A THEOREM FOR DERIVING CONSEQUENCES OF THE AXIOM OF CHOICE

FRANCIS J. TYTUS

I. Introduction This paper is addressed to the problem of proving results directly from the Axiom of Choice. A general theorem on mappings in partially-ordered sets will be proved, and proofs of Zorn's Lemma and the Well-Ordering Theorem will be given as corollaries to this theorem. The following concepts will be used.

A partially-ordered set is a set on which is defined a reflexive, transitive, anti-symmetric binary relation \leq . A chain is a totally-ordered subset of a partially-ordered set. If a partially-ordered set has a smallest and/or a greatest element, these will be represented respectively by 0 and 1. The least-upper-bound, if it has one, of a subset T of a partiallyordered set will be represented by $\coprod T$. It should be noted that if every subset of a partially-ordered set X has a least-upper-bound, then $0 = \coprod \phi$ and $1 = \coprod X$ are in X, where ϕ is the void set.

A choice function on a set S is a function which assigns to each nonvoid subset T of S an element of T. The Axiom of Choice states that a choice function may be defined on any set.

The following additional notation will be employed. Set-theoretic inclusion will be represented by \subseteq , and strict inclusion by \subset . The powerset of a set S will be represented by P(S). If f is a function defined on a set S, then f(T) will represent the set of images under f of the elements of T, for each subset T of S. In particular, $f(\phi) = \phi$. If \mathcal{L} is a family of subsets of a set S, then $\bigcup \mathcal{L}$ and $\bigcap \mathcal{L}$ will represent respectively the union and intersection of the members of \mathcal{L} . In particular, $\bigcup \phi = \phi$ and $\bigcap \phi = S$. Finally, the difference of sets S and T will be represented by $S \setminus T$.

II. The Main Theorem

Theorem 1: If X is a partially-ordered set in which each subset has a least-upper-bound, and g is a function from X into X which satisfies the following condition:

Received October 12, 1966

(i) $g(y) \leq x$ implies $g(y) \leq g(x)$, for x, y in X,

then there is a subset V of X which satisfies the following two conditions:

- (ii) $\bigsqcup_{g(W)} g(W)$ is in V, for every $W \subseteq V$,
- (iii) $x \leq y \text{ or } g(y) \leq x, \text{ for } x, y \text{ in } V.$

Proof: Let \mathscr{L} be the family of all subsets T of X for which $\bigsqcup g(W)$ is in T, whenever $W \subseteq T$. The family \mathscr{L} contains X, and hence is non-void. Now let $V = \bigcap \mathscr{L}$. It follows immediately from the definition of V that V is in \mathscr{L} , and that if T is a subset of V which is also in \mathscr{L} , then T = V. The following two lemmas complete the proof of the theorem.

Lemma 1: Suppose, for some fixed y in V, that x < y implies $g(x) \le y$, whenever x is in V. Then $x \le y$ or $g(y) \le x$, whenever x is in V.

Proof: Let T be the set of all elements x of V for which $x \leq y$ or $g(y) \leq x$. We wish to show that T is in \mathcal{A} , and hence that T = V. Let W be an arbitrary subset of T. Now if $x \leq y$ for every x in W, then $g(x) \leq y$ for every x in W, and $\bigsqcup g(W) \leq y$, and $\bigsqcup g(W)$ is in T. Otherwise there is some x_0 in W such that $x_0 = y$ or $g(y) \leq x_0$. If $x_0 = y$, then $g(y) = g(x_0) \leq \bigsqcup g(W)$. If $g(y) \leq x_0$, then, by (i), we have $g(y) \leq g(x_0) \leq \bigsqcup g(W)$. Hence $\bigsqcup g(W)$ is again in T. Q.E.D.

Lemma 2: If y is in V, then x < y implies $g(x) \le y$, whenever x is in V.

Proof: Let T be the set of all elements y in V for which x < y implies $g(x) \le y$, whenever x is in V. We again wish to show that T is in \mathscr{L} . Let W be an arbitrary subset of T, and suppose that $x < \bigsqcup g(W)$, where x is in V. By Lemma 1 we have $x \le y$ or $g(y) \le x$, for every y in W. If $g(y) \le x$ for every y in W, then $\bigsqcup g(W) \le x$, which is impossible. Hence there is some y_0 in W such that $x \le y_0$. If $x = y_0$, then $g(x) = g(y_0) \le \bigsqcup g(W)$. On the other hand, if $x < y_0$, then $g(x) \le y_0$, and by (i) we have $g(y) \le g(y_0) \le \bigsqcup g(W)$. In either case $\bigsqcup g(W)$ is in T.

The following two propositions give some useful additional properties of V.

Proposition 1: If x, y are in V, then either $g(y) \leq x$, or x = y, or $g(x) \leq y$.

Proof: Suppose that $g(y) \notin x$ and $x \neq y$. Then, by (iii), we have x < y. Hence $y \notin x$, and, again by (iii), we have $g(x) \leqslant y$. Q.E.D.

Proposition 2: If $g(x) \notin x$, for every x in $X \setminus \{1\}$, then $\bigsqcup g(V \setminus \{1\}) = 1$.

Proof: If $\bigsqcup g(V \setminus \{1\}) \neq 1$, then we have $g(\bigsqcup g(V \setminus \{1\})) \leq \bigsqcup g(V \setminus \{1\})$, which is impossible. Q.E.D.

III. Zorn's Lemma We will now use Theorem 1 to prove Zorn's Lemma, in the following form, from the Axiom of Choice.

Zorn's Lemma: Any partially-ordered set K without maximal elements contains an unbounded chain.

Proof: Let X be P(K), partially-ordered by the *inverse* of set-theoretic inclusion. Let f be a choice function on K, and let g be the function on P(K) defined by:

$$g(T) = \begin{cases} \{x \in K \mid f(T) < x\}, & T \neq \phi \\ \phi, & T = \phi \end{cases}$$

Lemma 1: The function g satisfies condition (i) of Theorem 1.

Proof: Suppose that $g(T) \supseteq U$, where T, U are in P(K). We wish to show that $g(T) \supseteq g(U)$. This is clearly true if $U = \phi$. If $U \neq \phi$, then by assumption f(U) is in g(T), that is, f(T) < f(U). Consequently we have $g(T) \supseteq g(U)$, by the transitivity and antisymmetry of \leq in K. Q.E.D. Now let \mathscr{V} represent the sub-family V of P(K) which is provided by

Theorem 1. The following two lemmas complete the proof of Zorn's Lemma.

Lemma 2: $f(\mathcal{V} \setminus \{\phi\})$ is a chain in K.

Proof: This lemma follows immediately from Proposition 1 and the reflexivity of \leq in K. Q.E.D.

Lemma 3: $f(\mathcal{V} \setminus \{\phi\})$ is unbounded.

Proof: Since \mathscr{V} satisfies the hypothesis of Proposition 2, we have $\bigcap g(\mathscr{V} \setminus \{\phi\}) = \phi$. Consequently any upper bound of $f(\mathscr{V} \setminus \{\phi\})$ must be in $f(\mathscr{V} \setminus \{\phi\})$. But for any $T \in \mathscr{V} \setminus \{\phi\}$ we have $g(T) = \phi$, since K has no maximal elements, and consequently we have f(T) < f(g(T)). Hence f(T) is not an upper bound for $f(\mathscr{V} \setminus \{\phi\})$. Q.E.D.

IV. Second Form of The Main Theorem In this section and the next a slightly weaker form of the main theorem will be employed. If g is a mapping on a partially-ordered set X for which $x \leq g(x)$, for every x in X, then clearly g satisfies condition (i) of Theorem 1. It is also clear by Proposition 1 that the set V of Theorem 1 is totally ordered, if g satisfies this stronger condition.

Lemma 1: If T is a subset of the set V of Theorem 1, then either T has a largest element, or else $\bigsqcup g(T) \leq \bigsqcup T$.

Proof: If T has no largest element, then $\bigsqcup T \neq y$, for every y in T. Hence if y is in T, then there is some x in T such that $x \leq y$, so $g(y) \leq x \leq \bigsqcup T$. Consequently we have $\bigsqcup g(T) \leq \bigsqcup T$. Q.E.D.

Lemma 2: If $x \le g(x)$, for every x in X, where g is the function of Theorem 1, and T is a subset of V, then either T has a largest element or else $\bigcup_{x \in T} g(T) = \bigcup_{x \in T} T$.

Proof: Clearly we have $\bigsqcup T \leq \bigsqcup g(T)$, so Lemma 2 follows immediately from Lemma 1. Q.E.D.

Corollary: If in Theorem 1 we have $x \leq g(x)$, for every x in X, then $\bigsqcup T$ is in V, for any subset T of V.

We may now state the following weaker form of Theorem 1:

Theorem 2: If X is a partially-ordered set in which each subset has a least upper-bound, and g is a function on X such that $x \leq g(x)$, for every x in X, then there is a chain V in X such that:

(a)
$$\bigsqcup T$$
 is in V , for every $T \subseteq V$,
(b) $g(V) \subseteq V$.

As a first application of Theorem 2 we will derive a variant of Zorn's Lemma from the Axiom of Choice. First we prove a fixed point theorem.

Theorem 3: Suppose that X is a partially ordered set in which each subset has a least-upper-bound, and that g is a function on X such that $x \leq g(x)$, for every $x \in X$. If Y is a subset of X such that:

- (a) $\bigsqcup C$ is in Y, for every chain C in Y,
- (b) $g(Y) \subseteq Y$,

then there is some y in Y such that y = g(y).

Proof: Consider the element $\bigsqcup (V \cap Y)$ of Y, where V is the set V determined by Theorem 2. Since $V \cap Y$ is a chain in Y, it follows that $g(\bigsqcup (V \cap Y))$ is in $V \cap Y$, so we have $g(\bigsqcup (V \cap Y)) \leq \bigsqcup (V \cap Y)$. Q.E.D.

Zorn's Lemma: If X is a partially-ordered set in which each subset has a least-upper-bound, and Y is a non-void subset of X such that $\bigsqcup_{C} C$ is in Y, whenever C is a non-void chain in Y, then Y is a maximal element.

Proof: We wish to show that Theorem 4 is a consequence of the Axiom of Choice. Define a function g on X as follows: If x is a non-maximal element of Y, using the Axiom of Choice let g(x) be an element of Y such that x < g(x). Otherwise let g(x) = x. It is clear that g satisfies the hypotheses of Theorem 3, and that an element y of Y is maximal in Y if and only if g(y) = y. Consequently the result follows from Theorem 3. Q.E.D.

V. The Well-Ordering Theorem Theorem 2 will now be used, in conjunction with the Axiom of Choice, to prove the Well-Ordering Theorem. A binary relation on a set S (i.e., a subset of $S \times S$) is said to be a well-order relation on S if it is a total-order relation and every non-void subset of Shas a smallest element with respect to it. We will call a binary relation on a set S a quasi-well-order on S if every non-void subset of S has a smallest element with respect to it. Such a relation need not be a partial-order. It follows immediately from the Axiom of Choice that a quasi-well-order can be defined on any set: if f is a choice function on a set S, then the relation

 $\bigcup_{\substack{\phi \neq T \subseteq S}} [\{f(T)\} \times T] \text{ is clearly a quasi-well-order on } S. \text{ Our intention is to } f(T) > T]$

anti-symmetric.

Proposition 3: An anti-symmetric quasi-well-order relation A on a set S is a well-order on S.

Proof: We wish to show that A is a total-order. Since any one-element subset of S has a smallest element, A is reflexive. Since any two-element subset of S has a smallest element, any two elements of S are comparable. Since any three-element subset of S has a smallest element, it follows from the anti-symmetry of A that A is transitive. Q.E.D.

Well-Ordering Theorem: There is a well-order relation on any set S.

Proof: Let X be P(S), partially-ordered by the *inverse* of inclusion. Let f be a choice function on S, and let g be the function on P(S) defined by:

$$g(T) = \begin{cases} T \setminus \{f(T)\}, & T \neq \phi \\ \phi, & T = \phi \end{cases}$$

Now let \mathscr{V} represent the sub-family V of $\mathsf{P}(S)$ which is provided by Theorem 2, and let $A = \bigcup_{V \in \mathfrak{N} \setminus \{\phi\}} [\{f(V)\} \times V]$. The following two lemmas complete the proof.

Lemma 1: A is a quasi-well-order on S.

Proof: Suppose that T is a non-void subset of S. We wish to find a W in $\mathcal{V}\setminus\{\phi\}$ such that f(W) is in T and $T \subseteq W$. Let W be the intersection of all V in \mathcal{V} for which $T \subseteq V$. W is in \mathcal{V} , by (a) of Theorem 2. If f(W) were not in T, then we would have $T \subseteq g(W) \subseteq W$, which would contradict the definition of W. Q.E.D.

Lemma 2: A is anti-symmetric.

Proof: Suppose that $x \leq y$ and $y \leq x$, for x, y in S. Then there is some V in \mathcal{V} such that x = f(V) and y is in V, and there is some W in \mathcal{V} such that y = f(W) and x is in W. If $f(V) \neq f(W)$, then f(V) is in $g(W) \setminus g(V)$, and f(W) is in $g(V) \setminus g(W)$, which contradicts the comparability of g(V) and g(W). Hence x = f(V) = f(W) = y. Q.E.D.

VI. Alternate Proof of the Well-Ordering Theorem In this section an additional property of the set V of Theorem 1 will be proved and then used to give a different proof of the Well-Ordering Theorem. For each y in V, let $I_y = \{x \in V | x \le y\}.$

Lemma: Suppose, in Theorem 1, that $x \leq g(x)$, for every x in X. Then I_y is well-ordered by \leq , for every y in V.

Proof: Let T be the set of all elements y of V for which I_y is well-ordered by \leq . We wish to show that T is in the family \mathscr{L} of Theorem 1. Let W be an arbitrary subset of T. We wish to show that $I_{\coprod g(W)}$ is well-ordered. Suppose that M is a non-void subset of $I_{\coprod g(W)}$. If $M = \{ \coprod g(W) \}$, then clearly M has a smallest element. Otherwise there is some m in M such that $\langle \bigsqcup_{g}(W)$, and, since V is totally-ordered, there must be some y in W such that $m \leq y$. Since I_y is well-ordered, the set of all elements of M smaller than m is contained in I_y and hence has a smallest element. This element is a smallest element for M, since V is totally-ordered. Q.E.D.

Proposition 4: Suppose, in Theorem 1, that $x \leq g(x)$, for every x is X. Then V is well-ordered by \leq .

Proof: Suppose that M is a non-void subset of V. Let y be an element in M. The set of all elements of M smaller than y is contained in I_y and hence has a smallest element, by the lemma. This element is a least element of M. Q.E.D.

To show that any set S can be well-ordered, we again use the X, f, g, and \mathcal{V} of the proof of the Well-Ordering Theorem in the preceding section. Since $\mathcal{V}\setminus\{\phi\}$ is well-ordered, by Proposition 4, it suffices to show that the restriction $f|\mathcal{V}\setminus\{\phi\}$ of f to $\mathcal{V}\setminus\{\phi\}$ is a one-to-one correspondence between $\mathcal{V}\setminus\{\phi\}$ and S.

Proposition 5: The function f maps $\mathcal{V} \setminus \{\phi\}$ into S.

Proof: We will use Proposition 2. Suppose that x is an element of S which is not in $f(\mathcal{V}\setminus\{\phi\})$. Let \mathcal{K} be the family of all sets V of \mathcal{V} such that x is in V. If \mathcal{U} is an arbitrary sub-family of \mathcal{K} , then, since x is not in $f(\mathcal{V}\setminus\{\phi\})$, x is in g(V), for every V in \mathcal{U} , and consequently x is in $\bigcap g(U)$, so $\bigcap g(U)$ is in \mathcal{K} . Hence $\mathcal{K} = \mathcal{V}$, by the technique of Theorem 1, and we have

$$x \in \bigcap \mathscr{V} \subseteq \bigcap \mathscr{G}(\mathscr{V} \setminus \{\phi\}) \neq \phi \quad ,$$

which contradicts Proposition 2.

Proposition 6: The restriction $f | \mathcal{V} \setminus \{\phi\}$ of f to $\mathcal{V} \setminus \{\phi\}$ is one-to-one.

Proof: Suppose, for V, W in $\mathcal{V}\setminus\{\phi\}$, that f(V) = f(W). Then we have $g(V) \not\supseteq W$ and $g(W) \not\supseteq V$, so by (iii) of Theorem 1 we have $V \supseteq V$ and $V \supseteq W$. Hence V = W. Q.E.D.

It is clear that the two well-order relations that have been defined on S, the second being the image under f of the well-order on $\mathcal{V}\setminus\{\phi\}$ are the same.

Columbus, Ohio

Q.E.D.