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SOME RESULTS ON FINITE AXIOMATIZABILITY
IN MODAL LOGIC

E. J. LEMMON

A system of propositional calculus S may be said to be finitely axio-
matizable if there is a finite set of schemata {Au . . . ,A«} such that
|—g A,- (1 ^ i < ή) and any theorem of S can be derived from Al9... ,An jusing
detachment (modus ponens) alone. In [5], McKinsey and Tarski show,
among other things, that the Lewis systems S4 and S5 are finitely axiomat-
izable, and in [6] the result is extended to S31. The purpose of the present
note is to prove a quite general theorem, due to Tarski, giving sufficient and
necessary conditions under which a system is finitely axiomatizable, and to
use this result to establish that the members of a certain class of modal
systems, including T, S2, and E2, are not finitely axiomatizable2.

I. In what follows, it will frequently be convenient, and never seriously
ambiguous, to use the names of propositional logics as names of the
corresponding classes of theorems. This is the case with the following
fundamental theorem3. Any system is, of course, understood to be closed
with respect to substitution and detachment.

Theorem 1. Let S be any system. Then a sufficient and necessary condi-
tion for S to be not finitely axiomatizable is that there be an infinity of
systems So, Sl9 . . . ,SW, . . . such that Sn £ Sw+1 and sn Φ S for all n and
S= ( J S -
Proof. Suppose there are systems Sw such that Sn <Ξ Sw+1 and Sn Φ S for all
n, and S = ( jS w , and consider any finite set {AXy . . . ,Am}of theorem-
schemata of S. Then for Az there is a system S^ such that H^ . Aι. Let
p = max {<2i, . . . ,am }. Then hs? Af for all i (1 ^ i ^ m), so that any
consequence of {Ah . . . ,Am } is in Sp. But Sp is properly included in S, so
that {Aι, . . . 9Am} cannot provide an axiomatization for S. Conversely,
suppose S is not finitely axiomatizable, and consider an enumeration
Al9 . . . , Am , . . . of the theorem -schemata of S. Then the systems Sn~
whose axiom-schemata are {Ah . . . ,An+1} and sole rule of inference
detachment are evidently such that S» c Sw+1 and S = [Js w . That Sw Φ S
follows from the assumption that S is not finitely axiomatizable.
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It will be useful to begin by giving formulations of the systems E2 and
T. We consider the following schemata and rules:

Al: A - (B -A);
A2: (A-(β->C))-+ ((A-B)->(A-C));
A3: (-A -+-B)-+ (β_-+A);
A4: Π(A - B) -> (DA - UB);
A5: ΠA —A.

R 1 A.A-+B A-*B R O . - A -
κ ι B ' Kά' ΏA->ΏB ' K J DA

Then E2 has as axiom -schemata A1-A5 and rules R1 and R2, whilst T has
as axiom -schemata A1-A5 and rules. R1 and R34. The usual definitions of
other connectives, including O, are presupposed. We use T for p -* p.

We next construct an infinity of systems E2W, for each natural number
n, as follows:

E2° is just E2;
E2'* (n> 1) has as axioms any theorem of E2, together with D T
(= D . . . DT), and sole rule of inference R1 (detachment).

n

Lemma 1. E2 iw c E2 l W + 1 for all n.

Proof. Since \^2n+1 Dn+1 T by A5 \~n+ιΠ
nT.

Lemma 2. If h j A, then (~ ΏnT —»A for some n.

Proof, by induction on the number of occasions R3 is used in the given
proof of A. If B is an axiom, then hg2Γ-» :2ϊ. An application of R3 in a
T-proof yielding ΏB from B can be paralleled by an application of R2 in a
corresponding E2-proof yielding D* + 1 T ->ΏB from ΏnT -> B.

Lemma 3. T = ( J E 2 W .

Proof. Clearly h^ Ώ*T- for any n, so that E2W c T, whence | J E2W c T.
Conversely, if Hj A, then Hfp^ f o r s o m e w> Ŷ Lemma 2.

Lemma 4. T ψ E2* /or αZZ w.

Proof is delayed until the second part of the paper, where matrices βn are
defined which distinguish E2W from T.

Theorem 2. T zs not finitely axiomatizable.

Proof immediate from Theorem 1 and Lemmas 1, 3, and 4, if we take E2W

as the systems S^.

Let us designate as ET the system resulting from E2 by the addition of
the axiom:

A6: D Γ - > D D Γ .

Lemma 5. V~T A iff h^fΠT —A.

Proof, hf A6, so that ET c T. Hence if Hg τ DT -* A then obviously hj. A.
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The converse is proved by induction on the length of A's T-proof. If B is
an axiom of T, then hgτDT—•£. Suppose B results by Rί from C and
C->B, and suppose hgτ ΏT -> C and lγfPT -» (C-*£). Then by A2
f-£τ ΠT -* B. Suppose OB results by R3Jrom B, and suppose Hjτ,DΓ -+B.
Then h ^ τ D DT -> D£ by R2, whence h ^ D T -> 5 by A6.

Theorem 3. EΎ is not finitely axiomatizable.

Proof. If{A1,...,An} provided a finite axiomatization of ET, then by
Lemma 5 {Alf . . . , Aw,DΓ}would provide one for T, counter to Theorem 2.

We now turn to the rather more difficult task of showing that E2 and S2
are not finitely axiomatizable. In fact, as is shown in [4], S2 = E21, so that
the result for S2 will follow from the fact that none of the systems E2W can
be finitely axiomatized.

As before, we define a hierarchy of systems included in E2. The
starting point of this hierarchy is a system e2 whose axiom-schemata
are A1-A5, as for E2, but whose sole rule of inference is R1 (thus e2 is
finitely axiomatizable). Putting e20 =e2, we define systems e2m inductively
as follows: the axioms of e2m+1 are all the axioms of e2OT, together with
all sentences ΏA —> ΏB where hr9 A —> B; sole rule of inference for all
systems is R1.

Lemma 6. e2m c e2m+1 for all m+

Proof immediate from the definition of e2m, since the axioms of e2OT+1

include those of e2m .

Next, we use the systems e2m to define a further series of hierarchies
of systems. The systems e2lfor n^m shall have as axioms all axioms of
e2m together withDwT, and sole rule of inference R1. All these systems are
closed with respect to substitution, since h^2OTD

wT -> Πn(A — A) for
n ^ m.

Lemma 7. e2^ c e2^+ 1 for all m^n.

Proof again immediate, since any axiom of e2f is one of e2"^+1.

Lemma 8. e2^ c e2§+1 for all n <m.

Proof by A5, whence any axiom of e2^ is either an axiom or a theorem of
e 2 | + 1 .

Lemma 9. hg2*A iff h ^ D ^ T -> A.

Proof. If \r^2ΏnT^A} then \-jgnΏnT-*A whence of course h ^ ^ -
Conversely, suppose F"g2w^ BY induction on the length of proof, it is easy
to show that h^2 Ώ

nT -* A.

Lemma 10. Vlt*;Aiff \-;2mOnT^->A,forn^m.

Proof similar to that of Lemma 9.

Lemma 11. If \~^2A> then \~e2 A for some m.
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Proof by induction on the number of occasions R2 is used in the E2-proof of
A. If B is an axiom of E2, then he2-^ Suppose ΠB —> DC results from
B -> C by R2, and suppose 'hζijB -» C. Then by the definition of
e2m+1ΏB —» DC is an axiom of e2OT+1.

Lemma 12. E 2 = ( J e 2 μ .

Proof immediate from Lemma 11, if we note that e2m c E2 for all ra.

Lemma 13. E2W = (Je2£ &w > n)/or α/Z n.

Proof. If V^i^Aiγn^n) then Vι2mΐλnT-* A by Lemma 10, whence
|-£2 DWT -•A and so hξ2

nA b v Lemma 9, so that e2j £ E2W for all w ^ n .
Conversely, suppose 'hg2» A. Then hg2D

w2ΓI —» A by Lemma 9, whence by
Lemma 11 ]^r^ιmΏnT —»A for some m, whence H^2OT+WDWT —>Λ, and so

rhτ?β A by Lemma 10.

Lemma 14. E2 + e2|w /or all m; E2™ φ e2|- for all m.

Again, we delay a proof by means of matrices until the second part of the
paper.

Lemma 15. e2* Φ E2^, for all m9 n, m > n.

Proof. Suppose e2£ = E2W, m^n. The case that m = n is ruled out by
Lemma 14, so thatίra>rc. Then e2^Ee2^(by Lemma 8) QΈ2m(by Lemma
13)o Now if ilyi2« 4 t h e n |ϊΐE2 • T - * i i (by Lemma 9), whence (-̂ 2W

ΠmT—*A, whence ]\-^nΏ
mT -> A (by the hypothesis), whence \—e2m

ΏmT -» A, whence ! K 2 ^ A ; s 0 t h a t E 2 ^ ^ e 2 ^ ?

 a n d E 2 ^ = e 2 L contrary
to Lemma 14. This proves the lemma.

Theorem 4. E2 is not finitely axiomatizάble; none of the systems E2W

including E21 = S2) is finitely axiomatizάble.

Proof. That E2 is not finitely axiomatizable follows from Theorem 1,
together with Lemmas 6, 12, and 14. The cases of E2W are covered by the
same theorem, together with Lemmas 7, 13, and 15.

II. Our proof of Theorems 2, 3, and 4 is incomplete until we have
established Lemmas 4 and 14. To this end, we develop sets of matrices of
the form β =<M, D, lU, Π, -, P>, where < M, U, Π, -> is a Boolean
algebra and D (the set of designated elements of M) is a filter (additive
ideal) of M. We intend that A —»B shall be interpreted as -x (j y, -A as -x,
and DA as -P-x for x, yεM. It follows that A1 -A5 will be satisfied by
any matrix, and that R1 is also satisfied (if xεD and -%\jyεD then yzϋf.
We use the symbols U and 0 for the unit element and null element of the
Boolean algebra; it will always be the case that UεD, 0 bD, of course.

Let Pn be the set of the first n positive integers {l, . . . ,n}, and put
Mn = ψPn, the set of all subsets of Pn. For x, yεPn, put R = {<x,y>:x =
y + lv(x 4= I ΛX= y)}. For A C p"^ p u t PA = {χ: (ly)(ftxy A yεA)} u {l}. For
A c p w

? put P w = {A:nεA} so that Z>w is a filter of ΛΓ. Finally, put βn =
<M\D\ u, Π, - , P > 6 .
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For a sentenced, we write / w ( Λ ) for the matrix-function corresponding
to A in βn. Then it is easy to verify that the axioms and rules of E2 are
satisfied by βn. Indeed, we have that if h ^ A then/ w ( Λ ) = U.7 Further,
putting NA(A £ pn) = -P-A, we have:

NZ7= -P0= U - {l};
mU= U(U-{1}) = -P{i} = U- {1,2};
H{U(U . . . blU) = U - {l, . . . ,*•} (f ̂ r c ) .

i

Theorem 5. ^ίlw+1 satisfies E2W.

Proof. As already observed, if hg2 ̂
 t n e n / w + l ( A ) = U; since h ^ ̂ >

f »ι+i(D»τ) = C7 - {j, . . . ,n} = {n + I}. But {n + i} ε Z>n+1

J so that all axioms
of E2W are satisfied by βn+ι. Since i ) w + 1 is a filter of Mw + 1, R1 is also
satisfied, which proves the theorem.

Theorem 6. βn+1 falsifies Dn+1T.

Proof. Since/w + 1 ( τ ) ^ ^ / " + 1 ( D " + 1 T ) ^ and 0 *Z>»+1.

Lemma 4 is an immediate consequence of Theorems 5 and 6, since
bf D w + 1 Γfor any n.

For Lemma 14, we define a different series of matrices. Mn

> aβ
before, is the set of all subsets of Pn. Also, the relation R is as define*!
earlier, but we employ a new possibility operator P r:

PΌ = {1};
P'U= U;
for A φ 0, A φ ί/(Acpw)? p ^ = {Λ; : (3y) (R^ ΛyεA)}.

We have correspondingly, for NT = - P f - , that

N fff= 17- {!};
NT0 = 0;
for A + 0, A φ [7(A ςPw),'N τA = {# : (vy) (flxy — y εA)}.

Z)w is still {A fzεA}, but we shall also be interested in subsets D"-(i ̂ n),
where D" = {A : (Vx) (x > i — xε A)}. Then Ώn

n =Dn, and, for each i ε Pn,
DfC:Dn. Further, D* is always a filter of Mn. We put β1n =<Mn, Dn,
U, Π, ~, Pτ>, and £••? =< Mw, 2)», U, Π, -, Pτ>.

We note the following Nτ-values in β'n{βη):

N'£/= Z7- {i};

N'N'£/=-P'{l}= U- {2};
NWN'U= -P'{2}= U- {2,3};
N"£/= u- {2, . . . ,z} (2 ̂  i < w).

As before, T is £ -» ̂  we also put Γf as Dp -* p.

Lemma 16. β'ζ satisfies e2.8

Prpo/. It is obvious that if A is a tautology then/ w ( Λ ) = U, so that A1-A3
are satisfied. (In particular, fn(τ) = U.) For A5, it suffices to test the
matrix-function -A U PfA(AC p"), if either A = 0 or A = 17, -A U P!A = C7.
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If A Φ 0, A Φ U, then, if x φ I and x εA, since ifcα;, we have x ε PΆ.
Hence -AUP'Λu{i}= tf. Thus either -AUPΆ = U or -AU.PΆ = Z7 - {l}; in
any case, -AUP'A ε #2, so that A5 is satisfied by.^J1*-. (In particular,
either f n : ( r ) = ί/ or / w ( r ) = ί7 - {l} and there is an assignment from fi'ξ
such that fnir) = U - {l},namely that assigning to p the value U - {i}.) For
A4, it suffices to test the matrix-function

g = -(N fAnP<£)u Pf (AΠJ5).

If A = 0, N'A = 0, and the left-hand side of g is U, so that # = U. If A = tf,
the right-hand side is P'B, so that by Boolean algebra g = U. If B = 0, the
right-hand side is P'O and the left-hand side -(N!AΠPf0), so that by
Boolean algebra g = U. If B = U, g becomes -fsPA u PΆ, so that g = U or
g = U - {ϊ} by reasoning identical with that in the case of A5 above.
Finally, suppose A Φ 0, A Φ U, B * 0, B $ U, and suppose x ε N'AΠJP'B.
Then (V:y)(R#3;->;y εA), (ly)(fixy Ay zB). It follows that(ly){Rxy *y εAΓiB);
since AΠ.B Φ 0, Λf\B φ ί/, we have x ε Pf'(AiΠ'β) and g = U. Hence for any
assignment either g = U or g = U- {l}, so that A4 is satisfied by ^IΓ?. That
RΪ is also satisfied follows from the fact that Ώ\ is a filter.

Lemma 17. fl'*£ satisfies e 2 | , /or m ^ n.

Proof by induction on m up to w. As basis, by Lemma 16 we have^ί^"^2

satisfies e2? = e2. Suppose then that ^H'̂ iJI satisfies e2™ for m <n, and
consider β'ζife, e2ζχ\. The axioms of e2Jfi contain all axioms of e2w ,
together with all sentences DA -»ΏB where \-^2m A -* JB and also QOT+1 y.
If A is an axiom of e2\m, then / n + 2 C Λ ) ε i ) I ^ (by Lemma 7 and the
inductive hypothesis), whence fn^A) zfl£$ (by definition ofDf), so that
A is satisfied by #'£%. Suppose \^2mA^B. T h e n / W + 2 ( Λ ^ B ) ε D ^ 2 . It

follows t h a t / Λ + 2 ( D ( Λ r ^ β ) ) ε D ^ (compare the analysis of N' preceding

Lemma 16). But fn+2(Ώ(Λ^B)^(πΛ^ aB))ε D^,\s is shown in the proof
of Lemma 16, and so ε D^3. Since D%+3 is closed under detachment, we
h a v e / w + 2 ( D Λ ^ D β ) ε Dn

m% andDA — DJB is satisfied by β'nm%. Finally,

s i n c e / ^ τ )

 Ξ ί/, either/W+2(D>"+1/T) = C7-{l}(when m = 0)or f***<*m'+ιV Ξ

U- {2, . . . ,m + 1} (when m >1). But all values C7 - {l}, J7 - {2, . . . ,m+l}

ε ^ ΐ 3 , so that Πm+1 T is satisfied by β'%%. Since R1 is also satisfied,

fl'l% satisfies e& j i , and the induction is complete.

Theorem 7. β'n+2 satisfies e2 | .

Proof i m m e d i a t e f r o m L e m m a 17, if w e p u t m-n a n d n o t e t h a t ^B f 5+i =
£ t ' w + 2 .

Theorem 8. β'n+2 falsifies D w + 1 Γ -> D W + 1 T' .

iVoo/. We noted in the proof of Lemma 16 that / w + 2 ( τ ) = u in β'n+2, whilst
there is an assignment such that / w + 2 ( r ) = y - {j}. For this assignment,
^«+2(D«+iτ) s ^ _ ^ | ( w h e n w = β). or Ϊ7 - {2, . . .n + I } (when « ^ I), so

t h a t / w + 2 ( D " + l τ ) ε Z)w+2. For the same assignment, however, /«+ 2 < Q W + 1 Γ'> =
Z7- {2, . ... ,n + ̂ }= {l}, and {l} ei>Λ+2

β This assignment thus falsifies
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Lemma 14 follows from Theorems 7 and 8, if we note that bj^Π^1 T—*
Πn+1T' by n + 1 applications of R2 to T -» T'. Thus our proofs of Theorems
2-4 are now complete.

III. Final Remarks. It is shown in [3] that E2 is decidable. It there-
fore follows from Lemma 9 that all the systems E2W (including S2) are
decidable. E2 admits as a derived rule the substitutability of material
equivalents, but none of the systems E2W (n > 0) does; thus for n ^ 1
\-^2n Πn~1T<^>ΏnT, but it is not the case that \-^2n D w + 1 T (compare
Theorem 6). Also, none of the systems e2|- admit this rule, since
\-e2T^>Tr but it is not the case that h^g D^+ 1 T ^-^QP+1 Tf, where
p = max(m,w) (compare Theorem 8). If we add the rule (or equivalently R2)
to the systems E2W (n ̂  1) then the systems all collapse into T. This
shows the importance, in defining extensions of systems, of specifying the
rules of inference. In a recent paper [1], Aqvist (p. 81, compare (d)) in
effect assumes that any extension of S2 will preserve Becker's rule; that
this is not so is shown by the system E22, an extension of S2 containing
D 2T but not equal to T.9

The system T(D) of [3], which is T modified by replacing A5 by
DA —• -D-A, can be shown not finitely axiomatizable by very simple
modifications of the above arguments, and the same holds for T(C) of [3],
which is T modified by dropping A5 altogether. The systems E3, E4, E5
(see [2]) turn out to be finitely axiomatizable (I owe this result to an idea of
Dana Scott's). It seems reasonable, with this evidence, to conjecture that,
if a modal system has finitely many distinct and irreducible modalities,
then it is finitely axiomatizable. The converse does not hold, if only
because of e2. More interesting counterexamples are the systems Ύn,
which result from T (with R3) by adding OnA -> Πn+1A. These can readily
all be shown to be finitely axiomatizable, although for w ^ 2 Γ contains
infinitely many distinct and irreducible modalities, as is shown in Sugihara
[10].

NOTES

1. See also Sobociήski [8] for further results.

2. For definitions of these systems, see [2]. Thus an open question of Sobociήski [7] is
settled in this paper, and the partial results of Aqvist [1], 6 and 6.1, are extended.

3. This theorem is merely a special case of a theorem due to Tarski in 1928; see [11],
p. 36, Theorem 20. In fact, the condition that Sw c Sw+1 is redundant, as Tarski's
theorem shows. It is useful for our purposes, however, since without it the matrix
proof that Sn + S in particular applications would not go through. Our present
formulation is in [11], p. 362, Theorem 25 (Tarski, 1935-36).

4. All modal systems considered are thought of as having —•, -, and D as primitive
connectives. Equivalence of these formulations to those in [2] is trivial.

5. See, for example, Stoll [9], Chapter 6 (esp. p. 280).
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6. The elements of Mn may be thought of, in the manner perhaps more familiar to some
modal logicians, as n -sequences of 1's and 0's, where a 2 in the i 'th position
represents that i is a member of the corresponding element. In this light, the
operation P can be described in a quite intuitive way.

7. This follows from [3]; indeed, < M", U, Π, -, P> are epistemic algebras in the sense
of that paper; notice that R is reflexive in U - {l}.

8. The matrix β'l is used in [2] to distinguish SO.5 from S0.9.

9. Thus the question whether all systems between S2 and T are Hallden-unreasonable
seems still open (compare Aqvist [1], 4.1), though I conjecture that all systems E2"
are in fact Hallden-unreasonable.
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