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SOME RESULTS ON FINITE AXIOMATIZABILITY
IN MODAL LOGIC

E. J. LEMMON

A system of propositional calculus S may be said to be finitely axio-
matizable if there is a finite set of schemata {A,, ... ,As} such that
b<A; (I <i<wn)and any theorem of S can be derived fromA,,...,A, using
detachment (modus ponens) alone. In [5], McKinsey and Tarski show,
among other things, that the Lewis systems S4 and S5 are finitely axiomat-
izable, and in [6] the result is extended to S3!. The purpose of the present
note is to prove a quite general theorem, due to Tarski, giving sufficient and
necessary conditions under which a system is finitely axiomatizable, and to
use this result to establish that the members of a certain class of modal
systems, including T, S2, and E2, are not finitely axiomatizable®,

. In what follows, it will frequently be convenient, and never seriously
ambiguous, to use the names of propositional logics as names of the
corresponding classes of theorems. This is the case with the following
fundamental theorem®. Any system is, of course, understood to be closed
with respect to substitution and detachment.

Theovem 1. Let S be any system. Then a sufficient and necessary condi-
tion for S to be not finitely axiomatizable is that theve be an infinity of
systems Sy, Sy, .. .,Sn, ... SUCh that S, C S,,, and S, + 8 for all n and

s= Js..

Proof. Suppose there are systems S, such that S, € S,,, and S, % S for all
n, and S = |JS,, and consider any finite set {4, ...,A,}of theorem-
schemata of S. Then for A; there is a system S, such that l_"s‘a,- A;. Let
p=max {a,,...,an} Then b5, A; for all (1 <i< m), so that any
consequence of {Ay, ... ,A, }isinS,. ButS, is properly included in S, so
that {A,, ...,A, } cannot provide an axiomatization for S. Conversely,
suppose S is not finitely axiomatizable, and consider an enumeration
Ay, ...,A,,... of the theoremsschemata of S. Then the systems S,
whose axiom-schemata are {4,,...,A4,;;} and sole rule of inference
detachment are evidently such that S, € S,4, and S = US,.'. That S, ¥S

follows from the assumption that S is not finitely axiomatizable.
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It will be useful to begin by giving formulations of the systems E2 and
T. We consider the following schemata and rules:

Al: A—- B —A);

A2: (A-B—C))— ((A—-B)—(A—-0C))
A3: (-A —-B)— (B — A);

A4: O(A — B)— (OA — 0OB);

As5: OA — A,
A, A—B A—-B A
R1: B ; R2: OA 0B R3: 0OA

Then E2 has as axiom-schemata A1-A5 and rules R1 and R2, whilst T has
as axiom-schemata AI-A5 and rules R1 and R3*. The usual definitions of
other connectives, including <, are presupposed. We use T for p — p.

We next construct an infinity of systems E2”, for each natural number
n, as follows:

E2° is just E2;
E2” (r=> 1) has as axioms any theorem of E2, together with (0”7
(= O...0T), and sole rule of inference R1 (detachment).

N —

n

Lemma 1. E2” C E2"*! for all n.
Proof. Since |g,p4 O T by A5 'E—z"“DnT'
Lemma 2. If |5 A, then ’_1-:2 O"T — A for some n.

Proof, by induction on the number of occasions R3 is used in the given
proof of A. If B is an axiom, then I’_l‘szT_’ B. An application of R3 in a
T-proof yielding OB from B can be paralleled by an application of R2 in a
corresponding E2-proof yielding 0%+ T —0OB from O"T — B.

Lemma 3. T ={JE2".

Proof. Clearly =0T for any =, so that E2” € T, whence |JE2” CT.
Conversely, if I A, then l}inA for some 7, by Lemma 2.

Lemma 4. T % E2" for all n.

Proof is delayed until the second part of the paper, where matrices fi” are
defined which distinguish E2” from T.

Theorem 2. T is not finitely axiomatizable,

Proof immediate from Theorem 1 and Lemmas 1, 3, and 4, if we take E2”
as the systems S,,.

Let us designate as ET the system resulting from E2 by the addition of
the axiom:
A6: Or—004r.

Lemma 5. b5 A iff F5:0OT —A.
Proof. 5 A6, so that ET C T. Hence if FrOT — A then obviously I A.
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The converse is proved by induction on the length of A’s T-proof. If B is
an axiom of T, then Ig;0OT — B. Suppose B results by R1 from C and
C — B, and suppose Igp 07T — C and 50T — (C = B). Then by A2
}_E.T OT — B. Suppose OB results by R3 from B, and suppose l—gTDT —B.
Then FgrO0OT — OB by R2, whence 5, 007 — B by A6.

Theorem 3. ET is not finitely axiomatizable.

Proof. 1 {A, ...,A,} provided a finite axiomatization of ET,then by
Lemma 5 {A,, . . .,A,,(0T}would provide one for T, counter to Theorem 2.

We now turn to the rather more difficult task of showing that E2 and S2
are not finitely axiomatizable. In fact, as is shown in [4], S2 = E2', so that
the result for S2 will follow from the fact that none of the systems E2” can
be finitely axiomatized.

As before, we define a hierarchy of systems included in E2. The
starting point of this hierarchy is a system e2 whose axiom-schemata
are A1-A5, as for E2, but whose sole rule of inference is R1 (thus e2 is
finitely axiomatizable). Putting e2, =e2, we define systems e2, inductively
as follows: the axioms of e2,4, are all the axioms of e2,, together with
all sentences DA — B where l?z,,,A — B;sole rule of inference for all
systems is R1.

Lemma 6. €2, C e2,,, for all m.

Proof immediate from the definition of e2,, since the axioms of e2,,,
include those of €2, .

Next, we use the systems e2, to define a further series of hierarchies
of systems. The systems e2;for n<m shall have as axioms all axioms of
€2, together with (1”7, and sole rule of inference R1. All these systems are
closed with respect to substitution, since |_52,,,D"T — 0%A — A) for
n <m,

Lemma 1. €2, C e27,,, for all m>n.
Proof again immediate, since any axiom of €27 is one of e2"',‘,,+1.
Lemma 8. e2% C e2%%! for all n <m.

Proof by A5, whence any axiom of e27 is either an axiom or a theorem of
e+,

Lemma 9. ‘g A iff Fg0°T — A,

Proof. ¥ t5;0°T —A, then |5, 0T — A whence of course fgymA.
Conversely, suppose }—E?nA. By induction on the length of proof, it is easy
to show that g, 0T — A,

Lemma 10. Fgn A dff b, O'T — A, for n <m.
Proof similar to that of Lemma 9.

Lemma 11. If |5, A, then b, A for some m.
- m
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Proof by induction on the number of occasions R2 is used in the E2-proof of
A. If B is an axiom of E2, then |, B. Suppose OB — OC results from
B—C by R2, and suppose |7, B — C. Then by the definition of
€2,4, 0B — OC is an axiom of €2,,,,.

Lemma 12. E2 =|Je2n .
Proof immediate from Lemma 11, if we note that e2, S E2 for all m,
Lemma 13. E2" =|Je2} (m = n) for all n.

Proof. I b5z A@m>n) then b, 0T —A by Lemma 10, whence
b, O°T — A and so b)» A by Lemma 9, so that e2;, & E2” for all m>n.
Cbnversely, suppose }_Ezn A. Then I—EZD”T — A by Lemma 9, whence by
Lemma 11 |=,,0"T — A for some m, whence |, . -0O°T —A, and so
,}f‘:z_;t”q_” A by Lemma 10,

Lemma 14. E2 % €2, for all m; E2" # 2% for all m.

Again, we delay a proof by means of matrices until the second part of the
paper.

Lemma 15. €2, % E2" for all m, n, m = n,

Proof. Suppose e2;, =E2”,m >n., The case thatm =#» is ruled out by
Lemma 14, so that m >n. Then e25/Se2”(by Lemma 8) CE2™(by Lemma
13). Now if kgym A then fg, O"T — A (by Lemma 9), whence |g,n
O”T — A, whence i}—;zfgzn O~T — A (by the hypothesis), whence i’_ez',;;
O”T — A, whence {I—ezznn A; so that E2" C e27, and E2™ = €27, contrary
to Lemma 14. This proves the lemma.

Theorem 4. E2 is not finitely axiomatizable; none of the systems E2”"
(ncluding E2' = S2) is finitely axiomatizable.

Proof, That E2 is not finitely axiomatizable follows from Theorem 1,
together with Lemmas 6, 12, and 14. The cases of E2" are covered by the
same theorem, together with Lemmas 7, 13, and 15.

il. Our proof of Theorems 2, 3, and 4 is incomplete until we have
established Lemmas 4 and 14. To this end, we develop sets of matrices of
the form M =<M, D, lu, N, -, P>, where < M, U, N, -> is a Boolean
algebra and D (the set of designated elements of M) is a filter (additive
ideal) of M. We intend that A — B shall be interpreted as -x Uy, -A as -x,
and JA as -P-x for x, yeM. It follows that A1-A5 will be satisfied by
any matrix, and that R1 is also satisfied (if xeD and -xUyeD then y D).
We use the symbols U and 0 for the unit element and null element of the
Boolean algebra; it will always be the case that UeD, 0 £D, of course.

Let P” be the set of the first #» positive integers{l, e ,n}, and put
‘M" = $ P”, the set of all subsets of P”, For x, y eP”, put R={<x,y>:x =
y+Iv(x+Iax=9y)}. For ACP” put PA={x:(3y)RxyryeA)}U {1} For
A C P put D" ={A:neA} sothat D" is a filter of M", Finally, put #i” =
<Mn) D”’ U, ﬂ, ) 'pl>6‘
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For a sentence A, we write f”(A) for the matrix-function corresponding
to A in M”. Then it is easy to verify that the axioms and rules of E2 are
satisfied by M”. Indeed, we have that if F5,A then /"™ =y, Further,
putting NA(A C P") = -P-A, we have:

NU=-Po=U-{1};
NNU=N(U-{1}) = -P{1} = U - {1,2};
N‘UN...NU)=U-{1,...,i} G<n)

i
Theorem 5. SA"*' satisfies E2".

Proof. As already observed, if g, A then f"H4 = . since b, T,
Fre™ = y-{1,...,n}={n+1}. But{n+ 1} £ D", so that all axioms
of E2” are satisfied by #M"*'. Since D"*' is a filter of M"*', R1 is also
satisfied, which proves the theorem.

Theovem 6. 8™ falsifies O"'T.
Proof. Since f+' (D = g, frH1@H D) = g and 0 § D",

Lemma 4 is an immediate consequence of Theorems 5 and 6, since
F=O"+ Tfor any n.

For Lemma 14, we define a different series of meatrices. M”, as
before, is the set of all subsets of P”, Also, the relation R is as defined
earlier, but we employ a new possibility operator P':

P0 = {1};
P'U=U;
for A+0,A+UACP"), PA={x:(3y)Rxy rycA)}.

We have correspondingly, for N' = -P'—_ that

N'U=U- {1};
N'0 = 0;
for A+0,A$ U CSP"),/NA={x: (vy)Rxy - ycA)}.

D” is still {A:neA}, but we shall also be interested in subsets D} <n),
where D} ={A: (Vx)(x 2% — xeA)}. Then D? =D”", and, for each igP”,
D} € D". Further, D{ is always a filter of M”. We put fi'” =<M”, D",
U, N, =, P>, and M'} =< M", D?, U, N, -, P'>,

We note the following N'-values in M'"(#'?):

N'U=U-{1};

N'N'U=-P{1}=U- {2};

N'N'N'U = -P'{2} = U - {2,3};

NiU=U-42,...,i} @<i<n).
As before, T is p — p; we also put 7' as Op — p.
Lemma 16. #'] salisfies e2.°

Proof. 1t is obvious that if A is a tautology then f*) = U, so that A1-A3
are satisfied. (In particular, /"™ = U.) For A5, it suffices to test the
matrix-function -A UP'A(AC P"), If eitherA=0or A=U, —AUPA =U.
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If A+0, A+ U, then, if x4+ 1 and xeA, since Rxx, we have x e P'A.
Hence -AUP'AU{1}= U. Thus either ~AUP'A = U or ~AUP'A = U - {1}; in
any case, ~AUP'A ¢ D7, so that A5 is satisfied by #i';. (In particular,
either f " g or F*T = y- {1} and there is an assignment from M'7
such that f&"(T' U - {1},namely that assigning to p the value U - {1}.) For
A4, it suffices to test the matrix-function

g = -(N'"ANP'B)UP' (ANB).

If A=0,N'A =0, and the left-hand side of g is U, sothat g=U, If A = [,
the right-hand side is P'B, so that by Boolean algebra g = U, If B = 0, the
right-hand side is P'0 and the left-hand side -(N'ANP'0), so that by
Boolean algebra g = U, If B=U, g becomes -N'AUP'A, so that g=U or
g="U-{I} by reasoning identical with that in the case of A5 above.
Finally, suppose A +0, A+ U, B+0, B+ U, and suppose x € N'ANP'B.
Then (Vy)Rxy —9y £A), (3y)(Rxy ry € B), It follows that (3y)(Rxy »ry ¢ ANB);
since ANB # 0, ANB # U, we have x e P'(ANB) and g = U. Hence for any
assignment either g = U or g = U- {1}, so that A4 is satisfied by M';. That
R1 is also satisfied follows from the fact that D; is a filter.

Lemma 17. M'7*2 satisfies €2y, for m <nu.

Proof by induction on m up to n. As basis, by Lemma 16 we have fi'7 +
satisfies 2] = e2. Suppose then that ', satisfies e2, for m < mn, and
consider Mi';12, e2,}). The axioms of e2,1; contain all axioms of e2,,
together with all sentences (JA — (0B where l—-zm — B and also O™ T

I A is an axiom of e2,, then f ""Z’G"l)t:D”"'2 (by Lemma 7 and the
inductive hypothesis), whence f"* 4 eD,’,’,” (by definition of DY), so that

A is satisfied by M';%%. Suppose |;,A — B. Then f"*#(“=B ¢pita = 1t
follows that f' n42@(4—B) eDt% (compare the analysis of N' preceding
Lemma 16), But f””‘”‘A‘*B)"(DA" ”B»s Di¥* as is shown in the proof
of Lemma 16, and so sD,,,,+3 Since D2 is closed under detachment, we
have f”"'Z(DA_":‘B) ¢ D&¥2 and0A —[OB is satisfied by #'%%,. Finally,
since f2(™ =, either /*+2€"*' T = y7-{1} (when m = 0)or f2C" D =
U-{2,...,m+1} (whenm=1)., Butallvalues U- {1}, U- {2, ... m+1}
£ D%, so that O™+ T is satisfied by M'%"%. Since R1 is also satisfied,

M "% satisfies e2/71], and the induction is complete,

Theorem 7. M'"* satisfies e2j.

Proof immediate from Lemma 17, if we put m =% and note that ﬂ'%ﬁ =
ﬁ,n+2.
Theorem 8. M'"** falsifies O™ T — O T,

Proof. We noted in the proof of Lemma 16 that f"**") = U/ in #'"*? whilst
there is an assignment such that f™**T) = y - {1}. For this assignment,

f”"’z(':'”"'lT) U-{1} (whenn=0)or U-1{2,...m+1} (whenn > 1), so
n42@ T

that f7+2© "'T)¢ p™2. For the same assighment, however, f
U-1{2,...,m+2}={1}, and {1} ¢ D"*?. This asmgnment thus falsifies
D'l""lT__, Dn+1 T, -
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Lemma 14 follows from Theorems 7 and 8, if we note that k50" 77—
O""T' by n + 1 applications of R2 to T — T'. Thus our proofs of Theorems
2-4 are now complete.

. Final Remarks. 1t is shown in [3] that E2 is decidable. It there-
fore follows from Lemma 9 that all the systems E2” (including S2) are
decidable. E2 admits as a derived rule the substitutability of material
equivalents, but none of the systems E2” (n > 0) does; thus for n = 1
bg,» 0" T<—>0"T, but it is not the case that |g,,» 0"*' T (compare
Theorem 6). Also, none of the systems e27 admit this rule, since
F=, T<—>T' but it is not the case that |» O+ T <—>0O%*' 7', where
p = max(m,n) (compare Theorem 8). If we add the rule (or equivalently R2)
to the systems E2” (¢ = 1) then the systems all collapse into T. This
shows the importance, in defining extensions of systems, of specifying the
rules of inference. In a recent paper [1], Aqvist (p. 81, compare (d)) in
effect assumes that any extension of S2 will preserve Becker’s rule; that
this is not so is shown by the system E22, an extension of S2 containing
O%T but not equal to T.°

The system T(D) of [3], which is T modified by replacing A5 by
0A — -0-A, can be shown not finitely axiomatizable by very simple

- modifications of the above arguments, and the same holds for T(C) of [3],
which is T modified by dropping A5 altogether. The systems E3, E4, E5
(see [2]) turn out to be finitely axiomatizable (I owe this result to an idea of
Dana Scott’s). It seems reasonable, with this evidence, to conjecture that,
if a modal system has finitely many distinct and irreducible modalities,
then it is finitely axiomatizable. The converse does not hold, if only
because of e2. More interesting counterexamples are the systems T”,
which result from T (with R3) by adding (3”4 — [O”*'A. These can readily
all be shown to be finitely axiomatizable, although for » =2 T” contains
infinitely many distinct and irreducible modalities, as is shown in Sugihara
[10].

NOTES

1. See also Sobocinski [8] for further results.

2. For definitions of these systems, see [2]. Thus an open question of Sobocinski [7] is
settled in this paper, and the partial results of Aqvist [1], 6 and 6.1, are extended.

3. This theorem is merely a special case of a theorem due to Tarski in 1928; see [11],
p. 36, Theorem 20. In fact, the condition that S, ¢ S,,, is redundant, as Tarski’s
theorem shows. It is useful for our purposes, however, since without it the matrix
proof that S, #+S in particular applications would not go through. Our present
formulation is in [11], p. 362, Theorem 25 (Tarski, 1935-36).

4. All modal systems considered are thought of as having —, -, and [0 as primitive
connectives. Equivalence of these formulations to those in [2] is trivial.

5. See, for example, Stoll [9], Chapter 6 (esp. p. 280).
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6. The elements of M” may be thought of, in the manner perhaps more familiar to some
modal logicians, as n -sequences of I’s and 0’s, where a I in the i’th position
represents that ¢ is a member of the corresponding element. In this light, the
operation P can be described in a quite intuitive way.

7. This follows from [3]; indeed, < M", U, N, — P> are epistemic algebras in the sense
of that paper; notice that R is reflexive in U - {1}.
12

8. The matrix M'; is used in [2] to distinguish S0.5 from S0.9.

9. Thus the question whether all systems between S2 and T are Halldén-unreasonable
seems still open (compare Aqvist [1], 4.1), though I conjecture that all systems E2”
are in fact Halldén-unreasonable.
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