} on the original worlds agrees with their truth value in $M)$.

Theorem 4.3 Suppose $M=(W, R, V)$ is a model for \mathscr{L}_{\square} or $\mathscr{L}_{\square}^{\pi}$ with R reflexive and $M^{i}=\left(W^{i}, R_{1}, R_{2}, V^{i}\right)$ is an infill of M.

1. R_{1} and R_{2} are equivalence relations.
2. For all u and v in $W, u R v$ if and only if $u R_{1} R_{2} v$.
3. For all $w \in W, M^{w}=\left(\left(\left(M^{w}\right)^{i}\right)^{p}\right)^{w}$.

Proof (1) Observe first that if $u \neq v$ then $\operatorname{right}(u)$ and $\operatorname{right}(v)$ are disjoint. For suppose they had a world w in common. Since the only original world in $\operatorname{right}(u)$ is u and the only original world in $\operatorname{right}(v)$ is v, w cannot be an original world. But if w were an infill world it would have to be $i(u, x)$ for some x and $i(v, y)$ for some y which is not possible when $u \neq v$. Since each original world u is in $\operatorname{right}(u)$ and each infill world $i(x, y)$ is in $\operatorname{right}(x)$, the sets $\operatorname{right}(u)$ partition W^{i} into disjoint sets containing u. It follows that R_{1} is an equivalence relation. A similar argument establishes that R_{2} is an equivalence relation.
(2) Suppose $u R v$. By the definition of $R_{1}, u R_{1} i(u, v)$. By the definition of R_{2}, $i(u, v) R_{2} v$. Hence $u R_{1} R_{2} v$. Conversely, suppose $u R_{1} R_{2} v$ for u and v in W. Then, for some $x, u R_{1} x$ and $x R_{2} v$. If x is an original world then $u=x$ and $x=v$ and so $u=v$. By the reflexivity of $R, u R v$ as was to be shown. If x is an infill world, then $x=i(u, y)$ for some y and $x=i(z, v)$ for some z. Hence $x=i(u, v)$ and $u R v$ as was to be shown.
(3) Let $M^{\prime}=\left(W^{\prime}, R^{\prime}, V^{\prime}\right)$ be the model $\left(\left(\left(M^{w}\right)^{i}\right)^{p}\right)^{w}$. We must prove that each component of M^{\prime} is identical to the corresponding component of M^{w}. Let Q_{1} and Q_{2} be the accessibility relations of $\left(M^{w}\right)^{i}$ and let Q be the accessibility relation of $\left(\left(M^{w}\right)^{i}\right)^{p}$. Then
(i) $x \in W^{w} \quad$ iff $w R^{*} x \quad$ (by definition of W^{w})
iff $w\left(R^{w}\right)^{*} x \quad$ (by definition of R^{w})
iff $w\left(Q_{1} Q_{2}\right)^{*} x \quad$ (by 2 above)
iff $w Q^{*} x \quad$ (by definition of the product of a model)
iff $x \in W^{\prime} \quad$ (by the definition of W^{\prime}).
(ii) $u R^{w} v$ iff $u Q_{1} Q_{2} v$ (by 2 above)
iff $u Q v \quad$ (by the definition of the product of a model)
iff $u R^{\prime} v \quad$ since u and v are both in W^{w} and hence in W^{\prime} by i.
(iii) Since the generation, product, and infill constructions never change the valuation function on any world, it is clear that $x \in V^{w}(i)$ if and only if $x \in V^{\prime}(i)$ for all natural numbers i and all $x \in W^{w}$.

5 The Embedding Result

Theorem 5.1 (1) $A \in \boldsymbol{T}$ if and only if $t(A) \in \mathbf{2 S 5}$; (2) $A \in T^{\pi}$ if and only if $t(A) \in \mathbf{2 S 5}{ }^{\pi}$.

Proof Suppose $A \notin \mathbf{2 S 5}$. Then there is a model $M=\left(W, R_{1}, R_{2}, V\right)$ with R_{1} and R_{2} equivalence relations and some $w \in W$ such that $M^{w} \notin t(A)$. By Theorem 4.2, $M^{p}, w \nLeftarrow A$. By an earlier observation, M^{p} is reflexive. Hence $A \notin \mathbf{T}$. Conversely, suppose $A \notin \mathbf{T}$. Then there is some model $M=(W, R, V)$ with reflexive R and some $w \in W$ such that $M, w \not \vDash A$. By Theorem 3.1, $M^{w}, w \notin A$. By part 3 of Theorem 4.3, $\left(\left(\left(M^{w}\right)^{i}\right)^{p}\right)^{w}, w \not \models A$. By Theorem 3.1 again, $\left(\left(M^{w}\right)^{i}\right)^{p}, w \not \vDash A$. By Theorem 4.2, $\left(M^{w}\right)^{i} \notin t(A)$. By part 1 of Theorem 4.3 the relations in this model are equivalence relations. It follows that $t(A) \notin \mathbf{2 S 5}$. This proves (1). Since all the results appealed to carry over in the presence of full propositional quantifiers, this proof also suffices for (2).

Corollary 5.2 $2 \mathbf{S 5}^{\pi}$ is recursively intertranslatable with full second-order logic.
Proof Well-known methods assure that any simple n-modal system with propositional quantifiers can be recursively embedded in second-order logic. More particularly, take any such system S determined by the class of all frames (W, R_{1}, \ldots, R_{n}) meeting some first- or second-order condition $\Phi\left(R_{1}, \ldots, R_{n}\right)$. Then we first define a base function s from $\mathscr{L}_{[1], \ldots,[n]}$ to the formulas of second-order logic with x as the only individual variable by a simple induction:

1. $s\left(p_{i}\right)=P_{i} x$ (where P_{i} is the i th one-place predicate symbol),
2. $s(B \vee C)=s(B) \vee s(C)$,
3. $s(\neg B)=\neg s(B)$,
4. $s([i] B)=\forall y\left(x R_{i} y \rightarrow(s(B))_{x}^{y}\right)$ where y is the first individual variable that does not occur in $s(B)$, and D_{x}^{y} is the result of replacing x in D by y,
5. $s\left(\forall p_{j} B\right)=\forall P_{j} s(B)$.

Now, for any formula A of $\mathscr{L}_{[1], \ldots,[n]}^{\pi}$, let $t(A)$ be the formula

$$
\forall R_{1} \ldots \forall R_{n}\left(\Phi\left(R_{1}, \ldots, R_{n}\right) \rightarrow \forall P_{i_{1}} \ldots \forall P_{i_{m}} \forall x s(A)\right),
$$

where $p_{i_{1}}, \ldots, p_{i_{m}}$ are all the propositional variables that occur free in A and then, by the truth definition for $\mathcal{L}_{[1], \ldots,[n]}^{\pi}, \models A$ if and only if $\models t(A)$. So to show that such systems are recursively intertranslatable with second-order logic it is sufficient to find a recursive embedding in the other direction, that is, from second-order logic to the modal system. This is done for \mathbf{T}^{π}, (among other systems) in [2]. Since Theorem 5.1 provides a recursive embedding of \mathbf{T}^{π} into $\mathbf{2 S 5}{ }^{\pi}$, it follows that the same can be done for $\mathbf{2 S 5}{ }^{\pi}$.

References

[1] Antonelli, G. A., and R. H. Thomason, "Representability in second-order propositional poly-modal logic," The Journal of Symbolic Logic, vol. 67 (2002), pp. 1039-1054. Zbl 1034.03014. MR 2003i:03020. 13
[2] Fine, K., "Propositional quantifiers in modal logic," Theoria, vol. 36 (1970), pp. 336-46. Zbl 0302.02005. MR 48:5824. 13, 17

Department of Philosophy
Georgetown University
Washington DC 20015
kuhns@georgetown.edu

