204

Notre Dame Journal of Formal Logic
Volume 35, Number 2, Spring 1994

A Revision-Theoretic Analysis
of the Arithmetical Hierarchy

GIAN ALDO ANTONELLI

Abstract In this paper we apply the idea of Revision Rules, originally devel-
oped within the framework of the theory of truth and later extended to a gen-
eral mode of definition, to the analysis of the arithmetical hierarchy. This is
also intended as an example of how ideas and tools from philosophical logic
can provide a different perspective on mathematically more “respectable”
entities. Revision Rules were first introduced by Gupta and Belnap as tools
in the theory of truth, and they have been further developed to provide the
foundations for a general theory of (possibly circular) definitions. Revision
Rules are non-monotonic inductive operators that are iterated into the trans-
finite beginning with some given “bootstrapper” or “initial guess.” Since their
iteration need not give rise to an increasing sequence, Revision Rules require
a particular kind of operation of “passage to the limit”, which is a variation
on the idea of the inferior limit of a sequence. We then define a sequence
of sets of strictly increasing arithmetical complexity, and provide a repre-
sentation of these sets by means of an operator G (x, ¢) whose “revision” is
carried out over w? beginning with any total function satisfying certain rel-
atively simple conditions. Even this relatively simple constraint is later lifted,
in a theorem whose proof is due to Anil Gupta.

In this paper we apply the idea of Revision Rules, originally developed within
the framework of the theory of truth and later extended to a general/ mode of
definition, to the analysis of the arithmetical hierarchy. This is also intended as
an example of how ideas and tools from philosophical logic can provide a dif-
ferent perspective on mathematically more “respectable” entities.

Revision Rules were first introduced in Gupta [2] and Belnap [1] and, inde-
pendently, Herzberger [4] as tools in the theory of truth, and have found their
most detailed exposition to date in Gupta and Belnap [3], where they provide the
foundations for a general theory of (possibly circular) definitions. Revision Rules
are non-monotonic inductive operators that are iterated into the transfinite begin-

Received April 5, 1993, revised February 14, 1994



REVISION-THEORETIC ANALYSIS 205

ning with some given “bootstrapper” or “initial guess”. Since their iteration need
not give rise to an increasing sequence, Revision Rules require a particular kind
of operation of “passage to the limit”: rather than, as is usual in the monotone
case, taking the cumulative result or union of what is obtained at previous stages,
in Revision theory we take, first the “inferior limit” of the sequence, i.c., we
assign to an item the value, if any, to which it eventually stabilizes in the
sequence, and then we invoke the bootstrapper again to supply a value for those
items that are not covered by the inferior limit.

The language we are going to use is the language of arithmetic, interpreted
over the standard model. We will use lower-case italics a, b, ¢, . . . with or with-
out subscripts to indicate variables ranging over the natural numbers, and upper-
case italics 4,B,C,...,F,G,... to refer to sets as well as functions of type
w® x (w®)! (for natural numbers k and /). In general, with any function G we
can associate the set { p: G(p) =0}, and quite often we will just speak of G as
a set. This is why we choose not to make the distinction typographically sharper.
Constants of either kind will be denoted by boldface symbols: so for instance
a,b,c,...,p;,q; are particular numbers that we find convenient to name, while
K, Tot,Par, ... are particular sets. We assume that some enumeration of the
recursive functions has been fixed; we let {c}“ denote the recursive function
whose code is ¢ and whose oracle is A4; if A is recursive (in particular, empty)
we just write {c} for {c}?. In keeping with common usage in Generalized
Recursion Theory, our symbols for ordinals are taken from the end of the Greek
alphabet p,0,7,..., with only a few exceptions to this rule. For instance, ¢,y
do not refer to ordinals but to functions.! Finally, “»” will do double duty, in
that it will be used to indicate both the first limit ordinal and the set of natural
numbers. Let us first say a few informal words in the way of motivation.

Consider some equation in the language of arithmetic:

G(X1y.o sXy) =+ G-+ (*)

We want to take (%) as a definition of G, but of course not all such equations
succeed in uniquely picking out a function. Indeed, there might be many G’s sat-
isfying (%), or there could be none, and we do not have in general a criterion to
assess the situation one way or the other.

However, even in the absence of a suitable criterion, one sensible way to pro-
ceed is as follows: let us make some hypothesis as to what G is (for instance, sup-
pose G is some function ) and let’s try to use this hypothesis in order to compute
G. That is, whenever the instructions for computing G (x), as coded by equa-
tion (*), require that we supply some value G(y), we use ¢ () instead. Should
we find out that our hypothesis ¥ does not satisfy (*) and therefore must be cor-
rected in some way or other, we will revise it accordingly. Thus we obtain a new
function, with which we can start the process all over again. This amounts to tak-
ing (%) as a rule of revision in the style of Gupta [2], Belnap [1], and Herzberger
[4], a way of getting a “better” function satisfying (%), when supplied with some
hypothesis as to the extension (or graph) of G. (Indeed, the approach to com-
putability we are about to consider was first suggested by an observation of Nuel
Belnap. The sense in which the rule of revision yields a “better” candidate for
G will become clear in what follows. For a general reference see Gupta and Bel-

nap [3].)



206 GIAN ALDO ANTONELLI

The crucial point in this procedure is to use equation (*) to “revise” hypo-
thetical solutions. This can be accomplished as follows. Modify the “definition”
of G by introducing an extra function parameter as follows:

G(xl9"-’xn9¢)="'¢“'. (**)

We shall not lay any other constraints on ¢, except that it should be total, and
this for technical as well as philosophical reasons. If we allow ourselves a “boot-
strapper” to provide a “guess” any time the initial equation does not suffice to
determine a unique output value, this might as well be total. In other words, if
the function we are trying to define will fail to yield a value for some arguments,
only the “definition” of G should be to blame, and not the fact that we have built
partial answers right into the formalism. Moreover, as is well known, higher-type
functionals usually are ill-behaved if partial functions are allowed to occur as
their arguments. In particular, if such arguments are allowed, it is more diffi-
cult to assess their complexity. So, unless otherwise indicated, we decide to avoid
them altogether.

Given (**), and having chosen some particular function ¥ to be used as a
“bootstrapper”, we apply the Revision process. This process is organized in
stages, as follows: at the first stage we compute G (X) according to (**) (where
X=2Xxy,...,Xs), using the bootstrapper to supply those values G () that might
be required. This specifies some function G’. Now we repeat the process, except
that we use G’ to supply those values that might be required by any computation
of G. Again, in this way we obtain some function G” that can then itself be used
in the revision process. As we might want to iterate this process into the trans-
finite, we heave to decide what to do at limit stages, when there is no “previous
stage” to rely upon. The idea is then to set G(X) = y at some limit stage \ if the
value assigned to X eventually settles = y beginning with some stage p < \ and
set G(X) = y(X) if the value of X keeps oscillating as we approach \ from
below. It is perfectly reasonable, moreover, to let the value of the bootstrapper
¥ vary according to the stage (zero or limit) at which it is invoked, so that in
principle we could allow ¢ to have an ordinal parameter. In order to keep things
simple, however, we adopt the constant limit rule, and use the same guess
throughout. These ideas are spelled out more formally below.

Definition 1 Let G(xy,...,X,,9) be an arithmetical functional; let y be a
total function from n-tuples of natural numbers into the natural numbers. Define
the p-revision of G under initial hypothesis ¥, by induction on p:

GY(x1,. .. %) =¥ (Xp,... %)
Gl X1y sXn) = G(X1s - -+ 1%, GY)
zZ, if Ge<AN)(VT<AN)(o<T
GX(X1, .o Xn) = =Gl (x1, %) = 2);
Y(X1,...,X,),  otherwise.

For limit ordinals A\, we also write

GY(X) = Iin}\ GY(%).



REVISION-THEORETIC ANALYSIS 207

Note that this is not the usual notion of limit: in the case of revision rules, the
usual limit might not exist at all; in accord with the above definition, the limit
should rather be construed as the “inferior limit” (in the usual sense: see below),
integrated with the contribution of the bootstrapper to give a total function.
We would like to know whether G),” (x1,...,X,) converges to some function
as p increases. If so, we may consider such limit as the function defined by G rel-
ative to . On the other hand, such a limit might not exist in general for all
n-tuples of arguments, and yet it is possible that for certain arguments
ky,...,k, the value of Gf (ky,...,k,) stabilizes at some limit as p increases. In
this case, although the “definition” G(x,,...,X,,®) = --- ¢ - - - fails uniquely
to identify a function, it allows us to settle the value to be assigned to k4, . . ., k.

Definition 2 For any non-successor ordinal p we define Gﬁp to be the same
as Gf but without the contribution of ¢ at p. Formally,

GY,(x) =y (30< p) (V1 < p)(0 <7 G/(x) = ).

From the definition it follows that if p = 0 then Gﬁ , = . We can also employ
a “limit” notation for this notion:

GY,(x) = liminf G¥(x) = U < N Gf(x)) .
o9=p o<p \o<7<p
We are going to use Revision Rules to represent sets of natural numbers hav-
ing higher and higher arithmetical complexity. First of all, we characterize the
complexity of revision processes of length <w? obtained by iterating a recursive
revision rule.

Definition 3 Given a natural number ¢ and a function ¢, we write £ C ¢ if
t is (the code of) an initial segment of ¢: for some n > 0,

t= <<0,¢(0)>" . "<n - l,¢(n - 1)))’

Notice that the assertion “¢ C ¢” does not involve any universal quantifier, but
is equivalent to a finite conjunction of atomic sentences of the form ((¢);); =
#(i) for i < £(¢). Moreover, by “x € t” we mean 3p < £(¢)a(¢), = x (where £(¢)
is the length of ¢).

If G(x,¢) is a functional, by G’(x, ¢) we refer to the function that computes
the same program as G, except that whenever G would query the oracle for
the value ¢(n), G’ looks for the first m such that {(n,m) € ¢ (if no such pair
is in ¢, then G’ is undefined). If G (x, ¢) is recursive, then G'(x,¢) is L9, and
G(x,¢) = y if and only if 3tG’(x,t) = y. We will write G(x,t) for G'(x,t).
Observe also that “s C Axs G(x,¢)” can be written as

vx € s3y3k([T(y,e,(x)o) AL(Y) = kA (¥)k = (X)],

where the first quantifier is clearly bounded, e is the code of a partial function
computing G(x,t), and T is Kleene’s T-predicate. It follows that if G is itself
£, then so is “G(x,¢)”.



208 GIAN ALDO ANTONELLI

Theorem 4 Let G(x,¢) be a recursive functional. Then for every n we have
that

(8,) Gy is T3, [¥1;
(bn)for allp, Gw ~n+p Is A2n+1[\[/]
Proof: We establish (a,) and (b},) simultaneously by induction on #, where (b},)
is the statement that there is a A%,,H [¢] predicate P,(x,y,q) such that
Pu(x,2,9) © G2y pig(x) =
Clearly, b, follows.

Case n = 0. Then (ay) holds trivially since Gﬁo = O is recursive, in particular
recursive in ¢, i.e., Z[y/].
To establish (bg) we must show that there is a y-recursive predicate
P(x,y,q) such that
P(x,5,9) ® GJ(x) =
The idea is to use a form of “course-of-values” recursion. In fact, we can write:

Gl(x) =yois[l(s)=q+1A(s)CY¥

A Vi< g(($)is1 CAxaG(x,(5)) ALX,p) € (5),] )]
SVs[l(s) =g+ 1A(s)CY
A Vi< g((8)is1 C AxaG(X,(5),) = (X%, ¥) € (5),]. &)

Since G“f (x) = y can be written both in existential and universal form, it follows
that it is recursive.

Case n + 1. In order to establish (a, ), we observe that it is possible to char-
acterize Gﬁw.(,,“) as follows:

GYynio(X) =y & 3pVg = pGl, . (x) =y

But Gw neg(X) =yisa A1 [1//] predlcate of x, y, and g by the inductive

hypothesis (b,); it follows that G%,.,.., is £9,4,[¥]. Thus, (a,) holds.
Now we tackle (b}, ;). This case is dealt with in a manner similar to case for

(bg), using the lnductlve hypothesis to obtain both a I3, ., 1, [¥'] and a £, 1, [¥]

characterlzatlon of Gw (n+1): it suffices then to replace (s)o C ¢ in (1) and (2)

by (s)o C Gw (n+1)~ The latter is still £9,42, so this gives that G“f (n+1)+¢(X) =

is A3, 3, as required.

Having obtained an upper bound on the complexity of revision processes of
length <w? with recursive revision rules, we show that this bound is optimal. We
first need to establish the following definitions and auxiliary results. Note that
the following two definitions are standard in Recursion Theory. As a reference
see Rogers [5] or Soare [6].

Definition 5 A set A is many-one reducible to a set B, written A <,, B, if
there is a total recursive function f such that for all x,

x€eAef(x) €EB.

In this case, we say that A <,, B via function f.



REVISION-THEORETIC ANALYSIS 209
Definition 6 For any set A, we denote by A[?! the “y-th section” of A,
namely:
A = (x:(x,y) € A).

This can be easily generalized to functions:

¢ (x) = d(x, »)).

In general, as already noted, we will tend not to distinguish between sets and
functions. Clearly, any set can be regarded as a function; conversely, with any
function ¢ we can associate the set {x:¢(x) = 0}.

We now define a sequence of sets of natural numbers that not only have
higher and higher arithmetical complexity, but also turn out to be the most suit-
able to be represented in terms of Revision Rules.

Definition 7 For any set A, let
Tot” = {x: {x}* is total }
Par? = w — Tot”.

Thus, Par” is the set of the indices of all functions that are partial (i.e., non-
total) in A. (There is a sense in which all functions are partial. This is not it.)
Next, we define the sets Par"™ by induction on n:

Par? = &
Par("t1) = parPar'™”,
Notice that Par(!) = Par? = w — Tot.
Before we can use the sets Par"), we have to investigate their properties,
beginning with their level in the arithmetical hierarchy.

Lemma 7  Forall n > 0, Par™ js LY,-complete.

Proof: The case for n = 11is found in Soare [6], p. 66. The inductive step gen-
eralizes that proof. So assume that the Lemma holds for n > 0. We want to prove
it for n + 1. It is clear that Par"*V is £9,., (since x € Par'"*1) iff “there is p
such that for all g, g is not a halting computation of {x}P* on input p”). Let
S € £9(,+1)- Then there is a L9, predicate P such that

S(x) & 3p¥qP(p,q,X).
By inductive hypothesis there is a total recursive function % such that
P(p,q,x) © h(p,q,x) € Par'™,
Use the s-m-n Theorem to define a recursive f such that

(FONP ™ (p) = pgeh(p,q,x) & Par™.



210 GIAN ALDO ANTONELLI

Even though we are not going to need it, observe that function { f(x)} is Y in
the complement of Par(™; hence (by inductive hypothesis) it is £3,,,,. More-
over, the following equivalences hold:

S(x) & IpvqP(p,q,x)
© 3pvqh(p,q,x) € Par™
& Ip{ f(x)}** " (p) is undefined
& f(x) € Par"tD),

The main idea that we are going to use is a procedure that determines whether
e is the index of a recursive function that is fotal (relative to some given oracle).
We can describe it informally as follows. Given a function {e}, “to simulate —
or, more simply, to run— {e} according to the consecutive strategy” means to
start {e} on input 0; if and when this computation halts, start {e} on input 1,
and so on. It is clearly possible to keep track of the total number of steps {e}
carries out while we run it according to the consecutive strategy. Now suppose
you want to find out whether some function {e} is total or not. Here’s a natu-
ral way to proceed: we run the consecutive emulation of {e} on inputs 0,1,2,...;
after each step (i.e., execution of one instruction) of {e} on whatever input it is
running on, we /ook: if the machine stops precisely at that moment, we output
1 and start it on the next argument; otherwise we just output 0 and let it com-
pute for one more step. When you get to w, turn back, and look at the sequence
of values you output: if {e} is not total, it entered some infinite computation,
so that the sequence of values you output stabilizes to 0; but if {e} is total, both
1 and 0 will occur cofinally in the sequence. Thus, if {e} is not total, e is assigned
value 0 at limit stages, while if it is total, the bootstrapper will be invoked. But
if we are only looking at stabilization before or at v, this is enough to allow us
to decide whether {e} is total.

The difficult part of this strategy is to keep track of the time, i.e., the total
number of steps for which {e} has already been simulated according to the con-
secutive strategy. This is accomplished by means of particular functions {e;} (for
i € w), which behave as follows: for any i let {e;} be a function that computes
for one step and outputs 0 on x < i, and never converges if x > i. The index e;
can be generated uniformly in i. We are now going to look for a uniform rep-
resentation of all sets of the form LY, for each n. In the next definition we
define certain indices t, that in a sense “code” the sets Par(™.

Definition 8 Let p be any index such that for any A and all x we have
{p}*(x)*. We define indices t;, for 0 < i, by induction on i as follows. First

define ty:
0, ifpeA;
{to}*(x) = { .
T, otherwise.
Now, using the Recursion theorem, define t,,:

{tns1}2(x): if both (1) t,.,; € A; and (2) t,, & A hold, then output 0; else be
undefined.



REVISION-THEORETIC ANALYSIS 211

We need to see that t, can be found uniformly (i.e., recursively) in n. Again, we
proceed by induction on z. Clearly, t, is no problem. Assume there is a way to
generate ty,...,t, uniformly. Let g be a function such that for any i:

{g()(x): if both i € A and t,, & A4 hold, then output 0; else be undefined.

Function g exists and is total recursive by Church’s thesis. By the Recursion
Theorem, g has a “fixed point” e, for which {e} and {g(e)} are functionally
equivalent. We let such an e be t, ;. Moreover, it is part of the claim of the
Recursion Theorem that e can be found effectively. Although in general func-
tional equivalence is undecidable, in the case in question it is possible to over-
come this limitation since the output of g consists of (the code of) a specific set
of instructions, whose only variable element is the argument i of 'g. Such argu-
ment is recoverable form g (/). (I am here assuming that the coding is standard
and that g is defined in the obvious way. Furthermore, notice that I am not
claiming that i is recoverable from the index of any function equivalent to g(7).)
Thus, in order to find the fixed point e we only have to enumerate g(0),g(1),...
until we hit the first e such that {g(e)} queries the oracle on its own index.

Lemma 9 For any n:
(a) {t,)7*™ is not total;
(b) {t,)°* """ is total.
Proof: We establish (a) and (b) simultaneously by induction on n.
Case n = 0. Let p be as in the previous definition. Then we have:
pé¢ T op¢Par?®
& {to}?*“(x) 1 for any x.
Since obviously p & &, we have that (a) holds. Moreover,
p € Par® & ()P (x) = 0 for any x
& (to)P is total.
But p € Par(") by definition, so (&) holds as well.

Case n = m + 1. The inductive hypothesis for (@) gives that {t,,}**™ is not
total. This means that t,, € Par”*!. So condition 2 of the program for {t,,}
(as given above) fails for {t,,.;}¥* """, whence {t,,,{}** " is not total. So
the inductive step for (@) holds.

To establish the inductive case for (b) we must show that {t,,,, }P“'('"+2) is

total. It suffices to observe that the two conditions of the program for {t,,,}
are met:

1. The inductive steq for (@) —which we have already proved —now gives us
m+ . .
that {t,.;}¥* """ is not total. This means that t,,,, € Par("+?,

2. The inductive hypothesis gives that {t,,,}P"(m“) is total, i.e., that t,, &
Par("+2),

This completes the proof of the Lemma.



212 GIAN ALDO ANTONELLI

We are finally ready to establish our theorem, according to which it is pos-
sible to give a revision rule that, when iterated through w? will in turn compute
arithmetical sets of higher and higher arithmetical complexity, i.e., our sets
Par(™. As we announced, we will first impose certain constraints on the boot-
strapper; these will be expressed in the form of an arithmetical predicate P(«).
We will then show how these constraints can be lifted, provided we are willing
to give up a stage-by-stage correspondence between the complexity of the set
being represented and the length of the revision process necessary to represent it.

Theorem 10 There are a recursive functional G and an arithmetical constraint
P(«a) such that

vavy (P(y) = Par™ <, G%,.,).
Moreover, this result is optimal, since G<w . is itself £9,,.

Proof: The basic idea is to define a recursive functional G(x, ¢) with the under-
standing that in the revision process the argument ¢ will be replaced by the
previous revision stage. Essentially, this is the idea of the proof: we want
G(x,G’. n+p) to “find out” the values of n and p, and then proceed as follows:
if x is not of the form {(n + 1, z) simply output Gw n+p(X); if on the other hand
x={n+ 1,z), we run {z}P’“ oninputs 0,1,2, . .., for p + 1 steps: if {z}P*"
halts precisely at the (p + 1)’st step we output 1 we else output 0. The crucial
and most difficult part is how to “find out” n, p. The reader is advised that the
proof is long.

Let t be index of some total function that computes for at least two steps on
any argument x. Let t; be as before; i.e., {t, }P" is everywhere undefined
while {t,, }P”'("“) is total. We now slightly modify the definition of e;, i.e.,

0, in 1 step, if x < i;
ey =1 o %P
T ifisx

Intuitively, t; and e; are what allows us to find out n and p. Suppose we are
given as input some function ¢ as the result of the previous stage of the revision
process: we can determine whether Par("*! has already been computed by
checking whether t; € ¢. This gives us n. Likewise, we can determine p by
checking if ¢!”! has already discovered that {e;} is not total.

Let P(a) be the conjunction of the following conditions, which we suppose
satisfied in the following:

a(x)>0 for all x;
ait) =2 for i = 0;
ai+ L)) =1 fori=0;
a(le,)) =1 for m=0.
We now define G (x, ¢) by cases as follows:

1. If ¢(1,ep)) = 1 then if x is not of the form (1,z) output ¢(x); if x =
(1,z) then run {z} (0) for 1 step: output 1 if it halts after one step, and
output 0 otherwise.



REVISION-THEORETIC ANALYSIS 213

2. If ¢((1,ep)) = 0 then:
2.1 find the least i > O such that ¢ (i + 1,t;_;)) = 1;

2.2 if (i, 1)) =< 1and x = (i, x) then find the least j such that ¢ ((i,e;)) = 1;
run the consecutive simulation of {z} on 0,1,2, ... with oracle ¢!~
if i > 1 and empty oracle if i = 1, for a total of j + 1 steps. If at the
(J + 1)’st step there is a convergence, output 1, else output 0; if x is
not of the form (i, z) then output ¢(x).

2.3 if ¢(i,t)) =2 and x = (i + 1,2), then run {z} on argument 0 with
oracle ¢!/! for 1 step: if it halts after one step output 1, else output
0; if x is not of the form {i + 1,z) then output ¢(x).

The conditions of the cases 1, 2.2, and 2.3 will serve to identify the argument
¢ as the bootstrapper ¥, the function Gi,”.,,ﬂ,H, and the function Gf.(n+l)
respectively.

We show that G(x, ¢), defined in this way, meets the following desiderata.
The first three show G to be recursive (in that all its unbounded searches suc-
ceed), and the last one establishes the theorem.

ifi<nandp>0;

-

v . ifi<nand p=0;
dl n>0vp>0=G) ., i+ 1Lt)) = .
ifi=nand p=0;

ifi=n+1andp>0;

-

N = =)

-

. 0, if m<p;
d2 n=0vp>0=G), . ,(n+ le,) = )
1, ifm=p;

a3 itn+1ag=p=GY, ,(Kix) = GZ-n+p(<i’x));
d4 (z:GY,.,(n,z)) =0} = Par™,

Observe, once and for all, that d3, as it were, has an “upward” as well as a
“downward” direction. It tells us, first, that all of the arguments already dealt
with by G are preserved at later stages (a form of monotony), and also that argu-
ments of the form (n + 1,x) are not dealt with before stage n, so that their val-
ues are to some extent also preserved “downward”.

Desiderata d1-d4 are established simultaneously by induction on the lexico-
graphic ordering of the pairs {n, p). So fix n and p, and assume d1-d4 hold for
all m and g such that either m < n or m = n and g < p. We distinguish three main
cases, accordingasn=p=0,orp>0,orn>p=0.

Case n = p = 0. To establish d1 consider
GY i+ L)) =Y (i + L,tp);
then d1 holds vacuously. Moreover, d2 holds by choice of ¢ as well:

Gy (1,6, = ¥(1,e,)) = 1.



214 GIAN ALDO ANTONELLI
Finally, d3 is obvious in this case, while d4 can be easily established since
{x:G%(0,x)) =0} = @ = Par®.
Case p > 0. For d1, we are looking at
GYipCi+ 1,t)) = GKi+ L), G i pey)-

If p— 1 =0 and n = 0 then case 1 of the definition of G applies, and we run
{to}?(0) for 1 step; this function never halts, so we output 0 as required by the
first case of d1; if i > 0 then i + 1 > 1, so we output

GYrip1 i+ Lt)) =y (i + L)) = 1

by choice of ¢, as required by the fourth case of d1.
So suppose p > 1 or n > 0. If p > 1 then by the inductive hypothesis on d2

Glonip-1€1,€0) =0,
so case 2 applies. By the inductive hypothesis on d1 the first i such that
Glmip1 i+ L,13) =1
is n + 1. By the inductive hypothesis on d2 the first j such that
Gl pipn+ 1e)) =1

is p — 1. So we run {t,) for p steps with oracle (GY.,.,,_;)!"]. By the inductive
hypothesis on d4 this is the same as Par‘™. Function {t,} with such an oracle
is then empty and we output 0 as required by the first case of d1 (the first result
for i < n is given by the inductive hypothesis on d1 and d3). If i = n + 1 then,
as required by the fourth case of d1, we output

Gl pip-1 €N+ 2,t,01)),

which is 1 by choice of ¥ and the fact that this value is preserved (inductive
hypothesis on d3).

If n > 0 but p = 1 then again the inductive hypothesis on d2 tells us that
case 2 applies. By the inductive hypothesis on d1 the first i such that G"f A+
1,t;)) = 1 is n. Moreover,

GY . (n,ty) = Il(im G nety i€ t)) =2,

since these values keep oscillating between 0 and 1. So case 2.3 applies, and we

run {t,} on O for 1 step with oracle (GY.,,)"") = Par‘® (by the inductive hypoth-

esis on d4). This function with such an oracle is then empty, and we output zero

as required by the first case of d1 (the case for i < n is taken care of by the induc-

tive hypothesis as before). On the other hand, if i = n + 1, reasoning as before

we see that G outputs 1 as required by the fourth case of d1. This establishes d1.
For d2 we are looking at

Gl nipn + 1,6,)) = G + 1,25, GY pip_1)-



REVISION-THEORETIC ANALYSIS 215

We distinguish the same subcases as for d1. If p — 1 = 0 and n = 0 then
G}f.,,+p_, =y so case 1 applies. We run {e,,} (0) for 1 step. If m = 0 this never
halts and we output 0 as required; if m = 1 = p this halts immediately, so we out-
put 1 as required.

So suppose p > 1 or n > 0. Reasoning as in the corresponding case for d1,
we see that we run {e,,} on 0,1,2, ..., for p steps with Par(™ as an oracle: this
never halts if m < p, so that we output 0, while it halts immediately if m = p,
so that we output 1 as required. Therefore d2 holds. Finally, d3 and d4 are clear
from the inductive hypothesis and the definition of G: here is where we use the
fact that O & rng(y), which ensures that any calls G might make to Gf,’ .p TEtUrn
the correct result.

Case n > p = 0. For d1 we must show that

Gl + 1Lt) = lim G (upy i i + 1,4))

0, ifi<n;
1, ifi=n
But this follows from the inductive hypothesis, since if i< ntheni< (n—1),
and we only need apply the inductive hypothesis on the first case of d1 to see that
at the limit we obtain 0; on the other hand, if i = nthen i = (n — 1) + 1, so that
by the same token we obtain 1 at the limit.
Finally, we observe that d2 and d3 hold vacuously, and that the case for d4

is clear from the definition of G and the inductive hypothesis. This completes
the proof of the theorem.

Corollary 11 The set of (the codes of ) the true sentences of first order arith-
metic is many-one reducible to Gﬁwz.

We now proceed to generalize this result. As mentioned, if we are willing to
give up a precise stage-by-stage correspondence between the complexity of the
sets we compute and the length of the revision process necessary to compute
them, then we can drop the restriction of the bootstrapper.

The following theorem is due to Anil Gupta (personal communication). The
proof given here is a simplification of his original proof. The basic idea is to let
the computed set lag w cycles behind the revision process. This gives the revision
process enough “time” to compute both Par™ and its complement. This also
shows that unless there are constraints on the bootstrapper, we cannot have a
stage-by-stage correspondence between the revision process and the complexity
of the computed set.

Theorem 12 (Gupta) There is a recursive functional G such that
vavy[Par™ <, G%,. nipl.
Proof: For any ¢ € w®, let

olnl = a, ifn=0;
B {e:o(1,{n — 1,e)) =0}, otherwise.



216 GIAN ALDO ANTONELLI

Then we can define the functional G (x, ¢) by cases as follows (recall that in the
revision process the function argument will be replaced by the function obtained
at the previous stage). So let

G (0,0),9) = ¢(£0,0)) + 1;
r, if {e}*"™(x) 17, and r < $(0,0));

0, otherwise;

G(1,{n,e,x), o) ={

1, if (vx < ¢(0,0)))=0(1,{n,e, > 0;
G(<2’<n,e»,¢)={ if (vx < (0,0 » 9L (.. )

0, otherwise;
G(x,¢) = ¢(x), if x has any other form.

Now let ¥ be any bootstrapper. We need to show that for any # > 0 and ¢ such
that w2 > 0= w-(n + 1),

Par™ = {e: GV ((2,(n — 1,ed) = 0},

whence the theorem follows. In turn, this follows from the following facts, and
in particular from 5:

©0) GY.,4,((0,0%) = p;

(1) if 0= w-nthen: (e}?™(x) V" if and only if 3p¥g = paGY, ,(1,{n,e,x)) =7;
() if 0 > w-n and {e}?*”(x) 1 then GY(1,(n,e,x)) = 0;

(3) if 0 = w-n and e € Par™*V then 3pvg = p= G/, ,((2,(n,e)) = 0;

(@) if 0> w- (n + 1) and e & Par"™*D then G/, ,(2,(n,e») = 1;

(5) if 6> w-(n+ 1) and n > 0 then: G,‘f+q((2,<n —l,e)») =0if and only if e €
Par™,

Fact (0) is easily established. Observe that G}f,’ .n+p(€0,0)) acts as a “counter”, in
that it starts out with value ¥ ({0,0)), then it increases strictly monotonically as
a function of p, it is “reset” to ¥ (¢0,0)) at w, then it increases again, and so on.
More precisely,

GY.4p(€0,09) = ¥(£0,0)) + p.

We now establish the remaining facts (1)-(5) by simultaneous induction on o.

Case: ¢ = 0. For (1), suppose {e} (x) {": then G simulates {e} with empty ora-
cle for the number of steps given by the counter; as soon as this counter becomes
=r, we have G,‘,” (€1,€0,e,x))) = r. Since the converse holds too, (1) follows.
Facts (2), (4), and (5) hold vacuously when ¢ = 0. So we take up fact (3): sup-
pose e € ParV, and let x be the smallest argument on which {e} (x) 1. Then as
soon as G,'f €1,€0, e, x)) becomes constant = 0, so does G},ﬁ «2,{n,e») =0.

Case: o limit. Fact (1) is perfectly parallel to the case for ¢ = 0, using the induc-
tive hypothesis on (5) to show that the right oracle is used in the simulation of



REVISION-THEORETIC ANALYSIS 217

{e}. Facts (2) and (4) follow immediately from the inductive hypothesis. As for
o = 0, fact (3) follows from (1), and (5) follows from (3).

Case: 0 = 7+ 1. Fact (1) is easily established using the inductive hypothesis on
(5) that tells us that the right oracle (Gf )" = Par( is used in the simulation
of {e}. For fact (2), suppose {e}?* " (x) 1; then, given that {e} is simulated
with the correct oracle, we always have value 0, no matter how large the value
of the counter.

Fact (3) follows from (2): if e € Par"*1| let x be the first argument on
which {e}P“'(") diverges; then as soon as the counter is at least as large as x, we
have Gf + g(1,{n,e,x») = 0, whence also G(‘,ﬁq (K2,{n,e)) =0, as desired.

Similarly, fact (4) follows from (2). Notice that now we have to “go w cycles
up” in order to obtain the right result. If e & Par"*1 we have to wait for all
computations of {e}P“'(") to be terminated before we have enough evidence to
assign (2,{n,e)) value 1. Finally, (5) follows from (3) and (4).

This completes our analysis of the arithmetical hierarchy. We have succeeded
in giving a Rule of Revision, whose iteration through w? computes increasingly
complex arithmetical sets. In so doing we have, first, laid certain constraints on
the allowable bootstrappers. These constraints are elementary, however, com-
pared to the complexity of the sets we represent. Then we have shown how even
these constraints can be avoided, provided we give up a precise correspondence
between the ordinal length of the revision process and the complexity of the set
it computes.

Acknowledgments I thank Nuel Belnap, Ken Manders, Rick Statman, and Jamie Tap-
penden for much helpful interaction and an anonymous referee for sound advice. A ver-
sion of this paper was presented at the 1993 annual meeting of the Association for
Symbolic Logic held at the University of Notre Dame.

NOTE

1. Other exceptions: we reserve u for the “least” operator, and \ for /imit ordinals (in
virtue of its obvious mnemonic value). We also use \ with Church’s functional nota-
tion, as in Ax-x + 1. It is also worth noting that the conventions concerning second-
order and ordinal variables are somewhat idiosyncratic to Generalized Recursion
Theory. Nonetheless, we adopt them here.

REFERENCES

[1] Belnap, N. D., “Gupta’s Rule of Revision Theory of Truth,” Journal of Philosoph-
ical Logic, vol. 11 (1982), pp. 103-16.

[2] Gupta, A., “Truth and Paradox,” Journal of Philosophical Logic, vol. 11 (1982),
pp. 1-60.

[3] Gupta, A., and N. D. Belnap, The Revision Theory of Truth, MIT Press, Cam-
bridge, Massachusetts, 1993.



218 GIAN ALDO ANTONELLI

[4] Herzberger, H. G., “Notes on naive semantics,” Journal of Philosophical Logic, vol.
11 (1982), pp. 61-102.

[S] Rogers, H., Theory of Recursive Functions and Effective Computability, McGraw-
Hill, New York, 1967.

[6] Soare, R. 1., Recursively Enumerable Sets and Degrees, Springer-Verlag, Berlin,
1978.

Department of Philosophy

P.O. Box 208306

Yale University

New Haven, CT 06520-8306
e-mail: antonelli-aldo@cs.yale.edu





