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A Smart Child of Peano's

V. Yu. SHAVRUKOV

Abstract We calculate the provability logic of a special form of the Fefer-
man provability predicate together with the usual provability predicate of
Peano Arithmetic. In other words, we construct a bimodal system with the
intended interpretation of the expression Ώφ being as usual the formaliza-
tion of "φ is provable in PA" and the new modal operator Δ standing, when
applied to φ, for "there exists an x s.t. IΣ* is consistent and proves φ". The
new system is called LF. We construct a Kripke semantics for LF and prove
the arithmetical completeness theorem for this system. A small number of
other issues concerning the Feferman predicate, such as uniqueness of gόdel-
sentences for Δ, is also considered.

/ Introduction The Feferman provability predicate for reflexive recursively
axiomatized theories emerged for the first time in Feferman's paper [2]. Start-
ing with a reflexive theory, Peano Arithmetic PA being the conventional exam-
ple, one chooses a sequence of finitely axiomatized theories (PA\n)n(Ξω with
PA\n + 1 extending PA\n, and PA = (J*eω PA\n.

Outside modal-logical contexts, let us write Δ for the Feferman predicate
reserving the shorthand D for the usual provability predicate. Aφ is then defined
as the formalization of

"there exists a n x G ω s.t. PAfjc is consistent and PA|~x f- φ".

The sequence (PA\n)nGω is called the base sequence for this Δ.
The reflexiυity property of PA translates as saying that for all n E ω PA

proves that VA\n is consistent. This was first established by Mostowski [13]
and is crucial for practically all applications of Δ.

The first use of Δ was to illustrate the relevance of the Hilbert-Bernays de-
rivability conditions to Gόdel's Second Incompleteness Theorem. The close con-
nection of Δ to relative interpretability became apparent in Feferman [2], Orey
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[15], and Hajek [5]. The celebrated fixed point of Theorem B of Lindstrόm [8]
and Lemma 4.5 of Svejdar [21] also makes implicit use of Δ.

In Montagna [11], Visser [22], and Smoryήski [19], Δ is treated as an object
rather than just as a tool of study. Such also is the approach of the present paper.
Motivation is discussed in detail in the second of the three aforementioned
papers. This shift of Δ's status necessitates a closer look at its definition. For
most applications the exact content of the theories PAf/7 is fairly unimportant
(see Orey [15], Lindstrόm [8], Svejdar [21], Montagna [12], or Berarducci [1])
and one is therefore usually contented with the traditional choice

PA\n = the theory axiomatized by the axioms of PA of gδdelnumber < n.

The relation of PA\n to PA\n + 1 becomes then dependent on tiny inti-
mate details of gόdelnumbering of sentences and thus the only feasibly available
properties of (PA\n)nGω turn out to be the ones that we have already men-
tioned.

Smoryήski [19] provides an example of a property of Δ whose proof and,
as we shall see in Section 6, whose validity is dependent on the exact choice of
(PA\n)nGω. He also shows that a more specific choice

(see Paris and Kirby [16], Sieg [17], or Chapter 10 of Kaye [6]) can make ques-
tions about Δ much more malleable thus providing a better controllable Δ. The
key property of the theories \Σn is

Proposition 1.1 (IΣi) For all nGω the theory I Σ Λ + 1 proves uniform Π n + 2 -
reflection for IΣΛ, that is:

lΣn+\ h 'for every ΠΛ+2-sentence TΓ, if lΣn h TΓ then TΓ is true'.

While the fact itself is widely known (see Leivant [7] or Ono [14]), its formaliz-
ability in IΣ1 has, as far as I know, never been explicitly stated, but it is not dif-
ficult to trace down the proofs of Corollary 4.4 of Sieg [17] or Exercise 10.8 of
Kaye [6]. As an immediate corollary we have:

Corollary 1.2 ( IΣ^ For all m,n E ω PA proves uniform Hm-reflection for
lΣn.

The property of PA expressed by Corollary 1.2 is known under the name of
essential reflexivity.

Although the Δ based on (lΣn)nGω is not, strictly speaking, a Feferman
predicate for IΣ0 is, most likely, not finitely axiomatizable, this discrepancy need
not deter us for, provably in PA, it is only the tail of the sequence (PA\n)nGω

that matters as far as Δ is concerned. Alternatively, one can replace IΣ 0 by
IΣ 0 + exp.

A number of other sequences of theories is known to enjoy properties sim-
ilar to Proposition 1.1 but we shall not strive for more generality. In this paper
we stick almost exclusively with the definition of Δ based on (IΣn)nfΞω and con-
struct the joint provability logic of D and Δ. The peculiarity of Δ in provability-
logical context is that the modal operator corresponding to this predicate asks
for a Kripke semantics incorporating a non-transitive relation S between nodes
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of a Kripke frame, for Aφ -> ΔΔ<p is not generally valid. This is the situation
encountered in Visser [22] where the author treats a provability predicate akin
to Δ . The property of Visser's provability predicate relied on to overcome the
difficulties caused by the failure of transitivity is completeness, which means that
in the absence of transitivity every node enjoys a unique 5-successor.

Our circumstances are slightly different. We show that lack of transitivity can
be effectively compensated by reflection (Proposition 1.1) and in fact reflection
keeps this lack to a minimum by providing a new modal principle approaching
transitivity.

In Section 2 we introduce, acquire some experience with derivations in, and
relate to formalized provability the modal system LΓ whose Kripke semantics
is dealt with in Section 3. Section 4 proves the arithmetical completeness theo-
rem for LF. Finally, in Sections 5 and 6 we answer two earlier questions concern-
ing Δ .

The extended Introduction should not lead the reader to hope for particu-
larly detailed proofs. While the author takes, in matters of exposition, full advan-
tage of his privileged position on a giant's shoulders, the reader may occasionally
need to refresh his/her knowledge of some background material, for which pur-
pose (Solovay [20] or Smoryήski [18, Part I]) and Visser [22] should be highly
beneficial. Those are also the sources that the reader will whenever possible be
referred to for an omitted (part of a) proof.

2 LF

Definition 2.1 The language of the system LF is the propositional language
with two unary modal operators D and Δ. Formulae in this language will be
referred to as (ΏA-)formulae. Shorthand for -ιΔ~i is V. The operator D abides
by the laws of the logic L (cf. Solovay [20, L = G], Smoryήski [18, L = PRL],
or Visser [22, L = (L1)-(L4)]) and here are the axiom schemas for Δ:

(Fl)

(F2) Πφ -> ΏAφ

(F3)

(F4)

(F5) VT

(S) Aφ-+A((Aψ-+φ)vAφ).

The only new rule is the Δ-necessitation rule φ/Aφ.
The nearest relative of LF in the literature is the system BMF of Visser [22].

The axiom schema (Fl) together with the Δ-necessitation rule yield the substitu-
tion property for LF: the results of substituting two LF-equivalent DΔ-formulas
for the same propositional variable in another DΔ-formula are LF-equivalent.
We shall use this property throughout this and the next Section without special
notice.
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Note that (S) is a weakened analogue of the transitivity schema Ώφ -> ΏΏφ.
In LF the operator Δ also enjoys a weak analogue of Lob's schema D(D<p -*φ)->
Ώφ which, for a change, follows now from weak transitivity (in fact, the weak-
ened versions are inter derivable):

Proposition 2.2 For [^/}zG/ a finite collection of ΏA-formulas and φ an
arbitrary ΏA-formula one has

LF h Δ if D-L Λ /j\ (Aψi -> φi)J V Aφ -+. φ) -> Aφ.

Proof: First we prove LF h Δ(D± v Aφ -». φ) -> Aφ.

(1) LF h Δ (D_L v Aφ ->. φ) -> Δ(Aφ -> ̂ >) (by Δ-necessitation and (Fl))

( 2 ) L Γ h Δ ( D l v Δ ^ ->. ^)->Δ(D± -^ φ)

(3) LF h Δ (-iD ± Λ D^ -+. Aφ) (by (F4))

( 4 ) L F h Δ ( D l v Δ ^ ^ . ^ ) ^ Δ ( I D ± Λ D ^ ^ . φ) (by (1) and (3))

(5) - Δ(D^ - ^) (by (2) and (4))

-*Π(Πφ->φ) (by(F4))

-> Ώφ (by Lob's axiom)

(by(F3))

(by (5)).

Second, one shows LF h Δ ((Aψ -+φ)v Aφ ->.φ)-+ Aφ for any formula ψ.

(6) LF h Δ ((Δ φ -> φ) v Δ φ) (by propositional logic and Δ-necessitation)

(8)LΈ\-A((Aφ-+φ)vAφ-+.φ)->A((Aφ^>φ)->φ)

(by(S))

(by (6))

(by (8))

-+Aφ (by (7)).

Finally, suppose that DΔ-formulas χ and θ are s.t. for any formula r one
hasLF hΔ(χvΔτ->. τ ) ^ Δ r a n d L F h Δ ( ί v Δ τ - > . τ)-+Aτ. The Propo-
sition will clearly be subject to a straightforward inductive proof once we estab-
lish that LF h Δ((χ Λ θ) V Aφ -*. φ) -» Aφ for φ arbitrary. Here is the
derivation:

(9)L¥\- A(θvAφ^. φ)-^ Aφ (bylH)
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(10) LFhΔ(χvΔ(0vΔ<?->.<?)-•. (θvAφ ->. φ))-+A(θvAφ ->. φ)
(bylH)

>.φ)
(by propositional logic)

->Δ(χvΔ^->. (θvAφ->. φ))

—> A(χv A(θv Aφ -*. φ) -+. (θv Aφ —•. φ))

(by (9))

-+A(θvAφ->. φ) (by (10))

^Aφ (by (9)).
The following Proposition will enable a slight shortcut in the Kripke model devel-
opments of the next Section.

Proposition 2.3 For {^/}/e/ a finite collection of ΏA-formulas one has

\ iGl

Proof: We shall prove that the negation of this formula implies J. in LF, that
is LF h Δ-i (DX Λ /AieΛAφi -* fr)) - ±:

„„, ,. . . . . *Δ D I Λ ^ ( Δ ^ Λ ) vΔl-».l
iei I W /e/ /

(by(F5))

-> Δ ± (by Proposition 1.2)

- * ± (by(F5)).

Next we formally define the provability interpretation of LF.

Definition 2.4 A function ° assigning arithmetic sentences to DΔ-formulas
is a gf-interpretation if

(i) ° distributes over propositional connectives,

(ii) (Πφ)° is the formalization of 4V° is provable in PA" and

(iii) (Aφ)° is 'there exists an x s.t. PAfjc is consistent and PAfx h φ°*
(recall that we have agreed that PA\x = IΣ^ unless otherwise spec-
ified).

Proposition 2.5 For any gf-interpretation °, LF h φ implies PA h φ°.

Proof: The correctness of all elements of LF with respect to gf-interpretations
for arbitrary Feferman predicates, except for the schema (S), is verified in Mon-
tagna [11] and Visser [22]. (S) is the only axiom which depends on our conven-
tion PA\n = lΣn.

We therefore only check (S): Aφ -+ Δ ( ( Δ ^ ->ψ)v Aφ). Suppose
Φ° E Πn. Reason in PA:
Assume
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Case 1. PA is consistent. In this case (Aφ)° is a synonym for (Πφ)° and
we have (DΔ<p)° by (F2)° whence (Ώ((Aψ -> ψ) v Aφ))° trivially fol-
lows. Since PA is consistent, this is the same as (Δ((Δ^ ->ψ)v Aφ))°
as required.

Case 2. PA is inconsistent. Let μ be the maximal x s.t. IΣ* is consistent.
(Note that by Corollary 1.2, μ + 1 > n.) We then have lΣμ h φ° and we
shall prove ((Aφ -+ψ)v Aφ)° inside \Σμ:

Case 2.1. lΣμ is consistent. This one is easy: IΣ^ h φ° and there-
fore (Aφ)°.

Case 2.2. lΣμ is inconsistent. By Proposition 1.1 the theory \Σμ_x

is consistent and hence for any arithmetical sentence y one has
Δ γ iff IΣμ-i hγ. But then we have (Aψ-• ψ)° by Proposition 1.1,
for φ° is a Un- and hence a Uμ+ι-sentence and provability in
lΣμ_ι testifies to the truth of such sentences.

Thus in either case ((Aψ ^>ψ)v Aφ)°.

Thus in either case (Δ((Δψ -> ψ) v

To close the Section we present yet another derivation in LF. The topic comes
from Smoryήski [19] where the author shows PA-provable uniqueness of Δ-
gόdelsentences, i.e., fixed points of the form y <-> -iΔγ for the Feferman pred-
icate based on (IΣn)n(Ξω. Relying on Proposition 2.5 we are now able to give a
purely modal proof of a formalization of this result. Our proof appears to be
different from that of Smoryήski.

Proposition 2.6

LFhD(/?<-> - IΔ/7)ΛD(<?++ -iΔtf) ->. Π(p^q).

Proof: We shall only prove one half of the implication, namely we simplify the
succedent to D (p -• q).

(1) L F h D ( π ^ Δ ^ ) ^ D ( π ^ -> Δ((Δ/> ->/>) v Aq)) (by (S))

LF h D ( i 0 ~ Aq) - D(-iςr -> ΔiΔ^r) (by (F2))

(2) -+A(Ap^p)) (by(l))

(3) LF h D(i/? -> Δ/7) -* ΠA(^Ap-^p) (by (F2))

LF h D (-1/7 ^ Δ/7) Λ D (-«<7 <-•

(by (2) and (3))

>. D(p^q).
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Exercise 2.7 Show that all Δ-gδdelsentences are provably in PA equivalent
to the sentence

Vx(lΣx\-ΊΣx\- ±'-+IΣx\- ±).

We shall return to the subject of godelsentences in Section 6.

3 Models for LF

Definition 3.1 A marshmallow frame is a tuple W — (W,R,S) where Wis
a nonempty finite set, and R and S are binary relations on W s.t.

(i) R is transitive and irreflexive,

(ϋ) R <= S,

(iii) RoS^R9

(iv) SoR^R,

(v) If xSy and xRz then tiίy,

(vi) If xSySz then xSz or ySy,

(vii) For each x there is an j s.t. xSy.

We refer to property (vi) as skew-transitivity. For W a marshmallow frame we
define

Tw={αe W\αRb for no b G W)

Dw= {αG W\αSα}.

and agree to always omit the subscripts. In this notation we have

Lemma 3.2 (a) If x G W - T then (xRy iffxSy).

(b) IfxSy andxGTtheny G Tas well

(c) DcΓ,

(d) For allxe W there is ay G Ws.t. xSy G D.

Proof: (a) follows from (ii) and (v) of Definition 3.1.

(b) Immediate from (iv) of Definition 3.1.

(c) follows from (a) and (i) of Definition 3.1.

(d) Consider an x G W. Suppose that y G D held for no y G W s.t. xSy.
Then by iterating (vii) of Definition 3.1 we could get an infinite sequence x =
XQ SxχSx2 . . . By induction ony one shows using skew-transitivity that xSxiSxj
for all / < j. On the other hand, W is finite, so we have xSXj = Xj for some / < j
which is a contradiction for one then has xSXj G D.

Definition 3.3 A marshmallow model is a pair <W = (W,If-), where W =
(W,R,S) is a marshmallow frame and Ih is a forcing relation (cf. Visser [22])
between elements of Wand DΔ-formulae, R and S being the accessibility rela-
tions for D and Δ, respectively. One writes °W Ih φ if α Ih φ for all α G W.
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Proposition 3.4 For any ΏA-formula φ and any marshmallow model °\N, if
LΈ\-φ then <W Ih φ.

Our aim is to reverse the implication of Proposition 3.4. In doing so we shall fol-
low faithfully closely the presentation of Visser [22,5.3] where lolly-models, of
which our marshmallow models are strongly reminiscent, are handled.

Definition 3.5 A finite set a of DΔ-formulas is adequate if

(i) D ± G α ,

(ii) a is closed under sub formulas,

(iii) If φ G a is not of the form ~^φ then -ιφ G α,

(iv) Πφ G a iff Aφ G α,

(v) If Aφ,Aφ G a then (Aφ^> φ) v Aφ G a.

Clearly, any finite set of DΔ-formulas is a subset of an adequate set.

Definition 3.6 Let a be adequate and define Wa to be the set of all sets w of
DΔ-formulas satisfying

(i) If φ,-κp G a then φ G W or -ιφ G W,

(ii) If φ G w - a then φ is of the form Δ ^ and both φ and AAφ are in w,

(iii) LF does not refute the conjunction of any finite subset of w.

The set Wa of Definition 3.6 is finite, for if w G Wa then, due to clause (ii), for-
mulas from w that are outside a come in chunks, each one of which can be traced
down to a different formula in α. Moreover,

Lemma 3.7 Each set of ΏA-formulas satisfying (ii) and (iii) of Definition 3.6
has a superset in Wa.

Proof: Starting with such a set, keep on adding appropriate elements of a until
(i) is also satisfied.

Definition 3.8 Let a be adequate. We define relations Ra and Sa on Wa. Put

vRa w iff (for any formula <p, if Πφ G v then <p,Δ<ρ,ΔΔ<ρ,... G w)
and there exists a formula Dψ G w — v.

Recall that in marshmallow frames the set T of R-topmost elements is defined
exclusively in terms of the relation R (cf. Definition 3.1). Even though we do not
yet know whether we are dealing with a marshmallow frame, we shall still have
that definition of Tin mind. Let

vSa w iff vRa w or

v9w G T, φ G w whenever Aφ G v, and for any φ9χ,
if Aφ G v Π a and Δ χ G w Π a then Δ ^ G w or χ G w.

Lemma 3.9 For an adequate set a the frame Wa = (Wa9Ra,Sa) is a marsh-
mallow frame.
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Proof: We shall only prove clauses (vi) and (vii) of Definition 3.1 of marshmal-
low frames, referring the reader to Visser [22] for the rest (or rather the begin-
ning) of the proof as well as for the fact that

for any w G Wai wGT iff D± G w.

Clause (vi) comes first. Suppose uSuvSa w and not υSav. We stipulate that
all the three elements u, v9 and w are in Γfor otherwise the claim can be derived
from the properties of marshmallow frames considered to be already established
for Wa. The failure of vSav means then that we can fix a formula Aφ G v Π a
s.t. φ φ. υ. Let us check uSa w. Suppose Aφ Gwso that by uSa v one has ψ G v.
If Aφ G a then recall that we also have Aψ GvΠa so φGv or Aφ E v must
hold. The first is not the case, therefore Aφ E υ. If Aφ £ a then ΔΔ<p E u and
hence Aφ E v all the same. Since vSaw, there holds φ E w and if, in addition,
Aφ E a and Δ x E w Π a then Aφ G w o r χ E w .

We turn now to clause (vii). Let v E Wa. We look for awGJ¥a with ίΛSα w.
We only consider the case v E T so that D l G ϋ for if t> ̂  T then there is a
ZG JVa with ι;jRαz implying i>Saz. Consider the set

wo= [Π±] U {φ\Aφeυ} U {Δi/'-i/ΊΔi/Έcx}.

No conjunction of any finite subset of w0 is refuted in LF for otherwise for a
certain finite d ̂  [φ\Aφ G v] one has

h D l Λ ^ Δ ^ -*. Δ-i ^ (Aψ-+φ) (by Δ-necessitation and (F3))
AφGd AφGa

h D l Λ ^ Δ ^ - ^ l (byProposition2.3)

which would deny t> membership in WP̂,. Furthermore, we show that w0 satisfies
(ii) of Definition 3.6: Suppose Aφ E w0 — a. Then ΔΔ<ρ E f — a, hence
Δ<p,ΔΔΔ^> E t>, hence ^ , Δ Δ ^ E >v0. There is therefore by Lemma 3.7 a set
w with w0 <Ξ w E W .̂ Moreover, since D± E w0 <Ξ w, one has w G ί . Finally,
one has ψ E w whenever Δψ E w Π α because {Δ\t >̂ ψ \ Aφ E α j ^ w. So
vSaw.

Definition 3.10 The marshmallow model <Wa = (Wa, Ih) is defined by putting

w\\-p iff p E w

for propositional variables p E α and w E J¥a.

Lemma 3.11 For φ G a and w G Wa one has w\\-φiffφGw.

Proof: The lemma is proved by induction on the structure of φ. See Visser [22]
for the induction step in the D case. We turn to Δ under the assumption w G T.
(if): Suppose Aφ GwΠa. Then for all v with wSav one has φ Gv, that is, by
IH, v Ih φ and hence w Ih Aφ.
(only if): Suppose Aφ G a — w. Consider the set

uo=l-iφ}UlΠ±]U{ψ\AψGw}U{(Aχ-+χ)vAΘ\AχGa, AθGwΠa}.
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We show that u0 is consistent with LF. Suppose it is not. Then for some finite
set d g [φI Aψ G w) there holds

AψGd ΔχGα

AΘ&wΠa

{(Aχ^χ)vAΘ)-+.φ

AφEd Δχ£α
AθGwΠa

(by Δ-necessitation and (F3))

Δ 0 - . Aφ (by(S)).

Thus Δ<p could not escape being in w contrary to assumptions. Therefore u0 is
consistent and, as in the proof of Lemma 3.9, it is seen that u0 satisfies (ii) of
Definition 3.6. Hence there exists a u with u0 Q u G Wa. We leave it to the
reader to check wSau so that w ¥ Aφ because, by IH, u ¥ φ.

Theorem 3.12 LF h φ iff for any marshmallow model <W one has <W Ih φ.

Proof: (only if) is Proposition 3.4.
(if): Suppose LF \t φ. Let then a be an adequate set containing -i φ. By Lemma 3.7
there exists &w GWa with -yφGw. Hence by Lemma 3.11 we have w ¥ φ and
so <Wa ¥ φ as required.

Exercise 3.13 (de Jongh) Consider the logic F on D-free DΔ-formulas axi-
omatized by (Fl), (F5), (S), and Δ-necessitation.

(a) Consider marshmallows (W,S), S being a binary relation on a finite non-
empty Wand satisfying (vi) and (vii) of Definition 3.1. Prove F to be complete
w.r.t. marshmallows.

(b) Show that LF is conservative over F.

Hints: (a) Weed the proof of Theorem 3.12.
(b) Observe that any marshmallow can be represented as the set T of an

appropriate marshmallow model.

4 A Solovay function In this Section we prove the arithmetical complete-
ness theorem for LF. As usual, we shall do so by constructing a suitable Solovay
function (cf. Solovay [20], Chapter 3 of Smoryήski [18], or Visser [22]) climb-
ing up a Kripke frame, namely one of the marshmallow frames constructed in
the previous Section. We describe the construction of a Solovay function for an
almost arbitrary marshmallow frame W= (W,R,S) which however will have to
satisfy the following two conditions:

(i) fFhas a bottom node, that is there is a node 0 E WsΛ. ORa oτO = a for
allaGW and

(ii) There is a node a G W distinct from 0.

Note that by appending a new bottom node R- and 5-below any given marsh-
mallow model one obtains another one satisfying both (i) and (ii).
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The construction of the Solovay function F: ω -* Wproceeds parallel to that
of an auxiliary function G: ω -> ω U {—l,oo} which stores some information rel-
evant for F's locomotion. The two bear a close relationship to the pair appear-
ing in Section 10 of Visser [23] that are, in turn, a variation on the Solovay
function of Berarducci [1].

To make things work smoothly we have to require that the formalization of
proofs in arithmetic is reasonable and uniform so that the following is known
t o IΣX:

(i) If x happens to be a proof in PA of a sentence φ then x is not a proof in
PA of any sentence distinct from φ,

(ii) If x is a PA-proof of φ then x also is a proof of the same sentence in IΣy
for some y,

(iii) If x is a proof of φ in IΣ ,̂ then x is also a proof of φ in PA as well as
in IΣZ for all z > y9

(iv) If φ is provable in \Σy then there are arbitrarily large IΣ^-proofs of φ.

Definition 4.1 (IΣi) Define primitive recursive functions Fand G by simul-
taneous recursion and the Recursion Theorem:

F ( 0 ) = 0 ; G(0) = oo.

The value of F(x + 1) and G(x + 1) is defined by cases.

Case A: F(x)Ra and x is a PA-proof of L Φ a,

any y s.t. x is an IΣ^-proof of L Φ a

F(x+ l)=a; G(x+ 1) = ifaeT,

o otherwise.

Case B: F(x)Sb £ D9 F(x) G Γand x is an IΣG(X) -proof of L Φ b.

F(x + 1) = b; G(x + 1) = G(x).

Case C: F(x)Sc G D, F(x) e Γand x is an IΣG(X)-proof of L Φ c.

F(x + 1) = c; G(x + 1) = G(x) - 1.

Case D: None of Cases Λ-C is the case.

F(x + 1) = F(x); G(x + 1) = G(x).

Finally, L Φ d is the formula expressing that d is not the limit value of F.
By "any y" in Case A we mean, of course, any y chosen in a primitive-

recursive way. In Cases B and C, we stipulate that no x is an IΣ_χ-proof of
anything.

Lemma 4.2 (The Limit Lemma) (lΣχ) Both Fand G are eventually constant.

Proof: It is easily established by induction on the argument that the function
G is monotonously decreasing and hence reaches a limit value.

Were Fto stay forever nomadic, it would sooner or later reach T wherefrom,
by Lemma 3.2(b) it cannot go back. Moreover, one can, just as in Lemma 3.2(d),
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prove that it would have to infinitely often come to nodes in D, each time
decreasing, according to Case C, the value of G by one. This clearly contradicts
the fact that G has a limit. Thus F reaches a limit as well.

Definition 4.3 (IΣO The Limit Lemma allows one to define the following
two ε-terms (that is, these are definitions of names rather than of values):

L = lim F(x); μ = lim G(x).
ΛΓ-

Let us further agree for the remainder of the paper that IΣ*, = PA.

Lemma 4.4 (IΣ{) (a) IfL = aΦθ then Π\X/aRbL = b.
(b)IfL = a then for no b with aRb does one have ΠL Φ b.

Proof: (a) In the case that a £ Γthe old proof (cf. Solovay [20] or Smoryήski
[18, Chapter 3]) goes through for F can only leave a by an i?-arrow whereafter
it is only allowed to go along R- and S-arrows. Fortunately, we have both
RoRQR andi?<>Sc R.

Suppose now a E Γso that we have to show that PA is inconsistent. Let x
be such that G(x) < oo and ΪΣGM V L Φ a. Reason in PA:

By the Limit Lemma, there is a b s.t. L = b. Moreover, after Fhad reached
Γ, the function G could only decrease and therefore the proof oϊLΦb that
brought F to b is a proof in \Σy with y < G(x) and hence in IΣGM. But if
L Φ bis proved in IΣGM then, since by Corollary 1.2 we have reflection for
IΣG(X), L should be actually unequal to b.

Thus PA is indeed inconsistent.

(b) is proved exactly as before (cf. Solovay [20] or Smoryήski [18]).

Lemma 4.5 (IΣ{) μ is the largest x s.t. IΣX is consistent. Therefore for any
arithmetical sentence y one has Δ γ iff lΣμ h γ.

Proof: If L £ Tthen by Lemma 4.4 the whole of PA (= IΣ^ = lΣμ) is consis-
tent. Assume L E T which implies μ < oo. We have to show that lΣμ is consis-
tent whereas IΣ μ + 1 is not.

Suppose lΣμ were not consistent. By clause (vii) of Definition 3.1 there is a
b s.t. LSb. We then have ΪΣμ h L Φ b. If b £ D then b Φ L and by Case B the
function F would have to walk away from its limit every time an IΣ^-proof of
LΦb occurs. If b E D then on encountering an IΣ^-proof of L Φ b the func-
tion G would, by Case C, have to decrease below its limit. Thus lΣμ has to be
consistent and, moreover, consistent with L = b.

To show that lΣμ+ϊ is inconsistent reason in I Σ μ + 1 :

By the Limit Lemma, there is an a s.t. L = a. Since the function G can only
decrease, the proof of L Φ a that brings F to a is an \Σμ-proof. But then,
since L Φ a is a Π2-sentence, L cannot, by Proposition 1.1, be equal to a. A
contradiction.

I Σ μ + 1 is therefore inconsistent.
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Lemma 4.6 (IΣO Suppose L = a E T.

(b) IfaSb then lΣμ is consistent with L = b.

Proof: (a) Suppose L = aGT. Consider a node cs.t. a Φc and c does not sat-
isfy aSc. Reason in lΣμ:

To get to c the function F has to leave a and after that, by skew-transitiv-
ity, arrive at and leave a node in D. This by Case C of Definition 4.1 involves
a decrease in the value of G and therefore the proof that brings Fto c is an
IΣ^_!-proof of L Φ c. Reflecting on that we get L Φ c.

Furthermore, in the case that a £ D, we must have had an lΣμ-proof of L Φ a
to get to a in the first place.

Thus for every node c that is not S-accessible from a we have lΣμ YLΦc.
The claim follows.

(b) See the first part of the proof of Lemma 4.5.

Lemma 4.7 (IΣX) (a) IfL = aΦθ then A^l/aSbL = b.

(b) IfL = aSb then VL = b.

Proof: For L φ. Γthis reduces to Lemma 4.4. For L G Γ u s e Lemmas 4.5-6.

Lemma 4.8 L — 0 is true and for any a E W, the sentence L = a is consis-
tent with PA.

Proof: Consult Solovay [20] or Smoryήski [18] or use Lemma 4.4.

Theorem 4.9 LΓ h φ iff for any gf-interpretation °, PA h φ°.

Proof: We have already proved (only if) in Proposition 2.5.
(if) This is proved in the standard manner (cf. Solovay [20] or Smoryήski [18]):
Suppose LF V φ. Then by Theorem 3.12 we have a marshmallow model <W =
(W,R, S, If-) with <W W φ. Append a new bottom 0 to <W and apply Definition 4.1
to the result. Define a gf-interpretation ° by putting

PO= ^ L = a

WBaWp

for propositional variables/? occurring in φ. Use Lemmas 4.4 and 4.7 to show
by induction on the structure of φ that

so that if W 3 a \\f φ then PA h φ° would imply PA h L Φ a contradicting
Lemma 4.8. Conclude PA V <p°.

Theorem 4.9 is very useful for constructing gf-interpretations under which
a particular DΔ-formula is not provable. As usual it is accompanied by a sim-
ilar result which allows to construct gf-interpretations ° rendering a DΔ-formula
φ provable by ensuring that (Π^)° is true.

Definition 4.10 For φ a DΔ-formula define the formula R{φ) to be

-ιD _L Λ /A {Πφ -• φ I D^ or Δ ^ is a subformula of φ].
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Proposition 4.11 Suppose φ is a ΏA-formula and the bottom Oof a marsh-
mallow model °W forces R(φ). Then there exists a gf-interpretation ° s.t. (φ° is
true if and only if 0 Ih φ).

This Proposition enjoys a proof similar to that of Theorem 4.9 for assum-
ing R(φ) is forced at the bottom 0 of a marshmallow model we can drop the
antecedent L Φ 0 in the key inductive step PA h L Φ 0 -> (L Ih Ώφ -* ΏL Ih φ) of
Theorem 4.9. (Consult Solovay [20] or Chapter 3 of Smoryήski [18] for a sim-
ilar situation.)

Remark 4.12 Theorem 4.9 and Proposition 4.11 can be adapted to the logic
F on D-free formulas and marshmallows W= (W9S) of Exercise 3.13. In this
case the requirements (i) and (ii) on the marshmallow frames handled in our con-
struction can be replaced by the single condition

(iii) There is a node 0 G W s.t. OSa for all a G W.

Nodes 0 that satisfy this property are called centers and marshmallows of this
kind are centered. Any marshmallow can clearly be made centered by adding a
center without disturbing the forcing relation at the old nodes.

The construction of the Solovay function for a marshmallow °\J\I with a cen-
ter 0 can be visualized as follows: Make the marshmallow into a marshmallow
frame by adjoining a new jR-bottom 0R below the whole of <¥. After that apply
Definition 4.1 to the resulting frame. However, when proving the analogue of
Lemma 4.7, 0 and 0R should be treated as a single node, that is, one defines
the sentence L = "0 + 0R" as L = 0 v L = 0R, with the understanding that the
Δ-forcing relation at "0 + 0R" coincides with that at 0.

The nice point about this construction is that here we get more satisfactory
commutation in that one can prove IΣX\-L = "0 + 0R" -• VL = "0 + 0*" and
hence drop the precondition that 0 forces a certain formula in the analogue of
Proposition 4.11. This amounts to an embedding of the (finite) Δ-algebra cor-
responding to <W into that of PA.

The progress achieved so far casts doubt on the conclusions of a discussion
in Chapter 4 of Smoryήski [18] drawn from investigations into the structure of
finite fixed point algebras. Smoryήski argues that extensional arithmetical for-
mulae subject to successful finite algebraic or relational modeling ought to bear
a much closer similarity to D than does the Δ of the present paper. The point
here is that a finite Δ-algebra never, except for the trivial case, generates a fixed
point algebra the way diagonalizable (= D-) algebras do, but this does not pre-
vent finite Δ-algebras from being applicable to the study of the predicate Δ.

Exercise 4.13 Consider logics LFω and F ω , where LFω is obtained from LF
by adding the schema Ώφ -> φ and the logic F ω results from the logic F from
Exercise 3.13 by adding the schema Δ<ρ->.<pΛΔΔ<p with the usual restriction
that whatever is derived with the help of the new schemas is in both cases sub-
ject neither to D- nor to Δ-necessitation.

(a) Prove that LFω h F ω and that LFω is conservative over F ω .

(b) Prove that for any DΔ-formula φ one has LFω h φ iff ω t= φ° for any
gf-interpretation ° (and hence the same holds for F ω and D-free φ).
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Hint: (a) Show that F ω is complete w.r.t. centers of centered marshmallows. For
the "difficult" direction observe that if for a node a of a marshmallow <M and
a D-free formula φ one has

r Λ
a\r /fa \Aφ ->. φ A /fa Anφ\φ a subformula of <p\

I 2<n<N )

with N safely larger than the largest number of nested occurrences of Δ's in φ,
then one can, preserving the forcing at a of subformulas of φ, transform cM into
a marshmallow of which a is a center,

(b) Use Proposition 4.11.

The last exploit in this Section of the Solovay function F introduced in Def-
inition 4.1 is to illustrate that the validity of the axiom (S) w.r.t. gf-interpreta-
tions might actually fail under a choice of (PA\n)n(Eω, the base sequence for
Δ, different from (IΣn)nGω. Let con T denote the sentence expressing the con-
sistency of a finitely axiomatized theory T and consider the following sequence:

_ Γ l Σ Λ / 2 if n is even,

\ IΣ(«-i)/2 + con I Σ ( Λ _ 1 ) / 2 otherwise.

A similar, although shorter, sequence was considered by Counterexample 3.1 of
Smoryήski [19]. We write Δ* for the Feferman predicate based on this sequence
of theories. Note that since the base sequence just introduced is a refinement of
the base sequence (lΣn)neω corresponding to Δ, we have IΣ! h Δ γ -> Δ*γ for
all sentences γ.

We shall show that (S) and, indeed, its consequence, the modal schema
V(Aφ -> φ), are not valid for Δ*. First we need to know more about the lim-
its of the functions F and G of Definition 4.1.

Lemma 4.14 (IΣO Suppose L G T - D.

(a) lΣμ h L G D <+ -icon IΣA.

(b) If there is a node b with LSb £ D then lΣμ is consistent with con IΣ^.

(c) lΣμ + con lΣ-μ h \HJaSb^DL = b.

Proof: (a) Let L = a E T — D and reason in IΣ^:

If L = b G D then G must have decreased its value when getting to b and
therefore μ < μ. By Lemma 4.5 the theory IΣ^ is then inconsistent. Con-
versely, if L φ. D then either Case C takes place while F travels from a to L
in which case I Σ ^ YLΦL which, by reflection, is absurd, or Case C does
not occur during this period implying μ = jλ. By Lemma 4.5 it follows that
the theory IΣ^ is consistent.

(b) By Lemma 4.6(b) IΣμ is consistent with L = b. By (a) of the present
Lemma it therefore has to be consistent with con IΣ^.

(c) Immediate from Lemma 4.6(a) and clause (a) of the present Lemma.
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Proposition 4.15 There exists an arithmetical sentence y s. t.

PA \f V*(Δ*γ-»γ).

Proof: Consider the functions F and G operating on the following marshmal-
low frame:

R,S

Observe:

IΣi h L = 2 -». L Φ 3 Λ (IΣμ V L = 3) (by Lemma 4.6(a))

->. L Φ 3 Λ Δ*L = 3 (by Lemma 4.5)

IΣ! h L = 1 ->. con (IΣμ + con IΣ^) Λ (lΣμ + con ΪΣμ h L = 2)

(by Lemma 4.14(b) and (c))

-> Δ*L = 2.

This combines to give

IΣi h L = 1 -* Δ*(L Φ3A A*L = 3)

and therefore by Lemma 4.8

Thus putting y to be L = 3 we are done.

5 Some fixed points Many qualitative and quantitative aspects of fixed
points of arithmetical formulae corresponding to modal DΔ-formulae under
interpretations similar to our gf-interpretation are discussed in Visser [22]. In this
Section we first observe that Theorem 4.11 affords a corollary classifying the
quantitative behavior of fixed points of gf-interpretations of DΔ-formulae. The
argument is adapted from Application 6.11 of Visser [22].

Proposition 5.1 Let φ(p) be a ΠA-formula where no propositional variable
other thanp occurs and s.t, every occurrence of that variable takes place within
the scope of a modal operator. Then we have either

(i) The arithmetical sentence y satisfying
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is PA-provably unique, i.e.,

PA h D ( 7 l ^ φ°(yx)) Λ D ( γ 2 •* φ°(y2)) "*• Π(7i ++ Ύi)

for all arithmetical sentences y\ and γ 2 , or

(ii) There exist infinitely many inequiυalent fixed points of φ° (x).

Proof (sketch): Suppose (i) is not the case. Then by Theorem 4.9 we have

Therefore by Theorem 3.12 there exists a marshmallow model W = (JV,R,
S,lh) whose bottom 0 forces Ώ{p <-> φ(p)) Λ D ( ^ φ(Q)) but not D (/?<-• q).
Note that we must then have a node aGT^ W which does not force/? «•> # for
otherwise by induction on i?-depth of elements of FF it could be shown that
p++q is forced everywhere. We isolate the subset Tof Win the form of a marsh-
mallow with a forcing relation: T = (T,S\T,\\~\T) (here \ stands for restric-
tion) and construct a marshmallow model °\ίN which consists of two copies of
T with TV new linearly /^-ordered nodes appended i?-below those two copies. The
exact value of TVe ω will be specified later. We define the forcing of a new prop-
ositional variable r in the two copies of T so as to coincide with the forcing of
p in the first copy and with that of q in the second. Further define forcing at the
new nodes of the propositional variables p9 q and r by /^-downward induction
in the unique way that makes p++ φ(p), q <-• φ(q) and r++φ(r) forced every-
where in %v A n easy application of the pigeon-hole principle shows that we can
choose the value of N so that

R{Π(p -+ φ(p)) ΛΠ(q~ φ(q)) Λ D ( Γ H φ(r))

-•. Π(p ++ q) v Π(p ++ r) v Π(q +> r))

is forced at the bottom of %v We then apply Proposition 4.11 to obtain a gf-
interpretation ° under which the formulas

Π(p++φ(p)), a(q++<p(q)), and Π(r ++ φ(r))

are true and the formulas

r)9 and Π(q ++ r)

are false so that we have obtained three fixed points of φ°(x) that are not prov-
ably equivalent in PA.

The reader will easily see how to generalize this proof to obtain arbitrarily
finitely many PA-inequivalent fixed points of φ°(x).

Next we address fixed points of a particular DΔ-formula, namely sentences
7 satisfying

PA h γ ^ Δ γ .

These are called A-henkίnsentences. The two such fixed points that surrender
most promptly to an eager quest are ± and T which shows that the modal for-
mula Δ/7 falls into the second category of Proposition 5.1. Note that both sen-
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tences ± and T are Σ\. In fact, any Δ-henkinsentence produced by a direct
application of our Proposition 4.11 will be Σ{. Visser [22] asks whether this is
characteristic of all Δ-henkinsentences.

We shall show that this is not the case, namely we exhibit a Δ-henkinsentence
which is not provably equivalent to any Σ{ sentence. The Δ-henkinsentence that
we construct is actually an oreysentence, that is a sentence 7 s.t. the theories
PA + 7 and PA + -iγ are relatively interpretable in one another, or, equivalently,
both are interpretable in PA. This may be viewed as somewhat unexpected since
oreysentences originally used to be constructed as fixed points of the formula
1Δ/7 rather than Ap (see Svejdar [21] and Lindstrόm [8]). To deduce the non-
Σ rness of an oreysentence we lean on the following

Proposition 5.2 For arithmetical sentences 7 and δ the following are equiv-
alent:

(i) PA + y is relatively interpretable in PA + δ,

(ii) For every n E ω, PA f- δ -> con(IΣΛ + 7),

(iii) Every model of PA + δ has an endextension modeling PA + 7.

(Orey [15], Hajek [5], and Guaspari [3]; see Berarducci [1] for a concise presen-
tation. This fact also serves as an excuse for not giving the definition of relative
interpretability here.)

Note that for 7 an oreysentence one can by iteratedly applying (i) => (iii) con-
struct an infinite sequence (cΛ/l/)ίGω of models of PA s.t. cM/+i is an endextension
of cM/ and cM/+i 1= 7 iff cM/Ψ 7. Thus 7 exhibits a mutability alien not just to Σι
sentences, but also to any boolean combination of those (see Manevitz & Stavi
[10] for more details).

Proposition 5.3 There exists an oreysentence which also is a A-henkinsentence.

Proof: We shall construct the promised orey- and Δ-henkinsentence by means
of another Solovay function. These functions have traditionally only been used
to obtain results of mind-sweeping generality, such as exemplified by our Theo-
rem 4.9, and resorting to this method to construct just one individual sentence
almost amounts to a breach of the code of honor. Nevertheless, I believe that
this format might help the reader to better visualize the proof thus enhancing the
digestibility of the argument.

The scene is set by the following Kripke frame:

- O 2
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The new name Q for the auxiliary relation suggests that it is going to be treated
in a way different from the one the relation S of marshmallow frames was treated
in Section 4.

We define the two relevant functions:

/(0) = 0; g(0) = ex.

Case A: 0 = f(x)Ra and x is a PA-proof of £ Φ a.

f(x + 1) = a; g(x + 1) = any y s.t. x is an IΣ^-proof of 2 Φ a.

Case B:f(x)Qb, andx is an lΣgM_rproof of 2 Φ b.

f(x+l)=b; g(x+l)=g(x).

Case C: f(x) Φ 0 and x is a proof in lΣg^x) of ±.

f(x + 1) =/(*); g(x + 1) = g(x) - 1.

Case D: None of the previous cases apply.

f(x+1)= f(x); g(x+l)=g(x).

The sentence 2 Φ d expresses, as before, that d is not the limit value of/.

First note that g is a decreasing function. Second, two occurrences of Case
B at the same value g guarantee at least one occurrence of Case C, and hence a
decrease in the value of g. Therefore \ΣX proves that both/ and g reach their
limit values. Call the ε-terms naming these limits 2 and M, respectively.

Claim 1 (IΣj): // 2 = 1 then \ΣM h 2 = 1.
Assume 2 = 1. Reason in IΣM:

Iff moves out of 1 and reaches a limit value a, then this can only be due to
a proof in IΣM_I of 2 Φ a which cannot exist since 2 = a. Hence 2 = 1.

Claim 2 ilΣλ): IΣM is consistent.
If 2 = 0 then I Σ M = PA is clearly consistent. If 2 Φ 0 then the claim is immedi-
ate on inspection of Case C.

Claim 3i\Σγ):If2φ0 then IΣM + 1 is inconsistent.
If g arrives at Mby Case C this is clear. If it does so by Case A then this can,
as usual, be established by reflection, for I Σ M + 1 knows that IΣ^ V 2 Φ2.

(In addition to Claims 1-3, the reader may amuse him/herself by showing that,
provably in IΣi, any occurrence of Case A or B is eventually succeeded by an
occurrence of Case C.)

So,

(1) IΣ! V 2 = 1 -• A2 = 1 (by Claims 1 and 2)

(2) IΣ! h 2 = 2 -+ A2 = 2 (symmetric to (1))

(3) IΣχ \-A2 = l-^A2Φ2

-+Π2Φ2

-+2 Φ0

->. 2 = 1 v 2 = 2

- 2 = 1 (by (2) and (3)).
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Thus £ = 1 is indeed a Δ-henkinsentence. Now we establish that it is an orey-
sentence as well. Consider a n « G ω . Reason in PA:

By Corollary 1.2 and Claim 3 there holds n < Mand hence, assuming £ = 1,
a proof in \Σn of £ Φ 2 would by Case B move/ to 2 and decrease g below
its limit.

Therefore

(4) PA h £ = 1 - con(IΣΛ + £ = 2)

->con(IΣΛ + £ Φ 1).

On the other hand,

PA h f * 1 ->. f = 0 v f = 2

->. con (PA + f = 1) v con(IΣrt + £ = 1) (symmetric to (4))

+ £ = 1).

Thus by (ii) => (i) of Proposition 5.2, £ = 1 is an oreysentence and satisfies the
statement of the Proposition (£ = 2 would have done just as well).

Remark 5.4 Proposition 5.3 also holds for Feferman predicates other than
the one based on (IΣn)nGω. One only has to modify the construction so as to
ensure that in Case B PA\g(x) can reflect on the proof x.

6 More gόdelsentences In this Section we shall produce one more example
highlighting the sensitivity of the provability-logical behavior of the Feferman
predicate to the choice of the base sequence of theories. With Proposition 4.15
we have already experienced the fragility of the axiom schema (S) and Propo-
sition 2.3 in this respect.

Here we assault Proposition 2.6 which asserted the provable uniqueness of
Δ-gόdelsentences for Feferman predicates satisfying (S). In other words, we set
out to produce a sequence of theories whose Feferman predicate possesses
inequivalent gόdelsentences. The uniqueness question for gόdelsentences of
Feferman predicates was raised by Montagna [11]. Smoryήski [19] discovered
uniqueness of gόdelsentences of Δ's based on (IΣn)nGω and similar sequences.
The same paper also ponders the question whether this uniqueness might fail
under a weirder choice of the base sequence. By settling this we show that the
situation is not unlike that with Rosser predicates: Guaspari and Solovay [4]
demonstrate that provable uniqueness of gόdelsentences for these predicates
(= rossersentences) depends on certain details of gόdelnumbering of proofs that
have not yet been seen to make clear proof-theoretic sense in other contexts.

Oddly enough, our main tool for this task is the Solovay function F launched
in Section 4 that was originally called to life to prove the completeness theorem
for the provability logic of a Δ with provably unique gόdelsentences.

Consider the predicate Δ' whose base sequence is (IΣn+ι(IΣn))nGω, where
the theories lΣn+i(lΣn) are defined by the requirement that

lΣn+ι(lΣn)\-y iff I Σ ^ h ' I Σ ^ h γ '
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for all sentences 7. While the reader will easily recognize the theory IΣ Λ + 1 (lΣn)
as proving exactly the same theorems as \Σn9 we shall see that godelsentences are
confused by this disguise to the point of losing their unique identity.

The next three lemmas investigate the interrelations of Δ' with the construc-
tion of Definitions 4.1 and 4.3 and in what follows we adopt some of the nota-
tion from Section 4.

Lemma 6.1 (IΣO If μ < 00 then μ is the largest x s.t. IΣ^ίlΣ^-i) is consis-
tent. Therefore for any arithmetical sentence 7 one has Δ'7 iff lΣμ (IΣ^_χ) h 7.

Proof: By Lemma 4.5 lΣμ+i is inconsistent and hence so is lΣμ+i (IΣμ). In the
other direction, if lΣμ h ΊΣμ_! h ±\ then one by reflection has lΣμ h _L which
would contradict Lemma 4.5.

Lemma 6.2 (IΣ2) Suppose L = a E T.

(a) I Σ μ ( I Σ H ) h W α ( S U S ^ = δ.

(b) IfaSb then lΣμ{\Σ-μ_x) is consistent with L = b.

(c) IfaS2b then I Σ ^ I Σ ^ ) is consistent with L = b.

Proof: (a) Take a node b which does not satisfy a(SΌ S2)b. Reason in lΣμ:

Since L Φ a

(recall that there is an IΣμ-proof of L Φ a since in real life L is equal to a),

the function F will have to abandon a for a different node. Reason in IΣyEi_1:

Were F t o reach the node b it would, after fleeing a, be compelled to
arrive at and leave two nodes in D, b being at least that far away.
Therefore a hypothetical proof of L Φ b that finally transports F t o
b is a proof in IΣ=_2 reflecting whereupon we get L Φ b.

This way we have shown lΣμ h Ί Σ ^ h L Φ by which proves the claim.

(b) If for a node b s.t. aSb we had lΣμ h 'IΣ^.j YLΦb\ we could conclude
lΣμ \- L Φ b by reflection, which contradicts Lemma 4.6(b).

(c) Let c be a node s.t. aScSb. Suppose for a contradiction that lΣμ \- 4IΣ^_! h
L Φ b' and reason in lΣμ:

Recall that by Proposition 1.1 the theory IΣA_χ is consistent. Therefore by
Lemma 4.5 μ > μ - 1 and so lΣμ\-LΦ b. By Lemma 4.6(b) we cannot then
have L = c.

But \Σμ\- L Φ c contradicts Lemma 4.6(b).

The reason why Lemma 6.2 takes IΣ2 instead of the usual IΣ! to formalize
is rather trivial: IΣ2 proves that μ — 1 > 0 so that lΣμ_{ can be trusted to carry
out the innermost argument in the proof of clause (a).

Lemma 6.3 (IΣ2) (a) IfL = aΦθ then Δ 'W

(b) IfL = a(S U S2)b then VL = b.
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Proof: If L $. Γthen PA is consistent and Δ' is the same as D. Lemma 4.4 set-
tles this case. For i G Γ u s e Lemma 6.1 and Lemma 6.2.

Proposition 6.4 There exists a base sequence of subtheories of PA s. t. the
Feferman predicate based on it possesses inequiυalent gόdelsentences.

Proof: Consider the predicate Δ' studied in Lemmas 6.1-3. Let us apply Lemma
6.3 to the marshmallow frame obtained from the marshmallow depicted below
by adjoining an ̂ -bottom 0.

3 O

An easy verification using that lemma shows that

and, in perfect symmetry,

So L Φ 1 and L Φ 3 are Δ'-godelsentences that are clearly inequivalent.
We would be cheating were we to declare the sequence (IΣΛ + 1 (lΣn))nGω and

the predicate Δ' to be a solution to our problem. For while it is easily seen that
each theory in this sequence extends its predecessor and the union of the sequence
is equal to PA, the question, as addressed from within PA, whether the theories
lΣn+ι(lΣn) are finitely axiomatizable appears to be much more complicated.
Rather than go into that we shall indicate how to modify the sequence so as to
obtain one of finitely axiomatized theories which would still preserve the plural-
istic effect on gόdelsentences. Here we use an adaptation of a technique of Lind-
strόm [9] for constructing a finite axiomatization of bounded-complexity
consequences of a theory.

For brevity, denote the earlier constructed sentences L Φ 1 and L Φ 3 by γ 0

and γi, respectively, and let further γ 2 denote ±. Consider the following fixed
point equation on the formula ξ(x):

/A
0</<2

0</<2
•*>)).

where T \-yδ stands for the formula expressing that δ has a T-proof of gόdel-
number < y. One can mimick the proof of Lemma 2, Case 1 of Lindstrόm [9]
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to the effect that for 0 < / < 2 and any n the theory lΣn + ξ(n) proves 7,- if and
only if I Σ Λ + 1 (lΣn) does. Moreover, this proof is straightforwardly formalizable
so that for all three Γs we get

(3) IE! h V*((IE, h ξ(χ) - * 7 / ) ~ I E , + 1 MIE, h 7 / ' ) .

Furthermore, we show that one can do with the formula IΣ^+j v ξ(jc) in place
of ξ(x) as well.

h v*((IE, h £<x) -> 7/) ̂  IEχ+1 H Ί Σ * H 7/') (by (3))

- I Σ ^ I-7/) (by reflection)

-+IΣx\-ΊΣx+ι\-yi')

(4) ^ ( I E , h I E , + 1

The other direction IΣi h VΛ:((IΣ^ h IΣ^ + 1 v ξ(x) ^ . 7 / ) -• (IΣX h ξ(jc) -• 7,-)) is
immediate. Note that for i = 2 this means that I Σ Λ + 1 (IΣΛ) and \Σn + (lΣn+{ v
ξ(«)) are provably equiconsistent.

We now claim that the sequence of theories (lΣn + ( I Σ Λ + 1 v ξ(n)))n<Ξω
together with the Feferman predicate Δ based on this sequence satisfy all require-
ments of the present Proposition. First, each theory is finitely axiomatized and

so that the sequence monotonously increases in strength and exhausts the whole
of PA.

Next we demonstrate that for 0 < / < 1 the 7,'s we have constructed are
Δ-gόdelsentences as well as Δ'-ones:

(by (1) and (2))

3x(con(IΣ x + 1 (IE,)) Λ (IE, + 1 (IE,) h 7/))

3x(con(IΣx + (IE, + 1 v ξ(χ))) A (IE, + (IE, + 1 v ξ(x)) h 7/))

(by (3) and (4))

Thus 7o and 71 are inequivalent Δ-gόdelsentences.

Another fact of a distinctly similar flavor that contrasts Proposition 2.6 is the
following:

Exercise 6.5 (Visser) Show that there are infinitely many inequivalent sen-
tences 7 satisfying

PA |-7<+ -1ΔΔ7

for the Feferman predicate Δ based on (IΣ,,)^^.
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