Notre Dame Journal of Formal Logic
Volume VII, Number 1, January 1966

A REMARK ON CONTINUOUS SELECTORS

HENRYK FAST

1. For a set S and a class \mathfrak{F} of its subsets a function $f: \mathfrak{F} \rightarrow S$ with the property that $f(X) \epsilon X$ for $X \in \mathfrak{F}$ is called a selector on \mathfrak{F}. If S and \mathfrak{F} are topological spaces we can talk about continuous selectors.

We shall restrict ourselves in our considerations to metric spaces only. Let S be a metric space with the metric d; \mathfrak{A} and $\mathfrak{X}, \mathfrak{A} \subset \mathfrak{X}$ be the classes of all arcs and of all continua of S. Metrize \mathfrak{X} using the Hausdorff metric $d_{H}(X, Y)=\inf \left\{r: C_{r}(X) \supset Y, C_{r}(Y) \supset X\right\}, X, Y \subset X^{1} \quad$ Consider also a stronger metric $d_{H}^{*}(X, Y)=\max \left[d_{H}(X, Y), d_{H}(\partial X, \partial Y)\right]$ on X.

About the space S, make the following assumptions: S in compact, connected, L.C. (locally connected) everywhere and has the property (*): A domain G in S is not decomposable by an (compact) arc in G having one point only on its boundary. Notice, that a closed ball for example in the spaces E_{n} and S_{n} (Euclidean and spherical n-dimensional) satisfies these conditions. ${ }^{2}$

In the following statement the density is meant in d_{H} metric, the (*)continuity and the $\left(^{*}\right)$-density in d_{H}^{*} metric; \mathfrak{X}^{*} denotes the subclass of \mathfrak{X} consisting of all continua with empty interior.

Proposition: Any selector on \mathfrak{A} (and the more on \mathfrak{X}) is (*)-discontinuous on a set which is dense in \mathfrak{X} and (*)-dense in \mathfrak{X}^{*}.

This proposition answers the question on the possibility of existence in a local sense of a continuous selector on $\mathfrak{\ell}$, giving an negative answer to the question asked by Prof. Morton Brown and communicated here by Prof. K. Kuratowski in his recent lecture. The question concerned the existence of a continuous selector on a class of arcs (in E_{n}, for instance) with Hausdorff metric.

[^0]2. Proof: The proof will be conducted in two steps (a) and (b):
(a) \mathfrak{U} is dense in \mathfrak{X}. Let $\delta>0$ and let C the component of $C_{\delta}(X)$ containing $X . C$ being relatively compact has a δ-net $N=\left\{x_{0}, x_{1}, \ldots x_{m}\right\}: C_{\delta}(N) \supset C$. Due to our supposition about S, C being connected and L.C. is arcwise connected. There exists in C an arc A passing through all the points $x_{0}, x_{1}, \ldots x_{m}$ in this order. This may be established inductively: supposing that such an arc A_{k} exists for the points $x_{0}, x_{1} \ldots x_{k}, k=0,1, \ldots, m-1$ we can extend it to an A_{k+1} due to the property (*) of S, (applied to $G=$ $C-A_{k}$; for $k=0$ to $C-\left\{x_{0}\right\}$, which is a domain). From the inclusions $X \subset C \subset C_{\delta}(N) \subset C_{\delta}(A)$ and $A \subset C \subset C_{\delta}(X)$ follows $d_{H}(X, A) \leqslant \delta$ i.e. (a).
(b) Set of points of $\left(^{*}\right)$-discontinuity of f is dense in $\mathfrak{\Omega}$. Take an arbitrary $X \subset \Re$. We have $x=f(X) \in X$. Let $y \in X, y \neq x$ and let an ϵ is chosen such that $0<\epsilon<d(x, y)$.

Let $0<\delta<\epsilon$ such that

$$
\begin{equation*}
d(f(Y), x)<\epsilon \text { as } Y \epsilon थ, d_{H}(Y, X)<\delta . \tag{2.1}
\end{equation*}
$$

By (a) there exists an arc A such that $d_{H}(X, A)<\delta$ passing through a net $N=\left\{x_{0}, x_{1}, \ldots x_{2 p}\right\}$ where the additional requirements $y=x_{p}$ and $C_{\delta}\left(N_{i}\right) \supset$ $C, i=1,2$, with $N_{1}=\left\{x_{0}, x_{1}, \ldots x_{p}\right\}, N_{2}=\left\{x_{p+1}, \ldots x_{2 p}\right\}$ clearly may be added.

Let A be represented by the homeomorphism $g:[0,1] \rightarrow S$ of an interval into S and let $g\left(\frac{1}{2}\right)=y$. We have the following relations:

$$
g([t, 1]) \subset A=g([0,1]) \subset C_{\delta}(X) \text { and } X \subset C_{\delta}\left(N_{2}\right) \subset C_{\delta}(g[t, 1])
$$

for $0 \leq t \leq \frac{1}{2}$, which yields

$$
\begin{equation*}
d_{H}(g([t, 1]), X)<\delta, \quad 0 \leq t \leq \frac{1}{2} \tag{2.2}
\end{equation*}
$$

whence, putting $z(t)=f(g([t, 1])$ we have by the continuity condition (2.1)

$$
\begin{equation*}
d(z(t), x)<\epsilon, \quad 0 \leq t \leq \frac{1}{2} . \tag{2.3}
\end{equation*}
$$

From the definition of selector, $z(t) \epsilon g([t, 1])$. By (2.3) and the choice of $\epsilon, z(t) \neq g\left(\frac{\dot{l}}{2}\right)=y$, hence, $z(t) \epsilon g\left(\left[0, \frac{1}{2}\right)\right)$ or $z(t) \epsilon g\left(\left(\frac{1}{2}, 1\right]\right)$. $t \rightarrow g([t, 1])$ is a continuous mapping from $[0,1]$ into the space \because. Were $f(*)$-continuous in the δ-neighbourhood of X, so would be by (2.2) $z(t)$ for $0 \leq t \leq 1$ and, assuming for instance that $z(0) \epsilon: g\left(\left[0, \frac{1}{2}\right]\right)$, we would have $z(t) \epsilon g\left(\left[t, \frac{1}{2}\right]\right)$ for $0 \leq t \leq 1$ and this is impossible, since this implies $\lim _{t \rightarrow 1 / 2} z(t)=y$, which contradicts (2.3).

Since (*)-density of $\mathfrak{\varkappa}$ in \mathfrak{X}^{*} follows obviously from (a), this ends the proof.

REFERENCE

[1] C. Kuratowski, Topologie II, Monografie Matematyczne 21, Warszawa 1952.

[^0]: 1. We denote $C_{r}(E)=\{x:$ dist $(x, E)<r\}, E \subset S$.
 2. The property (*) may be verified here for instance by the application of the "sweep away" theorem [c.f. [1], th. 4 and 4a, p. 350] (as an arc is continuously retractible in itself to a point).
