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A NOTE ON HALLDEN-INCOMPLETENESS

E. J. LEMMON

In [3], Hallden in effect suggests that a modal (or other) system S 1} is
unreasonable if there are wffs A and B, each containing one propositional
variable and such that the variable in A is different from the variable in B,
with the property that \-^ A v B but neither \-^ A nor \-§ B. In the same
paper, Hallden shows that any system intermediate between the Lewis
systems SI and S3 is unreasonable in this sense. McKinsey [9] relaxes the
condition that the wffs A and B contain just one variable; following this
approach, let us say that a system S> is Hallden-incomplete (H-incomplete)
iff there are wffs A and B with no variables in common such that |-§ A v B
but neither |-§ A nor [-§ B, and strongly ^.-incomplete iff there are wffs A
and B, with one variable in each and no variables in common, such that
(-g A v B\ but neither hg A nor \-^ B. Then evidently if S is strongly H-
incomplete then S is H-incomplete; the converse, however, seems to be an
open question. If a system is not H-incomplete, we say it is H-complete.
McKinsey [9] also shows that S4, S5, and all extensions of S5 (closed under
substitution and detachment) are H-complete, but that there is a system
between S4 and S5 which is H-incomplete. More recently Kripke [4], p. 94,
has shown additionally that the modal system T and the 'Brouwersche'
system B are H-complete. Aqvist [1] claims that any system between S2
and T is H-complete; his proof, however, is faulty, as is pointed out in [7];
the Corollary to Theorem 2 below gives the result.

We begin by showing that for S to be H-incomplete it is necessary and
sufficient that S be the 'intersection' of two disjoint extensions, in a sense
we now explain. For a system S, let T(S) be the class of theorems of S. We
say that two systems Sx and S2 (with the same formation rules) are disjoint
iff there are wffs A x and A 2 such that |-giA1, |—g2̂ 42, but not h g ^ i and not
hsi A* i e i f f neither T(Si) cT(S2) nor Γ(S 2)cΓ(Sj. We prove:

Theorem 1. A system S is H-incomplete iff there are disjoint systems Sx

and S2 such that Γ(S) = T(SX) Π Γ(S2).

Proof. Suppose S is H-incomplete, and that wffs A, B, with no variables in
common, are such that |-g A v B yet neither |-§ A nor \-§ B. Let SA (Sβ) be
the system whose axioms are all theorems of S together with all
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substitution-instances of A(B), and sole rule of inference detachment. Then
obviously T(S) CT(SA) Π T(SB). Conversely, suppose \—SA C and \-$B C,
and let Al} . . . , Am (B1} . . . , Bn) be the substitution-instances of A(B)
employed in the first (second) proof. Then we have

\-^ Ax A . . . A Am'—> C,

\~s B,A . . . A Bn — C,

whence

\-s (Ax A . . . Λ Am ) V (BX A . . . A Bn) — C,

h"S (Ai V Sx) Λ 04 ! V B2) A . . . A (Am V Bn) ~* C,

by propositional calculus. However, since A and £ have no variables in
common and \-^AvB, we have |-g 4̂* v 5/ for all i, j (1 ** i **m, 1 ** j ^ ri).
Thus hs C, and T(SΛ) Π T(SB) cT(S). It remains to show that SA and Sβ

are disjoint. Suppose then that \-^ B. Evidently

\-gilΛ . . . A Am .-* B

for substitution-instances ^4i, . . . , Am of A. But also \-§ Ai v 5, by
substitution on i v 5, for all i (1 ** i ^ m), whence

h s ( A i v 5 ) Λ . . . Λ ( A , v 5 ) ,

| 1 ( A 1 Λ . . . Λ 4 ) V J B .

Hence |~s B, contrary to our initial assumption. Thus not |-gA B, and
similarly not h s β ^ This shows that SA and Sβ are disjoint.

Conversely, suppose that Si and S2 are disjoint, and that T(S) = Γ(Si)
Π T(S2). Select Aλ, A2 such that h s ^ i , \~s2A2, and yet not hs2^4i, not
|—51 A2- Let A\ be an Hsomorphic' substitution-instance of A2 (i.e. a
substitution-in stance such that in turn A2 is a substitution-instance of it)
having no variables in common with Ax. Clearly h§2^2 and not hg^J.
Now ^ i V A2, hs2 AίV A2) whence hg^iv A2. However, not hs^i, not
|-g A 2, so that S is H-incomplete.

Corollary. S tes disjoint extensions'® iff S /zαs an H-incomplete extension.

Proof. Suppose T(S)cT(Si), T(S)cT(S2), for disjoint Sx and S2; then
T(Si) Π Γ(S2) will form the theorems of a system in the sense of footnote 1
which is H-incomplete by Theorem 1 and an extension of S. Conversely, if
S has an H-incomplete extension Sτ, by Theorem 1 T(ST) = T{Sj) Π T(S2) for
disjoint Si, S2 which clearly are extensions of S.

In view of Kripke's and McKinsey's results cited earlier, this Corol-
lary throws some light on modal systems. Thus, since S5 has no H-incom-
plete extensions, S5 has no disjoint extensions, i.e. for any extensions Si, S2

of S5 either T(Si) c T(S2) or T(S2) c T(Sλ)
3). Conversely, since both S4 and

T do notoriously have disjoint extensions (e.g. S5 and the system S4.1 of
McKinsey [8] for S4, and S4 and B for T), then, even though both S4 and T
are H-complete, they have H-incomplete proper extensions lying between
S4 and S5, and between T and S4, respectively. Also, though the intuitionist
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propositional calculus is H-complete, as Hallden [3] points out, it too has
an H-incomplete proper extension. The classical propositional calculus is
H-complete and, since it has no extensions, has no H-incomplete ones.

We turn now to the task of showing that a number of particular modal
systems are in fact H-incomplete. Let L be the modal logic defined by
axiom-schemata appropriate to the classical propositional calculus (e.g.
the three on Church [2], p. 149), together with the rule of (material) detach-
ment and the rule:

RE: A < > B
uA < > D 5 *

It is obvious that L is an extremely weak modal system, whose only modal
assumption is the substitutivity in modal contexts of material equivalents;
it is contained in SI, as well as the systems E2-E5, D2-D5 of [5] (though
not in El). Also let PC be the 'degenerate' modal system which results
from adding to T (or even to E2) the schema:

A ->πA.

PC is by contrast very strong, and contains all the systems S1-S5, E1-E5,
D1-D5, though not S6-S8. Let us put T for p -*p and F for -(q -» q). It is
easy to show that

(1) h O V v α T

for any n (use RE).
A modal system S has necessity-gaps iff for some n there is no wff A

such that |-g πnA in this case, we say that n is a necessity-gap for S. It is
known that the Lewis systems SI-S3, as well as E2-E5, D2-D5, have neces-
sity-gaps: e.g. n = 2 for all these systems. Thus they all satisfy the
antecedent of the next theorem, whence by it they are strongly H-in-
complete.

Theorem 2. If S is a modal system such that Γ(L) cΓ(S) cT(PC) and S has
necessity-gaps, then S is strongly ^-incomplete {and so ^-incomplete).

Suppose Γ(L) cΓ(S)c T(PC) and n is a necessity-gap for S. Since
T(L) c T(S), \-£ OnFv πnT by (1). But not [-$ OnF, since T(S) c T(PC) and
\-ψc -OnF; and not h§ DWΓ, since n is a gap for S. Since O ^ contains only
q and πnT contains only p} S is strongly H-incomplete.

Corollary. If T(E2) cΓ(S) c Γ(T), then S is strongly H -incomplete.

Proof. Since Γ(L)cT(E2), T(T) cT(PC), it suffices by Theorem 2 to show
that, for S such that Γ(E2) c T(S) c T(T), S has necessity-gaps. In fact we
show that, if T(E2) c T(S) and S has no necessity-gaps, then Γ(T) c T(S). So
suppose that for each n we have Bn such that |-§ D nBn and suppose f-̂  A.
Then f"E2E'mΓ'-» A for some my as is shown in [7], Lemma 2. Clearly
li-a • mBm -»D/WΓ, whence \^ι2π

mBm —A. Thus \~$A, as was to be
shown4 \

In correspondence, Aqvist has suggested to me that H-incompleteness
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may be connected with failure of the rule of necessitation: from A to infer
πA. Certainly, if a system S has necessity-gaps, this rule fails; the con-
verse, however, is not true, as is shown by the extension of S4 described in
McKinsey-Tarski [10], Theorem 3.1, for which the rule fails but which has
no gaps. Further, the H-incomplete extensions of T and S4 mentioned
earlier both satisfy the rule of necessitation, since they are 'intersections'
of systems that satisfy it. It is worth recalling that, though H-incomplete -
ness was introduced by Hallden in reference to modal logics, its definition
is quite general and makes no mention of modal operators.

It is clear from these results that a very wide class of modal logics
are H-incomplete: for nearly all systems in the literature, apart from T
and its extensions, contain L and are contained in PC and have necessity-
gaps. It appears in general much harder to show that a system is H-
complete. Since both the results of McKinsey and those of Kripke were
obtained in the same way, it may be useful here to summarize the method.
A matrix jffl for a system S may be thought of as an (abstract) algebra
consisting of a set of elements M, a designated subset of M, say Dy and
certain algebraic operations in terms of which the primitive symbols of S
are to be interpreted. Since systems are here construed as containing the
classical propositional calculus (c/. footnote 1), interesting matrices will
contain (in an obvious sense) a Boolean algebra; let us call such matrices
normal. Then for normal matrices it makes sense to speak of D being a
maximal filter of M. In case this happens, let us say that M is a maximal
matrix. McKinsey's result (generalized a bit) is:

Theorem 3. If S has a maximal characteristic matrix, then S is H-com-
plete.

Suppose that S has a maximal characteristic matrix, say JH, and yet
S is H-incomplete. Let A, B be such that {-^ A v B yet not [-§ A and not
hs B} where A and B have no variables in common. Then for any assign-
ment α from jffl, Va(A v B) e D5). On the other hand, since JH is character-
istic, there are assignments αi and α2 such that Vαi(A)/ D, Vα2CB)/ D. It
is a property of maximal filters <ί that if x u y e ^ then either x e & or
y e <f. Since D is maximal, and since A and B have no variables in com-
mon, a composite assignment α! can be formed from αx and α2 to the
variables of both A and B such that Vαι(A v B) <? D. This contradiction
proves the theorem.

Both McKinsey and Kripke were able to show, though in different ways,
that the systems they treated (between them, T, S4, B, S5 and its exten-
sions) had maximal characteristic matrices. The demonstrations, however,
are far from trivial, and the results rather isolated; so far as I know, apart
from McKinsey's concerning the extensions of S5, there are no general
results to the effect that all modal systems in a certain class are H-com-
plete. Perhaps Theorem 1 can be harnessed to the job of finding some.

The converse of Theorem 3 seems at first sight plausible, since all
systems known to be H-complete in fact have maximal characteristic
matrices; however, I can find no proof of it, and now suspect it to be false.



300 E. J. LEMMON

NOTES

1. Throughout this paper, a logical system is understood to be a propositional logic
whose class of theorems is closed with respect to substitution as well as detachment,
and which contains (in some form or other) the classical propositional calculus. Thus
the standard systems of modal logic, as well as the intuitionist propositional calculus,
are systems in this sense.

2. By an extension S' of a system S we mean a system S' (cf. footnote 1) such that
T(S) CΓ(S»).

3. Actually, however, this result (that extensions of S5 form a linear series) is implicit
in Scroggs [11], so that we can also use the Corollary to obtain an independent proof
of McKinsey's result that all extensions of S5 (including S5) are H-complete.

4. Since this proof makes no use of the fact that E2 has as theorem ΏA —* A, it can at
once be extended to show that systems S such that Γ(D2) c T(S) aT(T(D)) or
Γ(C2) cΓ(S) cΓ(Γ(C)) are strongly H-incomplete (for these systems, see [6]). Also,
El, though not covered by Theorem 2, is strongly H-incomplete, since |— EiOi^v D T
but neither h E i 0 - F nor h E i πT.

5. I use the notation Vα(B) for the value taken by the matrix-function associated with B
under the assignment α.
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