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ON A PROPER CLASS AND RELATED MATTERS

ALBERT A. MULLIN

This note establishes that a subdirect product of certain semigroups
(abelian semigroups, monoids, abelian monoids, groups, abelian groups,
rings and logical theories [1]) does not exist and a fortiori that certain
classes of logico-algebraic structures are proper classes (i.e., classes
which are not sets) in the sense of K. G6del’s set theory [2].

Consider an aggregate {S;} of all pair-wise inequivalent semigroups S;.
If {S;} is a set then its ordinary direct product P (alias, subdirect product;
alias complete direct product) exists d la category theory. If P exists then,
trivially, P is a semigroup. In such a case P is not inequivalent toevery
S; for the following reason. If P is inequivalent to every S; then, surely,
P ¢1{S;} for, otherwise, P = P; a contradiction of inequivalence. But, then,
{S;} does not contain all pair-wise inequivalent semigroups, viz., it does not
contain P; but this contradicts the definition of {S;}as the class of all pair-
wise inequivalent semigroups. Hence P = S; for somej. However if P=S;
and P =Si, j +k, then S; = Si; a contradiction of pair-wise inequivalence.
Hence P %Sj for precisely one j. Let S; be respesented as (S;',0) and let
P be represented as (P',*) where ‘0’ and ‘x¥’ denote associative composition
laws. Since S;'is a set one can form its power set II, [2]. But there is a
semigroup model for every infinite cardinal. Hence there is an S, of the
form (II, ®) for some .. However since PZ S;, card (P') = card (S;') and,
therefore, card (II) > card (S;') = card (P'). But this contradicts the
theorem which asserts that the cardinality of a cartesian product of
nonempty sets is greater than or equal to the cardinality of any one of its
factors. Thus we arrive at the Metatheorem : P does not exist and {S;}is
not a set in GBdel’s set theory but rather it is a proper class [2].
Metacovollary: The class of all semigroups is not a set, for otherwise,
upon forming its power set it would follow that {S; }is a set; a contradiction
to the metatheorem.
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