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Extending Intuitionistic Linear Logic

with Knotted Structural Rules

R. HORI, H. ONO, and H. SCHELLINX

Abstract In the present paper, extensions of the intuitionistic linear logic
with knotted structural rules are discussed. Each knotted structural rule is a
rule of inference in sequent calculi of the form: from T,A,... ,A (n times) -• C
infer Γ,A,...9A (k times) -+ C, which is called the (n —• k)-rule. It is a
restricted form of the weakening rule when n< k, and of the contraction rule
when n> k. Our aim is to explore how they behave like (or unlike) the weak-
ening and contraction rules, from both syntactic and semantic point of view.
It is shown that when either n = 1 or k = 1, strong similarities hold between
logics with the (n ~* k) rule and logics with the weakening or the contraction
rule, as for the cut elimination theorems, decidability and undecidability
results and the finite model property.

1 Introduction In the present paper, we will introduce a new kind of struc-
tural rule, called knotted structural rules, and study syntactic and semantical
properties of extensions of the intuitionistic linear logic with knotted structural
rules. Each knotted structural rule is a rule of inference in sequent calculi of the
form:

from Γ,y4,... ,A (n times) -• C infer T,A,... ,A (k times) -> C,

which is called the (n ~» A:)-rule. It is a restricted form of the weakening rule
when n< k9 and of the contraction rule when n> k. Our aim is to explore how
they behave like (or unlike) the weakening and contraction rules. It will be shown
that when either n = 1 or k = 1, strong similarities hold between logics with the
(n ~* k) rule and logics with the weakening or the contraction rule. Therefore
we can get the cut elimination theorems, decidability and undecidability results
and the finite model property for them. On the other hand, we are faced with
great difficulties in the remaining cases, which in the present paper we were not
yet able to overcome.

In the next section, we will introduce our basic systems FL e which is a
sequent calculus for the intuitionistic linear logic as introduced by Girard [4], and
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then we will introduce knotted structural rules. The logic obtained from FLe by
adding the (n ~> k) rule and its implicational fragment will be called FL£k and
BCIJJ, respectively. The cut elimination theorem for these logics will be discussed
in Section 3. It will be shown that the cut elimination theorem holds for BCIJJ
if and only if k = 1. When k = 1 we can show moreover that the cut elimination
theorem holds for the predicate logic FL"k. Next, we introduce the Λ-mingle
rule, which generalizes the mingle rule of Ohnishi and Matsumoto [12]. By
replacing the (1 ~> n) rule with the Λ-mingle rule, we obtain a sequent calculus
equivalent to FLek, for which the cut elimination theorem holds.

We go on to derive some results on decision problems of logics with knot-
ted structural rules by using techniques developed in Meyer [9] and Kiriyama and
Ono [6]. We can extend results in [6] and show that for each n > 2 the proposi-
tional logic FL^ is decidable while its predicate extension is undecidable. On
the other hand, even the predicate logic FL*n is shown to be decidable. In Sec-
tion 5, the finite model property will be discussed. By extending the method
developed by Meyer [10] and Meyer and Ono [11], we will show that the impli-
cational logics BCIΪ and BClJ have the finite model property for each n > 1.

2 Knotted structural rules As our basic system, we will take the sequent cal-
culus FLe for the intuitionistic linear logic introduced in Ono [14],-which is
called also ILLq in Troelstra [19]. The implicational fragment of FLe is com-
monly known as BCI, since the Hilbert-style formal system corresponding to it
can be axiomatized by using axiom schemata which are types of combinators B,
C, and I. For general information on substructural logics including extensions
of FLe, see [4], [13], [14], and [19]. Next, we will introduce new structural rules,
called knotted structural rules, each of which is a restricted form of either the
weakening rule or the contraction rule. We will call the sequent calculus obtained
from BCI (and FLe) by adding the (n ~* k) rule, BCIJ (and FLe

n

k, respectively).
Following [14] we will introduce a sequent calculus FLe for the intuitionis-

tic linear predicate logic. The language <£ of FLe consists of logical constants 0,
1, and ±, logical connectives Λ, V, D, and * (multiplicative conjunction or
fusion) and quantifiers V and 3. Notice that we will follow the notation for the
constants 0 and ± of [14] and [19], which is different from that in [6] and [4].
Sequents in FLe are defined in the same way as those in Gentzen's LJ. But we
will adopt here the multiset notation so as to include the exchange rule implic-
itly. So each sequent is an expression of the form Γ -> B, where Γ is a finite (pos-
sibly empty) multiset of formulas and B is either a formula or empty. Following
usual conventions, we will write Aι,...,An->B when Γ = {A x,.. .,An], and
write also Γ, Δ -• B and A, Γ -• B, instead of Γ U Δ -> B and {A} U Γ -• B, respec-
tively, where U denotes the multiset sum.

Definition 2.1 The sequent calculus FLe for the intuitionistic linear logic
consists of following initial sequents from 1 to 4;

1. A-+A
2. JL,Γ^C
3. - 1
4. 0 ^ ,



INTUITIONISTIC LINEAR LOGIC 221

and of the following rules of inference,

cut rule:

Γ-+A A,A->C
Γ,Δ-»C

rules for logical constants:

(Ow)

rules for logical connectives:

ADB,T,A-+C

T-+A vB

A9T->C £,Γ->C
(vL)

T->AΛB

(AL\)
AΛB,T-+C

T - A A - B

 {*R)

rules for quantifiers:

(VΛ)

Here, Γ and Δ are finite (possibly empty) multisets of formulas. Also, t is any
term, and a is any variable satisfying the eigenvariable condition, that is, a does
not occur in the lower sequent of (1L) and (Vi?)

It is easy to see that LJ is equivalent to the system which is obtained from
FLe by adding the following weakening and contraction rules.

Γ-*C A A Γ -• C
— - — - (weakening) —— (contraction).

Sequent calculi FL e w and FL^ are defined to be systems obtained from FLe

by adding the weakening rule and the contraction rule, respectively. The sub-
scripts e, w, and c denote exchange, weakening, and contraction, respectively.
(Recall that the exchange rule is implicitly included in all of our systems.)
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Next, we will introduce implicational fragments of these logics. In this case,
our language consists only of the implication D. Then, the sequent calculus BCI
for the implicational linear logic is a system whose initial sequents are sequents
of the form A -> A, and whose rules of inference consist of the cut and rules
for D. Sequent calculi BCK, BCIW, and LJD are obtained from BCI by adding
the weakening rule, the contraction rule, and both the weakening and contrac-
tion rules, respectively.

As is well known, the cut elimination theorem holds for any of LJ, FL e w,
FLec, and FLe (see for example Ono and Komori [15] and [13]). Therefore, they
are conservative extensions of LJD, BCK, BCIW, and BCI, respectively. In the
following, we will sometimes identify a given sequent calculus with the logic
determined by it, i.e., the set of all sequents provable in it, when no confusions
will occur.

Next we will introduce (n ~> k) rules which are restricted forms of the weak-
ening or the contraction rule. They are called collectively knotted structural rules.
In the following, sometimes the multiset consisting only of n copies of a formula
A is denoted by An and the multiset sum of n copies of the multiset Γ by ΓΛ. To
abbreviate parentheses in formulas, we will sometimes follow the convention
that D associates to the right, and moreover we will abbreviate a formula

AD AD A D B to An D B.

Definition 2.2 Let (n, k) be any pair of natural numbers n and k such that
n Φ k and k > 0. Then the (n ~» k) rule is the rule of inference defined as
follows:

A9...9AfΓ-+C

It is obvious that the (n ~> n) rule is redundant for any n. Also, the logic BCI
with the (n ~* 0) rule becomes odd when n > 0. For, the formula (pn Dp) Dp,
which is not provable even in LK, becomes provable in BCI with the (n ~> 0)
rule. Thus we have excluded these cases in the above definition.

Clearly, the (0 ~>1) rule and the (2 ~* 1) rule are exactly the weakening rule
and the contraction rule, respectively. Also, it is obvious that the (n ~* k) rule
can be derived from the weakening when n < k and from the contraction rule
when n > k > 0.

In this paper, we will discuss mainly extensions of BCI or FLe obtained
from them by adding some (n ~> k) rules. BCIJJ and BCIJJn are sequent calculi
obtained from BCI by adding the (n ^ k) rule, and adding both (ΛΪ —• ΛΓ) and
(k~> n) rules, respectively. FL"k and FL"^ are defined likewise.

We can define also BCKg and FL£Wk for n > k > 0, and BCIW£ and FL£Ck

for n< k. Then it is easily shown that when n > k > 0 the (n~^> k) rule is deriv-
able from the (k + 1 ~»k) rule and vice versa in the presence of the weakening
rule, and when n < k it is derivable from the (n~^ n+ 1) rule and vice versa in
the presence of the contraction rule. Therefore, it suffices to consider only
BCK£+1 (and F L ^ 1 ) for each k > 0 and BCIW;+1 (and FL£n+1) for each n.
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3 Cut elimination As we have mentioned already in the previous section,
the cut elimination theorem holds for most standard sequent calculi for exten-
sions of the intuitionistic linear logic like FLe, FLe w, FL,*, and LJ. On the other
hand, we will show in this section that the cut elimination theorem does not hold
for most sequent calculi with knotted structural rules introduced in the previous
section. Of course, this does not mean that they cannot be formalized by sequent
calculi for which the cut elimination theorem holds.

In the following, we will show that the cut elimination theorem holds for
BCIJJ if and only if k = 1. In fact, when k = 1 the cut elimination theorem holds
even for the predicate logic FL£. From this, it follows that FL£ is a conserva-
tive extension of BCI", for which the cut elimination theorem holds.

Though the cut elimination theorem fails for FLen, we will be able to intro-
duce sequent calculi FL£* and FL*^n, which are equivalent to FL*n and FL*^,
respectively. That is, for any sequent 5, S is provable in FL£| (and FL*^n) if
and only if it is provable in FL*n (and FL*^, respectively). Then we will show
the cut elimination theorem for both FL*^ and FLJ*".

First, we will show the following theorem.

Theorem 3.1 The cut elimination theorem holds for BCIE if and only ifk = 1.

Proof: We will give here only a proof of the only-if part of our theorem. A
stronger form of the if-part will be shown in Theorem 3.4. To show the only-if
part, it is enough to give a sequent which is provable in BCIJ but is not prov-
able in BCIS without cut. The following sequent S(n,k) is a uniform counter-
example, in which /?, q9 r, and s are distinct propositional variables;

r,p D(rD g)9(P D q)k~l,(p Dq)nDs-+s.

First we show that the above sequent S(n,k) can be proved in BCIJJ:

P 3 Q-*P 3 Q s~*s

q-*q pDq-+pD q p D q9 (pD q) D s-> s
(L)

p-*p

P,r,p D

r~

r9

(r

r:

D

" q

lq~ >q

>q (pD q),(P Dq)Dss

r,pD (rPq)->pDq (p D q)k,(pD q)n D s-> s

r,pD(rDq)ΛpDq)k-ιΛpDq)nDs^s

Next we will show that S(n,k) is not provable in BCI£ without cut, when
k>\. Suppose that there exists a cut-free proof P of S(n,k). Let /be the last
rule applied in P. Since k > 1 and no formula appears k times in S(n,k),Jcan-
not be the (n ~> k) rule. Thus, /must be ( D l ) . We note here that no sequent
of the form Σ -• p is provable in BCIJ where Σ consists of formulas among
r,p D (r D q),p D q and (p D q)n D s9 as it is not a tautological sequent, i.e.,
a sequent provable in LK. Therefore, the left upper sequent of /must be of the
form Σ -*p D q. By a similar argument, we can show moreover that Σ is either
pD q oτ r9pD (rD q), and hence the right upper sequent of /becomes either

r,p D (r D q)9(p D q)k~2Λp D q)n~l Ds-+s9
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or

Next we consider the upper sequents of this sequent and repeat this. Then we can
conclude that in general, either

r9p D(rD q),(p D q)k~m~ιΛp D q)n~m D s->s,

or

(pDq)k-m,(pDq)"-m^s^s

must be provable in BCIjJ. Finally, we have that

(pDq)"-kDs-+s

must be provable in BCIjJ when n > k and that either

r,pD (rDq),(pDq)k~n~ι,s-+s

or

must be provable in BCIϊJ when k > n. But neither of them is provable in
Thus, we have a contradiction.

Note that the sequent S(n,k) is provable without cut in BCIJJ when k = 1.
In fact, by applying (D L) n times, the sequent

r\(p D(rD q))n,(p Dq)nDs-+s

is provable. Then, by the (n ~» 1) rule, we have

r,pD (rDq),(pDq)nDs-+s.

(In Prijatelj [17], the classical linear logic with the weakening rule and the (n +
1 ~* n) rule is studied. It is shown that the cut elimination theorem fails for it.
Dosen pointed out that by modifying slightly the counterexample given there,
we can generate another counterexample for BCI5+1 (by a personal communi-
cation).)

Next we will show that the cut elimination theorem holds for the predicate
logic FL£ for each n > 0. When n = 0, FL£ is nothing but FL e w, and the cut
elimination theorem for FLe w was shown in [15]. So we assume n > 2 in the fol-
lowing. First we will prove the cut elimination theorem for BCI" by introduc-
ing the multi-cut rule instead of the mix rule. Then, we will prove the cut
elimination theorem for FL"t by modifying the multi-cut rule.

Definition 3.2 The multi-cut rule is a rule of inference of the following form:

Δ*[ΓZ4]-C "

Here, Δ must contain at least one occurrence of A, and Δ*[ΓZ4] is a multiset
obtained from Δ by replacing Am by the multiset Ym for some m > 0. The for-
mula A is called the multi-cut formula of the above multi-cut rule.
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For example, let Δ be a multiset A,A,A9H. Then, the following is an appli-
cation of the multi-cut rule:

Clearly, the cut rule is a special case of the multi-cut rule. Conversely, each
application of the multi-cut rule can be replaced by repeated applications of the
cut rule.

Theorem 3.3 The cut elimination theorem holds for BCI" for each n>2.

Proof: It is enough to show the following statement:

(1) If P is a proof figure of a sequent 5 containing only one multi-cut rule
which occurs as the last inference of P, then S is provable without the
multi-cut rule.

We will define the grade and the rank of a given application of the multi-cut rule
as follows:

1. The grade is the number of logical connectives occurring in the multi-cut
formula.

2. The rank is the total number of sequents occurring in the proof figure over
the lower sequent of the multi-cut rule.

The grade and the rank of a given proof figure P are defined by the grade and
the rank of the application of the multi-cut rule which is the last inference of P.
We will prove (1) by using double induction on the grade and the rank of P. More
precisely, we assume that any application of the multi-cut rule can be eliminated
if either its grade is smaller than the grade of P, or its grade is the same as the
grade of P but its rank is smaller than the rank of P. It suffices to consider the
following four cases according to the inference rule applied just before the appli-
cation of the multi-cut rule;

1. either Γ -> A or Δ -• C is an initial sequent,

2. either Γ -> A or Δ -• C is a lower sequent of the (n ~> 1) rule,

3. both Γ ->A and Δ -* C are lower sequents of some logical rules such that
principal formulas of both rules are just the multi-cut formula,

4. either Γ-*v4orΔ->Cisa lower sequent of a logical rule except Case 3.

We will give here a proof for Cases 2 and 3.

Case 2. The case where Δ -• C is a lower sequent of (n <—> 1) rule is essential.
Then it will be of the following form, where Δ is A,II;

(multi-cut).
C

Then, this can be transformed into
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T-+A A",Π^C , , . x

(multi-cut)
Γ",lΓ[Γ/i4]-> C '

(n ~^> 1)

Γ,Π*[Γ/4]->C

The rank of the application of the multi-cut rule in the above is smaller than that
of P. So, it can be eliminated by the hypothesis of induction.

Case 3. We can suppose that Γ -> A and Δ -+ C are lower sequents of (D R) and
(D L), respectively. So, it will be of the following form:

— (multi-cut).
[L/Λ Ό tS\-+C

Then this can be transformed into

Σ-+A DB UY-^A , x

(a)
Uΐ[Σ/ADB]-+A A,Σ-*B Σ^ADB B,U2^C^

\b) : (c)
B,U*2[Σ/A D B] -» C *
Γ^;—z=, (rf)

In this proof, every rule from (a) to (d) is multi-cut, and the ranks of both (a)
and (c) are smaller than that of P. Also, the grades of both (b) and (d) are smaller
than that of P. So, they can be eliminated by the hypothesis of induction. Notice
that when AD B does not appear in Uι (and Π2), we must omit the application
(a) (and (c), respectively).

Next we will extend the above result to FL^. For the propositional logic
FLe1? the proof goes quite similarly to that of BCIJ, which we have just shown
in the above. On the other hand, for the predicate logic the eigenvariable con-
dition causes some difficulties. To overcome them, we will modify the multi-cut
rule in the following form:

T->A Δ->C , , . x(multi-cut).
Δ*[Γ#Z4]-C

Here, we will give some explanations on the notation Δ*[Γ#Z4]. Let au... ,ak

be variables (not necessary all the variables) which appear in Γ but do not appear
in A. Suppose that A occurs at least m times in Δ. Take arbitrary m variables
b{9.. .,bι

m for each / = 1, . . . , £ , which are not necessarily mutually distinct. For
eachy < m, let Γy be a multiset obtained from Γ by replacing every free occur-
rence of Qj by the variable bj for each / = 1,...,/: in each formula in Γ. Then,
Δ*[Γ#Z4] is the multiset obtained from Δ by replacing Amby the multiset sum
o f Γ ! , . . . , Γ w .

To make our idea clearer, we will consider an example. Let Γ be a multiset
B(a)9U where the free variable a occurs neither in Π nor in a formula A, and
let Δ be a multiset A3,Σ. We will replace two of these A's in Δ, for instance. So,
by taking two variables b\ and b2, Γz becomes B(bi),Π for / = 1,2. Thus, we
have the following application of modified multi-cut rule:
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B(a)9U-+A A\Σ->C f . . ^
2 (multi-cut).

It can easily be shown that modified, the multi-cut rule is a derived rule of
FL" j 5 since Tj -+ A is provable for each j = 1,..., m.

Using this modified multi-cut rule, we will show (1) for the present case.
Now, the following case is essential:

Δ->C

We assume here that Am in Δ will be replaced by the above multi-cut. So sup-
pose that Δ is Am,Σ and A*[(lxB{x),Tγ/A] is lxB1 (x),Tu - ,lxBm(x),TmiΣ,
where 3xBi(x)9Ti is the multiset obtained from 3xB(x),T by some substitution
of variables for each /. Now take distinct, new m variables b\,..., bm. Then, we
will have the following:

^ A Δ - » C

Bi(bi),

3Λ#i(*)

Γi, B2(b2),

,B2(b2)

Γ2,

,r2 )

..,Bm(bm),

...,Bm(bm)

•

Γ m , Σ -

»Γm,Σ-

3xBι (x)9Γl9... ,3x£m(x),Γm,Σ -> C

Clearly, the last sequent is equal to Δ*[(3X5(Λ:),Γ)#Z4] -> C.
Thus we have the following result.

Theorem 3.4 7%e cut elimination theorem holds for the predicate logic ^
for each n>2.

As shown in the next theorem, we can obtain similar results to Theorem 3.1
for extensions of both BCK and BCIW by using the same counterexample in
Theorem 3.1. Notice here that both BCKf and BCIW? are nothing but LJ D .
(The second author learned in 1985 from Wroήski that Doδen gave a counter-
example of the cut elimination theorem for BCK£+1 when k > 1. In fact, his
counterexample is the same as Prijateli's in [17] (according to a recent personal
communication from Doδen), see also Palasiήski and Wroήski [16], p. 89. Ques-
tion 3 of [16], which is closely related to the subjects of the present paper, seems
to remain unanswered.)

Theorem 3.5 (1) The cut elimination theorem holds for BCK£+1 if and only if
k=l. (2) The cut elimination theorem holds for BCIW;+1 if and only ifn = 0.

As we have shown in Theorem 3.1, the cut elimination theorem fails for
BClJ, and a fortiori for FLen. In the following, we will introduce a new rule of
inference, called the n-mingle rule, and will show that the cut elimination theo-
rem holds for the sequent calculus FL*^ obtained from FLe by adding the n-
mingle, which is equivalent to Fl4n.

Definition 3.6 For each n > 2, the Λ-mingle is a rule of inference of the fol-
lowing form:
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When n = 2, the w-mingle rule is essentially the same as the mingle rule intro-
duced by [12]. (More precisely, the original form of mingle rule in [12] is just
the weak 2-mingle rule mentioned below in the proof of Theorem 3.8, see also
Doδen [1].) Let FL£* be the sequent calculus obtained from FLe be adding the
Λ-mingle. We will show the following.

Theorem 3.7 The predicate logic FL£* is equivalent to FL*n.

Proof: To show that the (1 ~> n) rule is derivable in FL**, we assume that
A, A -> C is provable. Then,

Hence, An,A -• C is also provable. Conversely, suppose that ΓZ,Δ -+ C is prov-
able for each i= 1,...,«. Suppose that Δ is the multiset {Bχ9... ,Bm} and D is
the formula B\ D DBmDC. Then Γ, -*> D is also provable. Now we have the
following proof figure (in FL*^):

D-+D

Thus, Yu . . . ,ΓΛ,Δ -> C is provable.
Next we will show the following.

Theorem 3.8 The cut elimination theorem holds for the predicate logic
FL** for each n>2.

Proof: By using the standard technique, we can show our theorem. Here we will
eliminate each cut (not mix) in a given proof figure. In the following, we will
show this only where the left side of the upper sequent in a given application of
the cut rule is a consequence of the Λ-mingle; i.e., it is of the following form:

— τΓ~Γ—7;— (n-mιngle)

" ' „—ΓT; ^ ! (cut).

Then, this can be transformed into the following:

The rank of every application of cut in the new proof figure is smaller than that
of the former one. Therefore, these applications of cut can be eliminated.
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The predicate logic FI*^ can be treated in the same way. Let FL*^n be the
sequent calculus obtained from FL** by adding the (n ~> 1) rule. In this case,
we can replace fl-mingle rule by the following weak n-mingle, due to the pres-
ence of the (n ~» 1) rule:

Γ —» C Γ ) (2
— (weak n-mingle).

Γi, ,ΓΛ -» C

In fact, from this Λ-mingle rule can be derived by the help of the (n ~> 1) rule,
as the following proof figure shows:

Γl9A-+C- Γn9A-+C , . . . .
— — — — — — (weak n-mingle)

(/? —^ 1)

Γl9...9Γn9A-+C .

Quite similarly to Theorems 3.7 and 3.8, we have the following theorem. This
time we will eliminate multi-cut instead of cut, as in Theorem 3.4.

Theorem 3.9 (1) The predicate logic FL*^11 is equivalent to F L ^ . (2) The
cut elimination theorem holds for the predicate logic FL*^n for each n>2.

4 Decision problems As corollaries of results in the previous section, we can
derive some decidability and undecidability results on extensions of the intuition-
istic linear logic with knotted structural rules discussed so far.

In the following, we will show that propositional logics FL£ and F L ^ are
decidable. From results in Komori [7] and [6], we know that the existence of the
contraction rule is essential in decision problems of predicate logics. In fact, it
is shown that predicate logics FLe and FL e w, neither of which has the contrac-
tion rule, are decidable, while FLec and LJ which have the contraction rule are
undecidable. So it will be interesting to see what will happen when a predicate
logic has the (n —> 1) rule which is a weak form of the contraction rule. We will
show that the predicate logic FL^ is undecidable, by using the same translation
introduced in [6]. In contrast to this, we will show that the predicate logic FL*n

is decidable even when our language contains function symbols.
These results can be proved essentially in the same way as in [6]. So we will

assume familiarity with [6] and will give only a sketch of their proofs. (The details
of proofs were described in Hori [5].)

First, we will show that the propositional logic FL^ is decidable. This can
be proved similarly to the decidability of the propositional logic FLe c, i.e.,
FLe1? in [6], where a modification of Kripke's method in [8] plays an impor-
tant role. (For Kripke's method, see Dunn [2]. After the publication of [6], the
second author, who is also one of authors of [6], learned from Meyer that a
similar result had already been obtained by him in his dissertation [9]. In fact,
quite similarly to the proof given in [6], he proved that the sequent calculus LR,
which is obtained from Gentzen's LK by deleting the weakening rule, is
decidable.)

Similarly to FL4C in [6], we can introduce a sequent calculus FL^, which is
equivalent to FL^, but which has neither the cut rule nor the explicit (n ~> 1)
rule. In FI4", each (n ~> 1) rule is incorporated into each logical rule instead.
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A sequent S' is called an (n ~> 1)-contract of a sequent 5 if S' is obtained
from S by some (possibly no) applications of the (n ~• 1) rule. We say a branch
in a given proof figure of FL^ is said to be redundant if there exist sequents Sx

and S2 in the branch such that (1) S2 is below Sλ and (2) S2 is an (« ~» 1)-
contract of Si. Then we can show that if a sequent 5 is provable in FL£ then
there exists a proof figure of S containing no redundant branches. In fact, this
can be proved by using Curry's lemma (see for example [2]).

We say two sequents Γ -> A and Δ -> A are cognate if every formula in Γ
appears in Δ and vice versa, i.e., if Γ is equal to Δ as sets. Suppose that an
(ordered) sequence Λί of sequents is given in which any of two sequents are cog-
nate. Then we can show by using Kripke's lemma (see [2]) that % is finite when-
ever Tl is not redundant. Thus, any branch of a decomposition-tree (or a
proof-search tree) in FL4" having no redundant branches is finite, by Kόnig's
lemma. Hence, we have the following.

Theorem 4.1 The propositional logic FL^ is decidablefor each n>2.

Next we will show the decidability of the propositional logic FL*^. This
follows from Theorem 3.9 by using a method similar to Gentzen's original proof
of the decidability of both LK and LJ (see [3]).

In the following we will consider proof figures in FL**". For each k > 0 we
say that a sequent S is k-reduced, if each formula occurs at most k times in the
antecedent of S. For each sequent 5, we can obtain effectively (n — 1)-reduced
sequent Sf such that S is provable in FL*n\

n if and only if S" is provable in it, by
applying the (n ~> 1) rule or the Λ-mingle rule.

We will first show the following.

Lemma 4.2 If an n(n - 1)-reduced sequent S is provable in FL**" thenequent S is provable in FL**"
there exists a cut-free proof of S in FL*^n consisting only ofn(n- I)-reduced
sequents, each of which contains only subformulas of formulas in S.

Proof: Suppose that ann(n — 1)-reduced sequent 5 is provable in FL*^n. Then
there exists a cut-free proof figure P of S by Theorem 3.9. It is clear that P sat-
isfies the subformula property. Inserting an appropriate number of applications
of the (n ~* 1) rule, we can transform P into another proof figure P' of S in
which each upper sequent of an application of rules in P' except the (n ~-> 1)
rule is (n - l)-reduced. Then it can be assured that its lower sequent is n(n - 1)-
reduced. (It may happen that some formulas appear n(n - 1) times in the ante-
cedent of the lower sequent by an application of the fl-mingle rule.) Moreover,
every initial sequent of P' is 1-reduced, or can be changed into an (n - 1)-
reduced one by eliminating consecutive applications of the (n —> 1) rule under
it if it is of the form J_,Γ -> C. Let P* be the proof figure thus obtained from
P r . Clearly, it satisfies the required property in the above lemma.

Now suppose that a sequent So is given. Let S be the (n - 1)-reduced
sequent obtained effectively from So. By Lemma 4.2, S is provable in FL*^n if
and only if there exists a cut-free proof figure of S in FL*^n consisting only of
n(n - 1)-reduced sequents, each of which contains only subformulas of formu-
las in S. So it suffices to consider the decomposition-tree T of 5 which consists
only of n(n - 1)-reduced sequents, each of which contains only subformulas of
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formulas in S. Clearly, T is finite. Therefore, we can decide whether S is prov-
able in FL*^" or not.

Theorem 4.3 The propositional logic FL*^ is decidable for each n>2.

We will show next the undecidability of the predicate logic FL£. In fact, we
will show a stronger undecidability result of the next theorem. In the following,
we will take the language <£' which is obtained from £ by eliminating constants
±,1 and the logical symbol *. For a while we will consider predicate logics

restricted to this language <£'.
Let Li and L2 be predicate logics. If every sequent provable in Lj is also

provable in L2 then we will write it as Lj c: L2.

Theorem 4.4 Any predicate logic L such that FL£ 9 L c LJ w undecidable.

The proof is quite similar to that of the undecidability of FLec in [6]. There,
a sequent calculus IL for the intuitionistic predicate logic is introduced, which
does not have the weakening rule but has initial sequents of the form instead;

1. Σ,A->A9

2. Σ,0->,

where A is an atomic formula and Σ is an arbitrary multiset of formulas.
We will take an arbitrary sequent Γ -+A of £'. Let (P be the set of all predi-

cate symbols appearing in Γ -• A and let Φ be the set of all formulas consisting
only of predicate symbols in (P. We say that a sequent Δ -> C is in Φ, whenever
every formula appearing in this sequent belongs to Φ. We define a formula Γas
follows:

T= Λ Vx(P( jc)DPW)Λ(0D0),
Pec?

where x is a sequence of m distinct variables when P is an ra-ary predicate sym-
bol. For any formula B in Φ, define formulas \B\~ and \B\ + as follows:

1. \B\~ = BΛ T, \B\+ = BVO if B is atomic,

2. | C D £ > | - = ( | C | + D | £ > | - ) Λ 7 ; \CDD\+ = (\C\' D \D\+) vO,

3. | C £ > | - = ( | C | - | D | - ) Λ Γ , \C°D\+ = (\C\ + \D\+) vO

for o G {V,Λ},

4. \QXC\- = QX\C\-ΛT9 \QXC\+ = QX\C\+V0 f o r g e {3,V}.

Then, the following is proved in [6].

Theorem 4.5 For any sequent Δ -* C in Φ, Δ -* C is provable in IL if and only

if\A\~-+ \C\+ is provable in F L e c , where | Δ | ~ is \Bλ\~,... ,\Bm\~ when A is

^l> >^m

Next we will show the following.

Lemma 4.6 For any sequent A-+CinΦ,ifA^>Cis provable in FL^ then
Tm,A -+ C is also provable in it for any m > 0.

Proof: Suppose that Q is a proof figure of Δ -> C in FL^. We may assume
that Q is cut-free by Theorem 3.4. Then we can show our lemma by induction
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on the length of Q. When Δ -> C is an initial sequent, it is of the form either
P(x) -> P(x) for P G (P, or 0 -+. In either case, we can show that Tm, Δ -* C is
provable in FL£ quite similarly to the proof of Lemma 3.6 of [6]. In other
cases, our lemma follows immediately from the hypothesis of induction.

Using Theorem 4.5 and Lemma 4.6, we have the following.

Theorem 4.7 For any sequent A-+C inΦ and any n > 2, Δ -> C is provable
in IL if and only tf\A\~-+ \C\+ is provable in

Proof: This can be proved just as Theorem 4.5, where our claim is shown to
hold for n = 2. The if-part is obvious since FLĴ  <Ξ FLec holds. To show the
converse direction, it is enough to check the case where Δ -> C is a lower sequent
of the contraction rule. Thus, it is of the following form, where Δ is B,U:

B9B9U-+C

B,n->c '
By the hypothesis of induction, \B\~, \B\~, | Π | ~ -* C is provable in FL^.
Notice that \B\~ is of the form Bf A T for some formula B' G Φ. By using
Lemma 4.6,

is also provable. Then we have

T h e last s e q u e n t is ( | 5 | ~ ) W , | Π | ~ -> | C | + . S o , a p p l y i n g t h e (n~» 1 ) , w e h a v e

| Λ | - | Π | - - . | C | + .

Corollary 4.8 Let L be any predicate logic such that FL^ c L ς L J for
some n. Then, for any sequent Γ-+A of '£', Γ - M is provable in IL //*αra/ OΛ/y
if I Γ| ~ -• |^41+ is provable in L.

Proof: The if-part is trivial since both formulas 151 ~ = B and | B | + Ξ ̂  are
provable in IL. Conversely, if Γ -*A is provable in IL then | Γ| ~ -> \A \+ is prov-
able in FL^ by Theorem 4.7, and hence it is provable in L.

From this corollary, Theorem 4.4 follows by using the undecidability of the
intuitionistic predicate logic. The proof of Theorem 4.7 will suggest also the fol-
lowing result.

Corollary 4.9 FLe is not equivalent to the intersection of FL"t for n>2.
More precisely, there exists a sequent which is provable in FL^ for every n>2,
but is not provable in FLe.

Proof: Let/? and q be propositional variables, and/?* be the formula/?Λ (/? Dp).
Then, the following sequent is an example of sequents satisfying the required
property;

/?*,/?* D/?*D q^q.
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In contrast to Theorem 4.4, we can derive the following result by using Theo-
rem 3.8. This can be proved almost in the same way as Theorem 4.5 of [6].

Theorem 4.10 The predicate logic FL*n (with function symbols) is decid-
ablefor each n>2.

5 Finite model property In [11] Meyer and the second author proved the
finite model property of the implicational logic BCK by using the same method
as Meyer employed to prove the finite model property of BCIW in [10].

In this section, we will generalize the method and will show the finite model
property of BCI", BClJ, and BClJ" for each n > 2. In the following discussions,
it may be more convenient for readers to consider the system BCI (and BCI?)
with ^-mingle rule, instead of BClJ (and BCliΐ, respectively). As mentioned in
Section 3, the former is equivalent to the latter.

According to [11], BCl-structures are defined as follows.

Definition 5.1 A pair <M, < > is called a BCI-structure, if M = <M, , 1> is a
commutative monoid with unity 1, and < is a binary relation on M satisfying that
for any element x,y,z^ M, x<y implies x-z ^ y z. A valuation N on a BCI-
structure <M, < > is a binary relation between elements of M and propositional
variables which satisfies

xYp and x < y imply y \=p.

A triple <M,<>> with a BCI-structure <M,<> and its valuation 1= is called a
BCI-model.

When the set M is finite, <M,<) is said to be a finite BCI-structure and
<M ,<,!=> a finite BCI-model. Each valuation N on <M,<> can be extended to a
relation between elements of M and formulas by

x \= A D B if and only if for any y (Ξ M, y V A implies x-y 1= B.

By using induction, we can show that for any formula A,

x 1= A and x < y imply y 1= A.

A formula A is true in a BCI-model <M,<,I=> if 1 1= A holds. Also, a
sequent Bu . . . ,Bm -• C is true in a BCI-model <M,<,I=> if the formula Bx D
• D Bm D C is true in it. Notice here that the sequent Bx,... ,Bm -• C is prov-
able in BCI if and only if the sequent -> Bx D D Bm D C is provable in it.

We say a BCI-structure <M,<> is a BCK-structure if it satisfies 1 < x for
any x e M, and is a BCIW-structure if it satisfies x-x < x for any J C G M . BCK-
models and BCIW-models are defined similarly to BCI-models. In [10] and [11],
the following was proved. (In this paper we will discuss mainly BCI-models, not
BCI-structures, since we will put some restrictions on valuations as shown in the
definition below.)

Theorem 5.2 Both BCK and BCIW have the finite model property. That is,
for any sequent Γ -> A, Γ -• A is provable in BCK (and BCIW) if and only if it
is true in any finite BCK-model (and any finite BCIW-model, respectively).
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We will define next BCIΪ-, BClJ-, and BClJϊ-models by modifying the def-
inition of BCI-models.

Definition 5.3 Let < M , < » be a BCI-model. Then
n

1. it is a BCI"-model, if <M,<> is a BCI"-structure, i.e., xn(= x x) < x
for each x G M;

2. it is a BClJ-model, if 1= satisfies the following condition (2);

(2) x v u ¥ p 9 . . . , x n - u \=p i m p l y x ι ••• x n u \=p f o r a n y x u . . . , * „ ,
u G M and any propositional variable p;

3. it is a BClJi-model, if it is a BCI"-model and at the same time is a BClJ-
model.

We remark here that in any BCl!"-model the condition (2) can be replaced
by the following condition (3):

(3) Xι f= p,... ,xn Yp imply xx xn Yp.

By using induction, (2) above can be extended to all formulas, i.e., in each
BClJ -model

(4) JCI u 1= A,... ,xn u 1= A imply xx xn u 1= ̂ 4 for any JCI, . . . 9xn, u G M
and any formula A.

Next, we will show the completeness theorem for logics BCI" and BClJ with
respect to models defined above. It is easy to see the following soundness results.

Lemma 5.4 (1) For any sequent T-*A,ifT-+Ais provable in BCI" then it
is true in any BCl\-model. (2) For any sequent T-+A,ifT-+Ais provable in

l i then it is true in any BCl^-model.

Notice that the condition xn < x and (4) of BCli-models are necessary to
validate the (n ~> 1) rule and the Λ-mingle rule (or equivalently, the (1 ~» n)
rule), respectively. Like the definition of BCI"-models, one may have an idea
of defining a BClJ-structure to be a BCI-structure satisfying x < xn. But sound-
ness fails for this semantics.

Similarly to Lemma 3 of [11], we can show the converse of the above lemma
in a strong form. Let Nm be the set of all w-dimensional vectors, all of whose
components are non-negative jntegers. Clearly, N m = <7VW,+,0> forms a com-
mutative monoid with unity 0 (=<0,.. . ,0», where + is vector addition. We
will define binary relations |" and \ι

n on natural numbers as follows.

Definition 5.5 The binary relation |" on natural numbers is defined by the
condition that for any natural number x and y,

x\"y if and only if (1) x = y9 or (2) 1 < y < x and x = y {modn — 1).

The relation |^ is the inverse of the relation |", i.e., x\ι

ny if and only if y\*[x.

We will extend the relations |" and | * to those on Nm by
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1. for any x = (xu.. .,xm) and y = {yu.. .,ym> inNm, x\"yif and only
if Xj I "yj for each /,

2. * | * j i f and only if y\"x.

Now we will show the following.

Theorem 5.6 (1) If a sequent Γ -> A is not provable in BCI" then it is not
true in some BCVl-model <Nm, | ", l=). (2) If a sequent Γ ->A is not provable in
BClJ then it is not true in some BCl\-model ( N m , | *, H).

Proof: Our theorem can be shown in the same way as Lemmas 3 and 10 of [11].
So we will give here only a sketch of the proof. First we will consider the case
of BCIΪ. Suppose that Γ -• A is not provable in BCIΪ. Let Γ = {Bu . . . ,Bm]
and let F be the formula B{D...D BmDA. Also, let Ψ = [Dγ,... ,Dm} be the
set of all subformulas of F and K be the set of all finite multisets with elements
in Ψ. Then, a multiset Δ E K is denoted by Δ = [DΪ\... ,D^m}9 where
&!,..., km are the multiplicity of D\,... ,Z>W in Δ, respectively. So this Δ can
be unambiguously represented by a m-dimensional vector v = <&i,... ,km) in
7VW. In this case, we say that v represents a multiset Δ. Clearly, 0 represents the
empty set, 0 . Now, define a binary relation |^ on K as follows:

Δ | "Σ if and only if for an arbitrary formula C, the sequent Σ -* C is ob-
tained from Δ -• C by some (possibly no) applications of the (ΛI —̂  1) rule.

Then it can be easily shown that if v and w represent Δ and Σ, respectively,
then v + w represents the multiset sum Δ U Σ, and it holds that v\"w if and
only if Δ | " Σ . We can show that K = <^Γ,U,0> is a commutative monoid with
unity 0 . Let An be the multiset sum of n Δs. Then, it is obvious that ΔΛ |"Δ
holds. Thus, (K, I") is a BCI™-structure which is isomorphic to ( N m , | " ) .

We will define a valuation N on <Nm, | " ) by the condition that for any
v E Nm and any propositional variable p E Ψ,

(5) v H/7 if and only if Δ -•/? is provable in BCIJ,

where Δ is a multiset represented by v. In fact, we can assume that 1= satisfies
the condition (1) of valuations. Using induction, we can show that for any
v E Nm and any formula B E Ψ,

(6) v N B if and only if Δ -> B is provable in BCIJ.

As a consequence, we have that 0 ΨFsince the sequent ->F, i.e., 0 ->Fis not
provable in BCI", by our assumption.

As for BClJ, the proof proceeds almost in the same way as the above. We
will define a binary relation | * on K by

Δ|^Σif andonlyif Σ|jΔ.

Then we can show that (K, |^) is a BCI-structure which is isomorphic to
( N m , | ^ ) . Of course, in the present case the valuation f= on ( N m , |^) is defined
by the condition that for any v E Nm and any propositional variable p E Ψ,

(50 v \=p if and only if Δ ->p is provable in BClJ,



236 R. HORI, H. ONO, and H. SCHELLINX

where Δ is a multiset represented by v. This time, it is necessary to show that 1=
also satisfies condition (2) of valuations, which will be of the following form:

(7) V\ + u 1= p,..., υn + ύ Yp implies v\ + + vn + ύ ¥p.

Suppose that ΰ\9..., vn and ύ represent multisets Δ 1 ? . . . ,Δn and Σ, respec-
tively. To show (7) it suffices to show that

(8) if Δ/, Σ ->/? is provable in BClJ for each /, then Δi , . . . ,Δrt, Σ ->p is also
provable in it.

But (8) follows immediately from the Λ-mingle rule. Thus we have shown our
theorem.

We will make some preparations for constructing finite BCI"- and BClJ-
models from models of the form (N m , |") and (N m , | ^ ) , respectively.

By mod (a, b), we mean the remainder of a when divided by b. Let R and n
be natural numbers such that R > 0 and n > 1. We will define an operation
on natural numbers [R, ]„_! by the following conditions; for any natural num-
ber c,

[c-R if c<R

\^mod(c - R,n - 1) otherwise.

It is easy to see that the function/ defined by f(x) = R + [R,x]n_ι is a
mapping from the set N of all natural numbers to the set {0,1,... ,R + n — 2}.
For instance, when R = 7 and n = 4, / takes the following values: f(x) = x for
x < 9,/(10) = 7,/(ll) = 8,/(12) = 9,/(13) = 7, etc. In general,

(9) R + [R9c]n_ι = c when c < R + n - 2,

since [R9c]n_x = c - R for such c. Moreover, we can show that for each natu-
ral number d,

(10) R + [#,</]„_! s tf (mod« - 1),

We will prove (11). If d < R + Λ - 2, d = R + [Λ,</]Λ_i by (9) and hence (11)
holds. Otherwise, rf > i? + n - 2 > R + [Λ, rf]Λ_!. Thus, (11) holds also in this
case, by using (10).

We will define also an operation ®n-i on {0,1,... ,R + n - 2} by

In the following, we will sometimes omit the subscript n - 1 of θ Λ _ i , when no
confusion will occur.

Lemma 5.7 <{0,l, ...,R + n — 2},©Λ_1,0> is a commutative monoid with
unity 0.

Proof: By our definition, both the commutativity of ®Λ_i and the neutrality
of 0 follow immediately. So we will show the associativity of ®Λ_i By our def-
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inition (x ® y) ® z = R + [R,(x ® y) + z]n-\- If (x ® y) + z < R, then
x ® y < R and hence x ® y = x + y. Thus

(12) ( * 0 j O ® z = Λ + l&,x + y + z]n-i.

On the other hand, if (x ® y) + z > i?, then (x © .y) © z = R + mod((x ®y) +
z- R9n - 1). If x + j <i? thenx© j = x + y, and hence we have (12) in this
case. So suppose that x + y > R. Then

= /? + mod(mod(x + y - R9n - 1) + Z,AZ - 1)

= /? + mod(x + y + z- R,n - 1)

= i?+ [Λ,x + ̂  + z]Λ_i.

Therefore (12) holds always. By a similar argument, we can show that x ®
(y © z) = R + [R,x + y + z]Λ-i Hence we have that (x © y) © z = x ®
(y®z).

From the above argument, we can see that

(13) xx © © xn = R + [Λ,*! + + x m ] Λ _i

holds in general. Next we will show the following:

Lemma 5.8 Let xu...,xm E {0,1,...,/? + n - 2}. Then, (1) xλ + ••• +
-Km I i*i Θ Θ xm> and (2) //*! + -\- xm\n

xk and k<R then xx ® ©

ft oo/: First we will show (1). If JCI + + xw < i? + n - 2, then xx © ©
xm = X\ + + xw by (9) and (13). On the other hand, if *! 4- + xm >
R + n - 2, then JCJ + + xm > ^ © © xm and moreover

x\ ® -" ®xm = R+ [R,xx + '- +xm]

= Xι -\- + xm (modn - 1)

by (13) and (10). Thus (1) holds. Next we will show that (2) holds. Clearly (2)
h o l d s w h e n J C i + ••• + x m < R + n - 2 . If Xι + + x m > R + n - 2 t h e n
X\® © xw = Xi H- + xw = k (modn - 1) by (1) and our assumption.
Moreover, k< R<xx® © xm. Thus, (2) holds.

For a fixed pair of R and /i, let TV* be the set {0,1,... ,R + n - 2} and N*
be the commutative monoid <{0,l,... ,R + n - 2),©,0>. Then we have the fol-
lowing.

Lemma 5.9 Both (N*, |" ) and (N*, |̂ > are finite BCI-structures. Moreover,
(N*,\") isa BCVl-structure.

Proof: We must check the monotonicity of both |" and |^ with respect to ©.
Suppose that x, y, and z are in the set TV* and x\"y. When x = y, clearly x ®
z = y © z holds. So let us assume 1 < y < x and x - y = 0 (modn - 1). So,
x = y + k(n - 1) for some k> 1. If x + z<R, thenj> + z < x + z<R. So both
x ® z = x + z and y ® z = y + z hold. Hence, x © z |"y ® z holds, since

(x ® z) - (y ® z) = (x + z) - (y + z) = x - y = 0 (modn - 1).
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Otherwise suppose that x + z > R. Then

x © z = R + moύffjc + z - R,n - 1)

= R + morf(^ + Λ:(rt - 1) + z - R,n -

= R + morf(^ + z - i?,π - 1).

Thus, we have x ® z = y ® z when y + z > /?. If j 4- z < R, then 1 < y + z =

^ © z < x ® z, and

(x © z) - (.y ® z) = R + mod(y + z - R,n - 1) - (y + z)

= R - (y + z) - mod(R - (y + z),n- 1)

- 1).
Therefore x® zY[y ® z holds. From this, the monotonicity of |^ with respect
to © follows, since | Ms the inverse of |".

To show that (N*, | ") is a BCI"-structure, it is necessary to prove that
n(®n-Xx) \"x for each x G {0,1,... ,R + n - 2}, where n(@n_{x) denotes

x ®n-\ ••• θ « - i ^ . From (13), n(®x) =R+ [R,nx]n^. If nx< R + n - 2
then n(@x) = nx\"x. So suppose that ΛX > i? + n - 2. In this case,

n(®x) =R + mod(nx- R,n - 1)

= R + mod(x-R9n - 1).

- i ? , r t - 1) =/?+ [R,x]n_ι =ΛΓ since x < R + Λ - 2.
Therefore Λ(®Λ:) = ΛΓ, and thus Λ ( © X ) |"X. When x < R, clearly x < R <
fl (© A:) . Moreover, n (© x) Ξ ^ = ̂ ( mod n - I). Therefore n (© x) \ \ x holds
also in this case.

For each m > 0, define N^ to be the direct product of mN*s. Similarly to
Definition 5.5, we can extend both |" and \ι

nto NJ,. Also define ®Λ_i on N^ by

for v = <V! v . . 9vm) and w = (wΪ9... ,ww>. It is easy to see that (1) NJJ, =
<^,© r t _i,δ> is a commutative monoid, (2) both <N^, |") and <N^, |̂ > form
BCI-structures, and (3) in fact, {N^,!?} is a BCIΪ-structure. The following
lemma follows from Lemma 5.8.

Lemma 5.10 Let xx,... ,xm, k G N^ and moreover each component ofk is
equal to or less than R. Then, (1) xλ + - + xm \n

χxx ® © xm, and (2) //
x\ + +Xm\"£ then xx ® - © xm\n

χk.

Now we will show the finite model property of both BCI" and BClJ. The
proof can be carried out similarly to the proof in [11]. It is necessary here to add
some arguments which use properties of ®n-\

Definition 5.11 Suppose that <Nm,<> is a BCI-structure with a partial order
< on N m . Then for any valuation 1= on the BCI-structure <Nm,<> and any for-
mula B, an element v of N m is B(~}-critical in < N m , < » if



INTUITIONISTIC LINEAR LOGIC 239

#9

2. if v < w (i.e., v < w but v Ψ w) then w 1=2?, and is B(+^critical in <Nm,
<»i f

3. v¥B,
4. if w < v then wΨB.
For each formula B and each BCI-model <Nm,<,l=> with a partial order <,

define

/ ? * ( £ ; < » = {i?:ϊ;is5(*)-criticalin<NII1,<,h>},

where * is either - or +. Then it is clear that both R~(B\<^) and / ? + ( £ ; < »
are antichains in the partially ordered set <Λ^,<>, i.e., v < ύ never holds for
any v and ύ in R*(B;<i\

z). Now we can show the following.

Lemma 5.12 There exist no infinite antichains in the partially ordered sets
{Nm,\n

γ)and{NmXn).

Proof: This lemma is an easy consequence of the following result with the fact
that both (Nm9\

n

γ) and (Nm,\ι

n) are well-ordered partially ordered sets (see
[Π]).

Theorem 5.13 The property of not possessing infinite antichains is preserved
by any finite product of well-founded partially ordered sets.

Now we are ready to prove the finite model property of BCIJ and BClJ.
First we will consider BCI™. It is enough to show that if a formula Fis not prov-
able in BCI", i.e., the sequent ->Fis not provable in it, then it is not true in
some finite BCI™-model.

By Theorem 5.6, if F is not provable in BCIn then F is not true in a
BCIΪ-model <Nm, | " » . Let Ψ be the set of all subformulas of/7, and RF be
\JB(EψR~(B; |pl=). Since Ϋ is finite and |" is a partial order on Nm, RF is also
finite by Lemma 5.1. Define R = max{l9max{ai: {ax,.. .,am) E RF}}. Let
TV* = {0,1,... ,R + n - 2} for this R. Then <N^, |"> is a BCIn-structure as
shown before. Now define a valuation N* on (NJJ,, |" ) by the condition that for
each propositional variable p in Ψ and each v E Λf̂ ,

(14) v \=* p if and only if v \=p.

We will show by induction that for each formula B in Ψ and each v G N^9

(15) v h* B if and only if v \= B.

Suppose that B = C D D, v h C D D and w K* C for v9 w E N^. Then, by the
hypothesis of induction, iv(=C and hence v + w 1= D. Since v + w \n

χv ® w, we
have v@w)rD. Hence v ® w t=* D by the hypothesis of induction. Thus v \=* B.

Conversely, suppose that v ¥ C D D for v E Λ^. Then for some w E Nm9

w 1= C but t; + w I* Z). So, there must exist S such that i; + w\"u and ϋ
is D(~} -critical in {Nm, |", 1= ). We can find such a D { " ) -critical element 5, since
there exist no infinite ascending chains in (Nm, |^>. Since each component of
ύ is not greater than R, v ® w \ n

χΐι by Lemma 5.10. Therefore v® w ΨD and hence
v ® w #* D by the hypothesis of induction. But this w may not belong to 7V;£,
and hence we cannot conclude here that w \=* C in general. So define zt• = R 4-
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[Λ,w/]Λ_! for each / = 1,2,... ,ra andz = <Zi,... ,zm>, when w = < w 1 ? . . . ,ww>.
Then z G ̂  and w I j z by (11). Thus z N C and hence z l=* C by the hypothesis
of induction. Moreover, for each /

Vi ®Zi=R+ [R9Vt + Zi\n-\

Therefore, v@z = v@w\t*D. Combining this with z N* C, we have υ Ψ* B.

Theorem 5.14 The logic BCIΪ has the finite model property for n>2.

The finite model property of BClJ can be shown almost in the same way
as the above. Suppose that a formula F is not provable in BClJ. Then by Theo-
rem 5.6, it is not true in a BClJ-model (N m , | *,t=). For the set Ψ of all subfor-
mulas of F, define RF to be the set U J B G ^ ^ + ( ^ > l ^ ) * this time. Define R and
TV* in the same as before. Then, (N^, |*) becomes a BCI-structure. Define a
valuation l=* on (N^, |^) also by (14). In this case, it is necessary to check that
(=* satisfies that

(16) vι®u\=*p,...,vn®u)r*p implies υλ ® © υn ® u t=* p.

Now suppose that Vj ® u N* p for each /, or equivalently, vt• ® u Yp for each /.
By Lemma 5.10, υx ® u \ x

j^ol Λ- u and hence ΰj + u Vp. (Recall that | ιn is the inverse
relation of |".) Since (N*,, \l

n,\=) is aBClJ-model, υx + + υn + u ¥p follows
from them. Let z be p(+)-critical element such that z\l

nV\ + + vn + u.
In fact, there exists such z since there exist no infinite descending chains in
(Nm, I *) . Moreover, since each component of z is not greater than R, z\ι

nVι®
-" ® vn ® u by Lemma 5.10. Thus, υx® ®υn®uYp and hence v\ ®
- - - ® vn ® u N* p. The rest of the proof can be carried out similarly to that of
Theorem 5.14.

Theorem 5.15 The logic BClJ has the finite model property for n>2.

In [11], the finite model property for the logic RMO^ is proved. RMO_+ is
the logic obtained from BCIW by adding the (1 —» 2) rule, and hence it is just
BCI21 by our notation. Slightly modifying the proof, we can extend it to the
proof of the finite model property of BClJΐ for each n > 1, as shown in the next
theorem.

Define a binary relation — n on the set Nm by the condition that for each
x= (xu...,xm) a n d 7 = <yu...9ym>9

x ~ny if and only if for each / < m, either (1) χt = yt or (2) 1 < xhyι and
Xi = yi (modn - 1).

Then, it is easy to show that — n is an equivalence relation on Nm which is com-
patible with +. Similarly to Theorem 5.6, we can show the following.

Theorem 5.16 For any sequent Γ -> A, Γ -• A is provable in BClJ; // and
only if it is true in any BCl^-model <Nm, ~n-> N>
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We can show that the quotient set Nm/~„ of N m modulo ~ n also forms a
commutative monoid, and in fact <Nm/~„,=> is a finite BCI"-structure with nm

elements. So, similarly to [11], we have the following.

Theorem 5.17 The logic BCliϊ has the finite model property for n>2. More
precisely, for any sequent Γ -* A, Γ -> A is provable in BCliϊ if and only if it is
true in any finite BClJϊ-model <Nm /—„,=, h>.

We have shown in this section that both BCI" and BCli have the finite
model property for each n > 2. On the other hand, we know nothing about
BCIjJ and BCI* when k > 1. We did not even succeed in formulating complete-
ness theorems like Theorem 5.6 for them. These difficulties seem to be strongly
related to difficulties which we met in finding cut-free systems. So it will be inter-
esting to find intrinsic relations between them.
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