ON A PROPER CLASS AND RELATED MATTERS

ALBERT A. MULLIN

This note establishes that a subdirect product of certain semigroups (abelian semigroups, monoids, abelian monoids, groups, abelian groups, rings and logical theories [1]) does not exist and *a fortiori* that certain classes of logico-algebraic structures are *proper* classes (i.e., classes which are *not* sets) in the sense of K. Gödel's set theory [2].

Consider an aggregate $\{S_i\}$ of all pair-wise inequivalent semigroups S_i . If $\{S_i\}$ is a set then its ordinary direct product P (alias, subdirect product; alias complete direct product) exists à la category theory. If P exists then, trivially, P is a semigroup. In such a case P is not inequivalent to every S_i for the following reason. If P is inequivalent to every S_i then, surely, $P \notin \{S_i\}$ for, otherwise, $P \cong P$; a contradiction of inequivalence. But, then, $\{S_i\}$ does not contain all pair-wise inequivalent semigroups, viz, it does not contain P; but this contradicts the definition of $\{S_i\}$ as the class of all pairwise inequivalent semigroups. Hence $P \cong S_j$ for some j. However if $P \cong S_j$ and $P \cong S_k$, $j \neq k$, then $S_i \cong S_k$; a contradiction of pair-wise inequivalence. Hence $P \cong S_i$ for precisely one j. Let S_i be respesented as (S_i, o) and let P be represented as (P',*) where 'o' and '*' denote associative composition laws. Since S_i is a set one can form its power set Π , [2]. But there is a semigroup model for every infinite cardinal. Hence there is an S_k of the form (Π, \oplus) for some k. However since $P \cong S_i$, card $(P') = \operatorname{card}(S_i')$ and, therefore, card $(\Pi) > \text{card } (S_i') = \text{card } (P')$. But this contradicts the theorem which asserts that the cardinality of a cartesian product of nonempty sets is greater than or equal to the cardinality of any one of its factors. Thus we arrive at the *Metatheorem*: P does not exist and $\{S_i\}$ is not a set in Gödel's set theory but rather it is a proper class [2]. The class of all semigroups is not a set, for otherwise, upon forming its power set it would follow that $\{S_i\}$ is a set; a contradiction to the metatheorem.

The author acknowledges the help of colleagues in polishing the results and the assistance of the U.S. NATIONAL SCIENCE FOUNDATION for financial aid.

REFERENCES

- [1] A. Mostowski, On direct products of theories, *The Journal of Symbolic Logic*, vol. 17 (1952), pp. 1-31.
- [2] K. Gödel, Consistency of the Continum Hypothesis, Princeton, 1940.

Lawrence Radiation Laboratory, University of California Livermore, California