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A THEOREM FOR DERIVING CONSEQUENCES OF THE AXIOM
OF CHOICE

FRANCIS J. TYTUS

I. Introduction This paper is addressed to the problem of proving
results directly from the Axiom of Choice. A general theorem on mappings
in partially-ordered sets will be proved, and proofs of Zorn's Lemma and
the Well-Ordering Theorem will be given as corollaries to this theorem.
The following concepts will be used.

A partially-order ed set is a set on which is defined a reflexive, trans-
itive, anti-symmetric binary relation <. A chain is a totally-ordered
subset of a partially-ordered set. If a partially-ordered set has a smallest
and/or a greatest element, these will be represented respectively by 0 and
I. The least-upper-bound, if it has one, of a subset T of a partially -
ordered set will be represented by U T. It should be noted that if every
subset of a partially-ordered set X has a least-upper-bound, then 0 = Uψ
and 1 = U X are in X, where φ is the void set.

A choice function on a set S is a function which assigns to each non-
void subset T of 5 an element of T. The Axiom of Choice states that a
choice function may be defined on any set.

The following additional notation will be employed. Set-theoretic
inclusion will be represented by c ? and strict inclusion by c. The power-
set of a set S will be represented by P(S). If / is a function defined on a set
S, then f(T) will represent the set of images under/ of the elements of T,
for each subset T of S. In particular, f(φ) = φ. If J. is a family of subsets
of a set S, then [jji and \\Jί will represent respectively the union and
intersection of the members of d . In particular, [Jφ = φ and \\φ = S.
Finally, the difference of sets S and T will be represented by S\T.

II. The Main Theorem

Theorem 1: If X is a partially-ordered set in which each subset has a
least-upper-bound, and g is a function from X into X which satisfies the
following condition'.
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(i) g(y) ^x implies g(y) ^g(x), for x, y in X,

then there is a subset V of X which satisfies the following two conditions:

(ϋ) UgΌ*O is in V, for every W c v9

(iii) x ^y or g{y) ^ xjor x,y in V.

Proof: Let J be the family of all subsets Γ of X for which U g(W) is in Γ,
whenever W c T. The family J. contains X, and hence is non-void. Now let
F = PJc£. It follows immediately from the definition of V that V is in Jί, and
that if T is a subset of V which is also in Jί, then Γ = V. The following two
lemmas complete the proof of the theorem.

Lemma 1: Suppose, for some fixed y in V, that x <y implies g(x) ̂ y,
whenever x is in V. Then x ^y or g(y) ^ x, whenever x is in 7.

Proof: Let T be the set of all elements x of Ffor which x ^y or g(y) **x.
We wish to show that T is in J, and hence that T = V. Let Wbe an arbi-
trary subset of T. Now if x <y for every x in W, then g(x) ^y for every x
in W, and U g W ^ y, and LJ^ (ίF) is in T. Otherwise there is some x0 in
W such that x0 = y or £ (3>) ̂ x0. Ίί x0 = y, then g(y) = ^ 0 ) ^ LJ^(^). If g(y)
^ x0, then, by (i), we have g(y) ^g(ρc0) ̂  U^(^0. Hence LJgW is again in
T. Q.E.D.

Lemma 2: If y is in V, then x <y implies g(x) ̂ y9 whenever x is in V.

Proof: Let T be the set of all elements y in V for which x < y implies
g(x) ^ y, whenever x is in V. We again wish to show that Γ is in Jί. Let W
be an arbitrary subset of T, and suppose that x < LJ^W, where x is in V.
By Lemma 1 we have x ** y or g-( y) ^ x, for every y in W. If g ( y) ^x for
every y in W, then U ^ l ^ ) ^ x, which is impossible. Hence there is some
y0 in W such that x ^ y0. Ίi x = ;y0, then #•(#) = g (3;0) ^ LJ^(^O. On the other
hand, if x < yθ9 then g(x) ̂  y0, and by (i) we have g(y) < ̂ (3̂ 0) < L U W . In
either case U^(^) is in T. Q.E.D.

The following two propositions give some useful additional properties
of V.

Proposition 1: If x,y are in V, then either g{y) ^x, or x = y9 or g{x) ^ y.

Proof: Suppose that g(y) ^ x and x ^ y. Then, by (iii), we have x < y.
Hence y £ x, and, again by (iii), we have g(x) ̂  y. Q.E.D.

Proposition 2: Ifg(x) £ x, for every x in X\{l}, then \Δg{V\{l}) = 1.

Proof: If Ug<F\{l}) ί 1, then we have ^U^(^\{l})) < U^(^\{l}), which is
impossible. Q.E.D.

III. Zorn's Lemma We will now use Theorem 1 to prove Zorn's Lemma,
in the following form, from the Axiom of Choice.

Zorn's Lemma: Any partially-ordered set K without maximal elements
contains an unbounded chain.
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Proof: Let X be PiK), partially-ordered by the inverse of set-theoretic
inclusion. Let/ be a choice function on K, and let g be the function on P(K)
defined by:

ί{xeK\f(T)<x} , T^φ
g(T)= <

( Φ , T = φ .

Lemma 1: The function g satisfies condition (i) of Theorem 1.

Proof: Suppose that g(T) 3 U, where T,U are in P(K). We wish to show that
g(T) ^g(U). This is clearly true if U = φ. If U £ φ, then by assumption f(U)
is in g(T), that is, f(T) <f(U). Consequently we have g{T) 2 g{U), by the
transitivity and antisymmetry of ̂  in K. Q.E.D.
Now let 1/ represent the sub-family 7 of P{K) which is provided by
Theorem 1. The following two lemmas complete the proof of Zorn's
Lemma.

Lemma 2: f(V\{φ}) is a chain in K.

Proof: This lemma follows immediately from Proposition 1 and the reflex-
ivity of ^ inK. Q.E.D.

Lemma 3: f(V\{φ}) is unbounded.

Proof: Since Ψ satisfies the hypothesis of Proposition 2, we have 1 ig(^\
{φ}) = φ. Consequently any upper bound oίf{V\{φ}) must be mf(v\{φ}). But
for any Te ̂ \{φ} we have g(T) - φ9 since K has no maximal elements, and
consequently we have f(T) <f(g(T)). Hence f(T) is not an upper bound for
/(^\{0j). Q.E.D.

IV. Second Form of The Main Theorem In this section and the next a
slightly weaker form of the main theorem will be employed. If g is a
mapping on a partially-ordered set X for which x ^g(x), for every x in X,
then clearly g satisfies condition (i) of Theorem 1. It is also clear by
Proposition 1 that the set V of Theorem 1 is totally ordered, if g satisfies
this stronger condition.

Lemma 1: If T is a subset of the set V of Theorem 1, then either T has a
largest element, or else LJ^(Γ) ^ Lj7\

Proof: If T has no largest element, then LjΓ / y, for every y in T. Hence
if y is in Γ, then there is some x in T such that x *ίy, so g (;y) ^x ** [jT.
Consequently we have LJ^ (Γ) < ]Aτ. Q.E.D.

Lemma 2: If x < g(x),for every x in X, where g is the function of Theorem
1, and T is a subset of V, then either T has a largest element or else

Ug(τ) = UT.

Proof: Clearly we have LJ T ̂  LJiK^), so Lemma 2 follows immediately
from Lemma 1. Q.E.D.
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Corollary: If in Theorem 1 we have x^ g(x),for every x in X, then \Λτ is
in V9for any subset T of V.

We may now state the following weaker form of Theorem 1:

Theorem 2: If X is a partially-ordered set in which each subset has a
least upper-bound, and g is a function on X such that x ^ g(x)yfor every x
in X9 then there is a chain V in X such that:-

(a) LJr is in V, for every T c v,
(b) g(V)£V.

As a first application of Theorem 2 we will derive a variant of Zorn's
Lemma from the Axiom of Choice. First we prove a fixed point theorem.

Theorem 3: Suppose that X is a partially ordered set in which each subset
has a least-upper-bound 9 and that g is a function on X such that x *zg(x),
for every x e X. If Y is a subset of X such that:

(a) LJ C is in Γ, for every chain C in Y,
(b) g(Y) c γ9

then there is some y in Y such that y - g(y).

Proof: Consider the element LJ(^ Π 7) of Y9 where V is the set V deter-
mined by Theorem 2. Since V n Y is a chain in Y, it follows that£( LJ(^ Π
Y)) is in V Π Y, so we have g( LJ (V n Y)) < \J(V n Y). Q.E.D.

Zorn's Lemma: If X is a partially-ordered set in which each subset has a
least-upper-bound, and Y is a non-void subset of X such that LJc is in Y,
whenever C is a non-void chain in Y, then Y is a maximal element.

Proof: We wish to show that Theorem 4 is a consequence of the Axiom of
Choice. Define a functions on Xas follows: If # is a non-maximal element
of Y, using the Axiom of Choice let g(pc) be an element of Y such that x <
g(x). Otherwise let g{x) = x. It is clear thatg" satisfies the hypotheses of
Theorem 3, and that an element y of Y is maximal in Y if and only if g ( y) =
y. Consequently the result follows from Theorem 3. Q.E.D.

V. The Well-Ordering Theorem Theorem 2 will now be used, in conjunc-
tion with the Axiom of Choice, to prove the Well-Order ing Theorem. A
binary relation on a set S (i.e., a subset of S x S) is said to be a well-order
relation on S if it is a total-order relation and every non-void subset of S
has a smallest element with respect to it. We will call a binary relation on
a set S a quasi-well-order on S if every non-void subset of S has a smallest
element with respect to it. Such a relation need not be a partial-order. It
follows immediately from the Axiom of Choice that a quasi-well-order can
be defined on any set: iff is a choice function on a set 5, then the relation

U [{/(21)} x T] is clearly a quasi-well-order onS. Our intention is to
ΦΦTCS
"shrink" this relation down to one which is both a quasi-well-order and
anti-symmetric.
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Proposition 3: An anti-symmetric quasi-well-order relation A on a set S
is a well-order on S.

Proof: We wish to show that A is a total-order. Since any one-element
subset of S has a smallest element, A is reflexive. Since any two-element
subset of S has a smallest element, any two elements of S are comparable.
Since any three-element subset of S has a smallest element, it follows from
the anti-symmetry of A that A is transitive. Q.E.D.

Well-Ordering Theorem: There is a well-order relation on any set S.

Proof: Let X be P(5), partially-ordered by the inverse of inclusion. Let/
be a choice function on S, and le t^ be the function on P(S) defined by:

(Γ\{/(Γ)} , T/φ
g(T) =

( Φ, T = φ .

Now let V represent the sub-family Fof P(S) which is provided by Theorem
2, and let A = ( J [{f(v)} x V]. The following two lemmas complete the

Vety\{φ}
proof.

Lemma 1: A is a quasi-well-order on S.

Proof: Suppose that T is a non-void subset of S. We wish to find a W in
V\{φ} such that f(W) is in Γ and Γ £ W. Let Wbe the intersection of all V
in V for which Γ c y , W is in Ίf, by (a) of Theorem 2. I f/W were not in
T', then we would have T c g(W) c ψ ? which would contradict the definition
of w. Q.E.D.

Lemma 2: A is anti-symmetric.

Proof: Suppose that x ^ y and y ^ x9 for x,y in S. Then there is some V in
^ such that x = f(V) and y is in F, and there is some W in V such that y =
f(W) and # is in W. Ίi f(V) ^ f(W), then f(V) is in g(W)\g(V), mάfiW) is in

^(F)\^ (Wθ, which contradicts the comparability of g(V) and g(W). Hence
x= f(V) = f(W)=y. Q.E.D.

VI. Alternate Proof of the Well-Ordering Theorem In this section an addi-
tional property of the set V of Theorem 1 will be proved and then used to
give a different proof of the Well-Ordering Theorem. For each y in V, let
Iy = {xe V\x ^ y}.

Lemma: Suppose, in Theorem 1, that x ^g{x),for every x in X. Then Iy is
well-ordered by ^,for every y in V.

Proof: Let T be the set of all elements y of Vίov which Iy is well-ordered
by <. We wish to show that T is in the family A of Theorem 1. Let W be
an arbitrary subset of T. We wish to show that I\jg(w) i s well-ordered.
Suppose that M i s a non-void subset of Iugiw)- Ίi M = {LJiKW)}, then
clearly M has a smallest element. Otherwise there is some m in M such
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that < Li£"(W), and, since V is totally-ordered, there must be some y in W
such that m < y. Since Iy is well-ordered, the set of all elements of M
smaller than m is contained in Iy and hence has a smallest element. This
element is a smallest element for M, since V is totally-ordered. Q.E.D.

Proposition 4: Suppose, in Theorem 1, that x < g(x), for every x is X.
Then V is well-ordered by <.

Proof: Suppose that M is a non-void subset of V. Let y be an element in
M. The set of all elements of M smaller than y is contained in Iy and hence
has a smallest element, by the lemma. This element is a least element of
M. Q.E.D.
To show that any set 5 can be well-ordered, we again use the X, /, g9 and V
of the proof of the Well-Ordering Theorem in the preceding section. Since
V\{φ} is well-ordered, by Proposition 4, it suffices to show that the re-
striction f\y\{φ} of / to V\{φ} is a one-to-one correspondence between
V\{φ} and s.

Proposition 5: The function f maps V\{φ} into S.

Proof: We will use Proposition 2. Suppose that x is an element of S which
is not in f(v\{φ}). Let 7ύ be the family of all sets V of V such that x is in
V. If V/ is an arbitrary sub-family of 3£, then, since x is not in f(v\{φ})9 x
is in g(V), for every V in ̂ , and consequently x is in \\g(U), so f^gίl/) is in
96. Hence 96= V, by the technique of Theorem 1, and we have

xef)v^Γ\g(V\{φ})έΦ ,
which contradicts Proposition 2. Q.E.D.

Proposition 6: The restriction f\v\{φ] off to V\{φ} is one-to-one.

Proof: Suppose, for V, W in V\{φ), that f(V) = f(W). Then we have^(V)$
PFand g(W) £ V, so by (iii) of Theorem 1 we have V 2 F and F2TΓ. Hence
7= PF. Q.E.D.

It is clear that the two well-order relations that have been defined on
S, the second being the image under / of the well- order on 1f\{φ} are the
same.

Columbus9 Ohio




