A THEOREM FOR DERIVING CONSEQUENCES OF THE AXIOM OF CHOICE

FRANCIS J. TYTUS

I. Introduction This paper is addressed to the problem of proving results directly from the Axiom of Choice. A general theorem on mappings in partially-ordered sets will be proved, and proofs of Zorn's Lemma and the Well-Ordering Theorem will be given as corollaries to this theorem. The following concepts will be used.

A partially-ordered set is a set on which is defined a reflexive, transitive, anti-symmetric binary relation \leqslant. A chain is a totally-ordered subset of a partially-ordered set. If a partially-ordered set has a smallest and/or a greatest element, these will be represented respectively by 0 and 1. The least-upper-bound, if it has one, of a subset T of a partiallyordered set will be represented by \square_{T}. It should be noted that if every subset of a partially-ordered set X has a least-upper-bound, then $0=\bigsqcup_{\phi}$ and $1=\bigsqcup_{X}$ are in X, where ϕ is the void set.

A choice function on a set S is a function which assigns to each nonvoid subset T of S an element of T. The Axiom of Choice states that a choice function may be defined on any set.

The following additional notation will be employed. Set-theoretic inclusion will be represented by \subseteq, and strict inclusion by \subset. The powerset of a set S will be represented by $\mathrm{P}(S)$. If f is a function defined on a set S, then $f(T)$ will represent the set of images under f of the elements of T, for each subset T of S. In particular, $f(\phi)=\phi$. If $\&$ is a family of subsets of a set S, then \bigcup_{l} and \bigcap_{l} will represent respectively the union and intersection of the members of ℓ. In particular, $\bigcup \phi=\phi$ and $\bigcap \phi=S$. Finally, the difference of sets S and T will be represented by $S \backslash T$.

II. The Main Theorem

Theorem 1: If X is a partially-ordered set in which each subset has a least-upper-bound, and g is a function from X into X which satisfies the following condition:
(i) $g(y) \leqslant x$ implies $g(y) \leqslant g(x)$, for x, y in X,
then there is a subset V of X which satisfies the following two conditions:
(ii) $\bigsqcup_{g(W)}$ is in V, for every $W \subseteq V$,
(iii) $\quad x \leqslant y$ or $g(y) \leqslant x$, for x, y in V.

Proof: Let d be the family of all subsets T of X for which $\bigsqcup_{g(W)}$ is in T, whenever $W \subseteq T$. The family ℓ contains X, and hence is non-void. Now let $V=\bigcap \ell$. It follows immediately from the definition of V that V is in ℓ, and that if T is a subset of V which is also in \mathcal{d}, then $T=V$. The following two lemmas complete the proof of the theorem.
Lemma 1: Suppose, for some fixed y in V, that $x<y$ implies $g(x) \leqslant y$, whenever x is in V. Then $x \leqslant y$ or $g(y) \leqslant x$, whenever x is in V.

Proof: Let T be the set of all elements x of V for which $x \leqslant y$ or $g(y) \leqslant x$. We wish to show that T is in d, and hence that $T=V$. Let W be an arbitrary subset of T. Now if $x<y$ for every x in W, then $g(x) \leqslant y$ for every x in W, and $\bigsqcup_{g(W)} \leqslant y$, and $\bigsqcup_{g(W)}$ is in T. Otherwise there is some x_{0} in W such that $x_{0}=y$ or $g(y) \leqslant x_{0}$. If $x_{0}=y$, then $g(y)=g\left(x_{0}\right) \leqslant \bigsqcup g(W)$. If $g(y)$ $\leqslant x_{0}$, then, by (i), we have $g(y) \leqslant g\left(x_{0}\right) \leqslant \bigsqcup_{g(W)}$. Hence $\bigsqcup_{g(W)}$ is again in T.
Q.E.D.

Lemma 2: If y is in V, then $x<y$ implies $g(x) \leqslant y$, whenever x is in V.
Proof: Let T be the set of all elements y in V for which $x<y$ implies $g(x) \leqslant y$, whenever x is in V. We again wish to show that T is in d. Let W be an arbitrary subset of T, and suppose that $x<\bigsqcup g(W)$, where x is in V. By Lemma 1 we have $x \leqslant y$ or $g(y) \leqslant x$, for every y in W. If $g(y) \leqslant x$ for every y in W, then $\square_{g(W)} \leqslant x$, which is impossible. Hence there is some y_{0} in W such that $x \leqslant y_{0}$. If $x=y_{0}$, then $g(x)=g\left(y_{0}\right) \leqslant \bigsqcup g(W)$. On the other hand, if $x<y_{0}$, then $g(x) \leqslant y_{0}$, and by (i) we have $g(y) \leqslant g\left(y_{0}\right) \leqslant \bigsqcup g(W)$. In either case $\bigsqcup g(W)$ is in T.
Q.E.D.

The following two propositions give some useful additional properties of V.

Proposition 1: If x, y are in V, then either $g(y) \leqslant x$, or $x=y$, or $g(x) \leqslant y$.
Proof: Suppose that $g(y) \notin x$ and $x \neq y$. Then, by (iii), we have $x<y$. Hence $y \notin x$, and, again by (iii), we have $g(x) \leqslant y$.
Q.E.D.

Proposition 2: If $g(x) \notin x$, for every x in $X \backslash\{1\}$, then $\bigsqcup g(V \backslash\{1\})=1$.
Proof: If $\bigsqcup g(V \backslash\{1\}) \neq 1$, then we have $g(\bigsqcup g(V \backslash\{1\})) \leqslant \bigsqcup g(V \backslash\{1\})$, which is impossible.
Q.E.D.
III. Zorn's Lemma We will now use Theorem 1 to prove Zorn's Lemma, in the following form, from the Axiom of Choice.

Zorn's Lemma: Any partially-ordered set K without maximal elements contains an unbounded chain.

Proof: Let X be $\mathrm{P}(K)$, partially-ordered by the inverse of set-theoretic inclusion. Let f be a choice function on K, and let g be the function on $\mathbf{P}(K)$ defined by:

$$
g(T)=\left\{\begin{aligned}
\{x \in K \mid f(T)<x\}, & T \neq \phi \\
\phi, & T=\phi
\end{aligned}\right.
$$

Lemma 1: The function g satisfies condition (i) of Theorem 1.
Proof: Suppose that $g(T) \supseteq U$, where T, U are in $\mathrm{P}(K)$. We wish to show that $g(T) \supseteq g(U)$. This is clearly true if $U=\phi$. If $U \neq \phi$, then by assumption $f(U)$ is in $g(T)$, that is, $f(T)<f(U)$. Consequently we have $g(T) \supseteq g(U)$, by the transitivity and antisymmetry of \leqslant in K. Q.E.D. Now let V represent the sub-family V of $\mathrm{P}(K)$ which is provided by Theorem 1. The following two lemmas complete the proof of Zorn's Lemma.
Lemma 2: $f(\mathcal{V} \backslash\{\phi\})$ is a chain in K.
Proof: This lemma follows immediately from Proposition 1 and the reflexivity of \leqslant in K.
Q.E.D.

Lemma 3: $f(\mathscr{V} \backslash\{\phi\})$ is unbounded.
Proof: Since V satisfies the hypothesis of Proposition 2, we have $\bigcap g(v \backslash$ $\{\phi\})=\phi$. Consequently any upper bound of $f(\mathscr{\tau} \backslash \phi\})$ must be in $f(\vartheta \backslash\{\phi\})$. But for any $T \in \mathscr{V} \backslash\{\phi\}$ we have $g(T)=\phi$, since K has no maximal elements, and consequently we have $f(T)<f(g(T))$. Hence $f(T)$ is not an upper bound for $f(v \backslash\{\phi\})$.
Q.E.D.
IV. Second Form of The Main Theorem In this section and the next a slightly weaker form of the main theorem will be employed. If g is a mapping on a partially-ordered set X for which $x \leqslant g(x)$, for every x in X, then clearly g satisfies condition (i) of Theorem 1. It is also clear by Proposition 1 that the set V of Theorem 1 is totally ordered, if g satisfies this stronger condition.

Lemma 1: If T is a subset of the set V of Theorem 1, then either T has a largest element, or else $\bigsqcup_{g(T)} \leqslant \bigsqcup_{T}$.
Proof: If T has no largest element, then $\bigsqcup_{T} \neq y$, for every y in T. Hence if y is in T, then there is some x in T such that $x \leqslant y$, so $g(y) \leqslant x \leqslant \bigsqcup_{T}$. Consequently we have $\bigsqcup_{g(T)} \leqslant \bigsqcup_{T}$.
Q.E.D.

Lemma 2: If $x \leqslant g(x)$, for every x in X, where g is the function of Theorem 1 , and T is a subset of V, then either \dot{T} has a largest element or else $\bigsqcup^{\prime} g(T)=\bigsqcup_{T}$.
Proof: Clearly we have $\bigsqcup T \leqslant \bigsqcup g(T)$, so Lemma 2 follows immediately from Lemma 1.
Q.E.D.

Corollary: If in Theorem 1 we have $x \leqslant g(x)$,for every x in X, then \bigsqcup_{T} is in V, for any subset T of V.

We may now state the following weaker form of Theorem 1:
Theorem 2: If X is a partially-ordered set in which each subset has a least upper-bound, and g is a function on X such that $x \leqslant g(x)$, for every x in X, then there is a chain V in X such that:
(a) \sqcup_{T} is in V, for every $T \subseteq V$,
(b) $g(V) \subseteq V$.

As a first application of Theorem 2 we will derive a variant of Zorn's Lemma from the Axiom of Choice. First we prove a fixed point theorem.

Theorem 3: Suppose that X is a partially ordered set in which each subset has a least-upper-bound, and that g is a function on X such that $x \leqslant g(x)$, for every $x \in X$. If Y is a subset of X such that:
(a) \bigsqcup_{C} is in Y, for every chain C in Y,
(b) $g(Y) \subseteq Y$,
then there is some y in Y such that $y=g(y)$.
Proof: Consider the element $\bigsqcup(V \cap Y)$ of Y, where V is the set V determined by Theorem 2. Since $V \cap Y$ is a chain in Y, it follows that $g(\square)(V \cap$ $Y)$) is in $V \cap Y$, so we have $g(\square(V \cap Y)) \leqslant \bigsqcup(V \cap Y)$. \quad Q.E.D.

Zorn's Lemma: If X is a partially-ordered set in which each subset has a least-upper-bound, and Y is a non-void subset of X such that \bigsqcup_{C} is in Y, whenever C is a non-void chain in Y, then Y is a maximal element.
Proof: We wish to show that Theorem 4 is a consequence of the Axiom of Choice. Define a function g on X as follows: If x is a non-maximal element of Y, using the Axiom of Choice let $g(x)$ be an element of Y such that $x<$ $g(x)$. Otherwise let $g(x)=x$. It is clear that g satisfies the hypotheses of Theorem 3, and that an element y of Y is maximal in Y if and only if $g(y)=$ y. Consequently the result follows from Theorem 3.
Q.E.D.
V. The Well-Ordering Theorem Theorem 2 will now be used, in conjunction with the Axiom of Choice, to prove the Well-Ordering Theorem. A binary relation on a set S (i.e., a subset of $S \times S$) is said to be a well-order relation on S if it is a total-order relation and every non-void subset of S has a smallest element with respect to it. We will call a binary relation on a set S a quasi-well-order on S if every non-void subset of S has a smallest element with respect to it. Such a relation need not be a partial-order. It follows immediately from the Axiom of Choice that a quasi-well-order can be defined on any set: if f is a choice function on a set S, then the relation
$\bigcup_{\neq T \subseteq S}[\{f(T)\} \times T]$ is clearly a quasi-well-order on S. Our intention is to "shrink" this relation down to one which is both a quasi-well-order and anti-symmetric.

Proposition 3: An anti-symmetric quasi-well-order relation A on a set S is a well-order on S.

Proof: We wish to show that A is a total-order. Since any one-element subset of S has a smallest element, A is reflexive. Since any two-element subset of S has a smallest element, any two elements of S are comparable. Since any three-element subset of S has a smallest element, it follows from the anti-symmetry of A that A is transitive.
Q.E.D.

Well-Ordering Theorem: There is a well-order relation on any set S.
Proof: Let X be $\mathrm{P}(S)$, partially-ordered by the inverse of inclusion. Let f be a choice function on S, and let g be the function on $\mathrm{P}(S)$ defined by:

$$
g(T)=\left\{\begin{aligned}
T \backslash\{f(T)\}, & T \neq \phi \\
\phi, & T=\phi
\end{aligned}\right.
$$

Now let V represent the sub-family V of $\mathrm{P}(S)$ which is provided by Theorem 2, and let $A=\bigcup_{V \in V \backslash\{\phi\}}[\{f(V)\} \times V]$. The following two lemmas complete the proof.

Lemma 1: A is a quasi-well-order on S.
Proof: Suppose that T is a non-void subset of S. We wish to find a W in $v \backslash\{\phi\}$ such that $f(W)$ is in T and $T \subseteq W$. Let W be the intersection of all V in V for which $T \subseteq V$. W is in V, by (a) of Theorem 2. If $f(W)$ were not in T, then we would have $T \subseteq g(W) \subseteq W$, which would contradict the definition of W.
Q.E.D.

Lemma 2: A is anti-symmetric.
Proof: Suppose that $x \leqslant y$ and $y \leqslant x$, for x, y in S. Then there is some V in V such that $x=f(V)$ and y is in V, and there is some W in V such that $y=$ $f(W)$ and x is in W. If $f(V) \neq f(W)$, then $f(V)$ is in $g(W) \backslash g(V)$, and $f(W)$ is in $g(V) \backslash g(W)$, which contradicts the comparability of $g(V)$ and $g(W)$. Hence $x=f(V)=f(W)=y$.
Q.E.D.
VI. Alternate Proof of the Well-Ordering Theorem In this section an additional property of the set V of Theorem 1 will be proved and then used to give a different proof of the Well-Ordering Theorem. For each y in V, let $I_{y}=\{x \in V \mid x \leqslant y\}$.

Lemma: Suppose, in Theorem 1, that $x \leqslant g(x)$, for every x in X. Then I_{y} is well-ordered by \leqslant,for every y in V.

Proof: Let T be the set of all elements y of V for which I_{y} is well-ordered by \leqslant. We wish to show that T is in the family d of Theorem 1 . Let W be an arbitrary subset of T. We wish to show that $I_{\mathbf{L}_{g(W)}}$ is well-ordered. Suppose that M is a non-void subset of $I_{\mathbf{U}(W)}$. If $M=\{\bigsqcup g(W)\}$, then clearly M has a smallest element. Otherwise there is some m in M such
that $<\bigsqcup_{g}(W)$, and, since V is totally-ordered, there must be some y in W such that $m \leqslant y$. Since I_{y} is well-ordered, the set of all elements of M smaller than m is contained in I_{y} and hence has a smallest element. This element is a smallest element for M, since V is totally-ordered. Q.E.D.

Proposition 4: Suppose, in Theorem 1, that $x \leqslant g(x)$, for every x is X. Then V is well-ordered by \leqslant.

Proof: Suppose that M is a non-void subset of V. Let y be an element in M. The set of all elements of M smaller than y is contained in I_{y} and hence has a smallest element, by the lemma. This element is a least element of M.
Q.E.D.

To show that any set S can be well-ordered, we again use the X, f, g, and \mathscr{V} of the proof of the Well-Ordering Theorem in the preceding section. Since $V \backslash\{\phi\}$ is well-ordered, by Proposition 4, it suffices to show that the restriction $f \mid \mathscr{V} \backslash\{\phi\}$ of f to $\mathscr{V} \backslash\{\phi\}$ is a one-to-one correspondence between $v \backslash\{\phi\}$ and S.

Proposition 5: The function f maps $V \backslash\{\phi\}$ into S.
Proof: We will use Proposition 2. Suppose that x is an element of S which is not in $f(\mathscr{V} \backslash\{\phi\})$. Let \mathscr{x} be the family of all sets V of \mathscr{V} such that x is in V. If \mathscr{W} is an arbitrary sub-family of \mathscr{F}, then, since x is not in $f(\mathscr{V} \backslash\{\phi\}), x$ is in $g(V)$, for every V in \mathcal{W}, and consequently x is in $\bigcap g(U)$, so $\bigcap g(U)$ is in \mathscr{K}. Hence $\mathscr{K}=\mathscr{V}$, by the technique of Theorem 1, and we have

$$
x \in \bigcap v \subseteq \bigcap g(v \backslash\{\phi\}) \neq \phi,
$$

which contradicts Proposition 2.
Q.E.D.

Proposition 6: The restriction $f \mid V \backslash\{\phi\}$ of f to $V \backslash\{\phi\}$ is one-to-one.
Proof: Suppose, for V, W in $V \backslash\{\phi\}$, that $f(V)=f(W)$. Then we have $g(V) \nsubseteq$ W and $g(W) \nsupseteq V$, so by (iii) of Theorem 1 we have $V \supseteq V$ and $V \supseteq W$. Hence $V=W$.
Q.E.D.

It is clear that the two well-order relations that have been defined on S, the second being the image under f of the well-order on $\mathscr{V} \backslash\{\phi\}$ are the same.

Columbus, Ohio

