106 Notre Dame Journal of Formal Logic Volume VII, Number 1, January 1966

A REMARK ON CONTINUOUS SELECTORS

HENRYK FAST

1. For a set S and a class \mathfrak{F} of its subsets a function $f:\mathfrak{F} \to S$ with the property that $f(X) \in X$ for $X \in \mathfrak{F}$ is called a *selector* on \mathfrak{F} . If S and \mathfrak{F} are topological spaces we can talk about continuous selectors.

We shall restrict ourselves in our considerations to metric spaces only. Let S be a metric space with the metric d; \mathfrak{A} and $\mathfrak{X}, \mathfrak{A} \subset \mathfrak{X}$ be the classes of all arcs and of all continua of S. Metrize \mathfrak{X} using the Hausdorff metric $d_H(X, Y) = \inf\{r: C_r(X) \supset Y, C_r(Y) \supset X\}, X, Y \subset \mathfrak{X}^1$ Consider also a stronger metric $d_H^*(X, Y) = \max[d_H(X, Y), d_H(\partial X, \partial Y)]$ on \mathfrak{X} .

About the space S, make the following assumptions: S in compact, connected, L.C. (locally connected) everywhere and has the property (*): A domain G in S is not decomposable by an (compact) arc in G having one point only on its boundary. Notice, that a closed ball for example in the spaces E_n and S_n (Euclidean and spherical *n*-dimensional) satisfies these conditions.²

In the following statement the density is meant in d_H metric, the (*)continuity and the (*)-density in d_H^* metric; \mathfrak{X}^* denotes the subclass of \mathfrak{X} consisting of all continua with empty interior.

Proposition: Any selector on \mathfrak{A} (and the more on \mathfrak{X}) is (*)-discontinuous on a set which is dense in \mathfrak{X} and (*)-dense in \mathfrak{X}^* .

This proposition answers the question on the possibility of existence in a local sense of a continuous selector on \mathfrak{A} , giving an negative answer to the question asked by Prof. Morton Brown and communicated here by Prof. K. Kuratowski in his recent lecture. The question concerned the existence of a continuous selector on a class of arcs (in E_n , for instance) with Hausdorff metric.

^{1.} We denote $C_r(E) = \{x: \text{dist } (x,E) < r\}, E \subset S$.

^{2.} The property (*) may be verified here for instance by the application of the "sweep away" theorem [c.f. [1], th.4 and 4a, p. 350] (as an arc is continuously retractible in itself to a point).

2. *Proof*: The proof will be conducted in two steps (a) and (b):

(a) \mathfrak{A} is dense in \mathfrak{X} . Let $\delta > 0$ and let C the component of $C_{\delta}(X)$ containing X. C being relatively compact has a δ -net $N = \{x_0, x_1, \ldots, x_m\}$: $C_{\delta}(N) \supset C$. Due to our supposition about S, C being connected and **L.C.** is arcwise connected. There exists in C an arc A passing through all the points x_0, x_1, \ldots, x_m in this order. This may be established inductively: supposing that such an arc A_k exists for the points $x_0, x_1, \ldots, x_k, k = 0, 1, \ldots, m - 1$ we can extend it to an A_{k+1} due to the property (*) of S, (applied to $G = C - A_k$; for k = 0 to $C - \{x_0\}$, which is a domain). From the inclusions $X \subset C \subset C_{\delta}(N) \subset C_{\delta}(A)$ and $A \subset C \subset C_{\delta}(X)$ follows $d_H(X, A) \leq \delta$ i.e. (a).

(b) Set of points of (*)-discontinuity of f is dense in \mathfrak{A} . Take an arbitrary $X \subset \mathfrak{A}$. We have $x = f(X) \epsilon X$. Let $y \epsilon X$, $y \neq x$ and let an ϵ is chosen such that $0 < \epsilon < d(x, y)$.

Let $0 < \delta < \epsilon$ such that

(2.1)
$$d(f(Y), x) < \epsilon \text{ as } Y \epsilon \mathfrak{A}, d_H(Y, X) < \delta.$$

By (a) there exists an arc A such that $d_H(X, A) < \delta$ passing through a net $N = \{x_0, x_1, \ldots, x_{2p}\}$ where the additional requirements $y = x_p$ and $C_{\delta}(N_i) \supset C$, i = 1, 2, with $N_1 = \{x_0, x_1, \ldots, x_p\}$, $N_2 = \{x_{p+1}, \ldots, x_{2p}\}$ clearly may be added.

Let A be represented by the homeomorphism $g: [0, 1] \to S$ of an interval into S and let $g(\frac{1}{2}) = y$. We have the following relations:

 $g([t, 1]) \subset A = g([0, 1]) \subset C_{\delta}(X) \text{ and } X \subset C_{\delta}(N_2) \subset C_{\delta}(g[t, 1])$

for $0 \le t \le \frac{1}{2}$, which yields

(2.2)
$$d_H(g([t, 1]), X) < \delta, \quad 0 \le t \le \frac{1}{2}$$

whence, putting z(t) = f(g([t, 1])) we have by the continuity condition (2.1)

$$(2.3) d(z(t), x) < \epsilon, \quad 0 \le t \le \frac{1}{2}.$$

From the definition of selector, $z(t) \epsilon_g([t, 1])$. By (2.3) and the choice of ϵ , $z(t) \neq g(\frac{1}{2}) = y$, hence, $z(t) \epsilon_g([0, \frac{1}{2}))$ or $z(t) \epsilon_g((\frac{1}{2}, 1])$. $t \to g([t, 1])$ is a continuous mapping from [0, 1] into the space \mathfrak{A} . Were f (*)-continuous in the δ -neighbourhood of X, so would be by (2.2) z(t) for $0 \leq t \leq 1$ and, assuming for instance that $z(0) \epsilon_g([0, \frac{1}{2}])$, we would have $z(t) \epsilon_g([t, \frac{1}{2}])$ for $0 \leq t \leq 1$ and this is impossible, since this implies $\lim_{t \to \mathcal{V}_{\Delta}} z(t) = y$, which contradicts (2.3).

Since (*)-density of \mathfrak{A} in \mathfrak{X}^* follows obviously from (a), this ends the proof.

REFERENCE

[1] C. Kuratowski, Topologie II, Monografie Matematyczne 21, Warszawa 1952.

University of Notre Dame Notre Dame, Indiana