SOME RESULTS ON FINITE AXIOMATIZABILITY IN MODAL LOGIC

E. J. LEMMON

A system of propositional calculus S may be said to be finitely axiomatizable if there is a finite set of schemata $\left\{A_{1}, \ldots, A_{n}\right\}$ such that $\vdash_{\mathrm{S}} A_{i}(1 \leqslant i \leqslant n)$ and any theorem of S can be derived from A_{1}, \ldots, A_{n} using detachment (modus ponens) alone. In [5], McKinsey and Tarski show, among other things, that the Lewis systems S4 and S5 are finitely axiomatizable, and in [6] the result is extended to $S 3^{1}$. The purpose of the present note is to prove a quite general theorem, due to Tarski, giving sufficient and necessary conditions under which a system is finitely axiomatizable, and to use this result to establish that the members of a certain class of modal systems, including $T, S 2$, and E2, are not finitely axiomatizable ${ }^{2}$.
I. In what follows, it will frequently be convenient, and never seriously ambiguous, to use the names of propositional logics as names of the corresponding classes of theorems. This is the case with the following fundamental theorem ${ }^{3}$. Any system is, of course, understood to be closed with respect to substitution and detachment.
Theorem 1. Let S be any system. Then a sufficient and necessary condition for S to be not finitely axiomatizable is that there be an infinity of systems $\mathrm{S}_{0}, \mathrm{~S}_{1}, \ldots, \mathrm{~S}_{n}, \ldots$ such that $\mathrm{S}_{n} \subseteq \mathrm{~S}_{n+1}$ and $\mathrm{S}_{n} \neq \mathrm{S}$ for all n and $\mathrm{S}=\bigcup \mathrm{S}_{n}$.
Proof. Suppose there are systems S_{n} such that $\mathrm{S}_{n} \subseteq \mathrm{~S}_{n+1}$ and $\mathrm{S}_{n} \neq \mathrm{S}$ for all n, and $\mathrm{S}=\bigcup \mathrm{S}_{n}$, and consider any finite set $\left\{A_{1}, \ldots, A_{m}\right\}$ of theoremschemata of S . Then for A_{i} there is a system $\mathrm{S}_{a_{i}}$ such that $\vdash_{\mathrm{S}_{i}} A_{i}$. Let $p=\max \left\{a_{1}, \ldots, a_{m}\right\}$. Then $\vdash_{\bar{s}_{p}} A_{i}$ for all $i(1 \leqslant i \leqslant m)$, so that any consequence of $\left\{A_{1}, \ldots, A_{m}\right\}$ is in S_{p}. But S_{p} is properly included in S, so that $\left\{A_{1}, \ldots, A_{m}\right\}$ cannot provide an axiomatization for S . Conversely, suppose S is not finitely axiomatizable, and consider an enumeration $A_{1}, \ldots, A_{m}, \ldots$ of the theorem-schemata of S . Then the systems S_{n}^{-} whose axiom-schemata are $\left\{A_{1}, \ldots, A_{n+1}\right\}$ and sole rule of inference detachment are evidently such that $\mathbf{S}_{n} \subseteq \mathbf{S}_{n+1}$ and $\mathbf{S}=\bigcup \mathbf{S}_{n}$. That $\mathbf{S}_{n} \neq \mathbf{S}$ follows from the assumption that S is not finitely axiomatizable.

It will be useful to begin by giving formulations of the systems E2 and T. We consider the following schemata and rules:

```
A1: \(A \rightarrow(B \rightarrow A)\);
A2: \((A \rightarrow(B \rightarrow C)) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C))\);
A3: \((-A \rightarrow-B) \rightarrow(B \rightarrow A)\);
A4: \(\square(A \rightarrow B) \rightarrow(\square A \rightarrow \square B)\);
A5: \(\square A \rightarrow A\).
R1: \(\frac{A, A \rightarrow B}{B} ; \quad \quad \mathrm{R} 2: \frac{A \rightarrow B}{\square A \rightarrow \square B} ; \quad\) R3: \(\frac{A}{\square A}\)
```

Then E2 has as axiom-schemata $A 1-A 5$ and rules R 1 and R2, whilst T has as axiom-schemata $A 1-A 5$ and rules R1 and $R 3^{4}$. The usual definitions of other connectives, including \diamond, are presupposed. We use T for $p \rightarrow p$.

We next construct an infinity of systems $E 2^{n}$, for each natural number n, as follows:

E2 ${ }^{\circ}$ is just E2;
$E 2^{n} \quad(n \geqslant 1)$ has as axioms any theorem of E 2 , together with $\square^{n} T$
(= $\underbrace{\square \ldots}_{n} T$), and sole rule of inference R1 (detachment).
Lemma 1. $E 2^{n} \subseteq \mathrm{E} 2^{n+1}$ for all n.
Proof. Since $\vdash_{\mathrm{E} 2^{n+1}} \square^{n+1} T$ by $A 5 \vdash_{\mathrm{E} 2^{n+1}} \square^{n} T$.
Lemma 2. If $\vdash_{\mathrm{T}} A$, then $\vdash_{\mathrm{E} 2} \square^{n} T \rightarrow A$ for some n.
Proof, by induction on the number of occasions R3 is used in the given proof of A. If B is an axiom, then $\vdash_{\mathrm{E} 2} T \rightarrow B$. An application of R 3 in a T-proof yielding $\square B$ from B can be paralleled by an application of R2 in a corresponding E2-proof yielding $\square^{n+1} T \rightarrow \square B$ from $\square^{n} T \rightarrow B$.
Lemma 3. $\mathrm{T}=\bigcup \mathrm{E} 2^{n}$.
Proof. Clearly $\vdash_{T} \square^{n} T$ for any n, so that $E 2^{n} \subseteq \mathrm{~T}$, whence $\bigcup \mathrm{E} 2^{n} \subseteq \mathrm{~T}$. Conversely, if $\vdash_{T} A$, then $\vdash_{E 2^{n}} A$ for some n, by Lemma 2.
Lemma 4. $\mathrm{T} \neq \mathrm{E} 2^{n}$ for all n.
Proof is delayed until the second part of the paper, where matrices $\mathbb{A R}^{n}$ are defined which distinguish $E 2^{n}$ from T.
Theorem 2. T is not finitely axiomatizable.
Proof immediate from Theorem 1 and Lemmas 1, 3, and 4, if we take E2 ${ }^{n}$ as the systems S_{n}.

Let us designate as ET the system resulting from E2 by the addition of the axiom:

A6: $\square T \rightarrow \square \square T$.
Lemma 5. $\vdash_{\mathrm{T}} A$ iff $\vdash_{\mathrm{E} \overline{\mathrm{T}}} \square T \rightarrow A$.
Proof. $\vdash_{\mathrm{T}} A 6$, so that $\mathrm{ET} \subseteq \mathrm{T}$. Hence if $\vdash_{\mathrm{ET}} \square T \rightarrow A$ then obviously $\vdash_{\mathrm{T}} A$.

The converse is proved by induction on the length of A 's T-proof. If B is an axiom of T, then $\vdash_{E T} \square T \rightarrow B$. Suppose B results by R 1 from C and $C \rightarrow B$, and suppose ${F_{\mathrm{ET}}}_{\square} \square T \rightarrow C$ and $\mathrm{F}_{\mathrm{ET}} \square T \rightarrow(C \rightarrow B)$. Then by $A 2$ $\vdash_{\mathrm{ET}} \square T \rightarrow B$. Suppose $\square B$ results by R 3 from B, and suppose $\vdash_{\mathrm{ET}} \square T \rightarrow B$. Then $\vdash_{\mathrm{ET}} \square \square T \rightarrow \square B$ by R2, whence $\digamma_{\mathrm{ET}} \square T \rightarrow B$ by $A 6$.
Theorem 3. ET is not finitely axiomatizable.
Proof. If $\left\{A_{1}, \ldots, A_{n}\right\}$ provided a finite axiomatization of ET , then by Lemma $5\left\{A_{1}, \ldots, A_{n}, \square T\right\}$ would provide one for T, counter to Theorem 2.

We now turn to the rather more difficult task of showing that E2 and S2 are not finitely axiomatizable. In fact, as is shown in [4], $\mathrm{S} 2=\mathrm{E} 2^{1}$, so that the result for S 2 will follow from the fact that none of the systems $\mathrm{E} 2^{n}$ can be finitely axiomatized.

As before, we define a hierarchy of systems included in E2. The starting point of this hierarchy is a system e2 whose axiom-schemata are $A 1-A 5$, as for E2, but whose sole rule of inference is R 1 (thus e2 is finitely axiomatizable). Putting $\mathrm{e} 2_{0}=e 2$, we define systems $\mathrm{e} 2_{m}$ inductively as follows: the axioms of $\mathrm{e} 2_{m+1}$ are all the axioms of $\mathrm{e} 2_{m}$, together with all sentences $\square A \rightarrow \square B$ where $\vdash_{\overline{\mathrm{e}} 2_{m}} A \rightarrow B$; sole rule of inference for all systems is R1.

Lemma 6. $\mathrm{e} 2_{m} \subseteq \mathrm{e} 2_{m+1}$ for all m.
Proof immediate from the definition of $\mathrm{e} 2_{m}$, since the axioms of $\mathrm{e} 2_{m+1}$ include those of $\mathrm{e} 2_{m}$.

Next, we use the systems e2 ${ }_{m}$ to define a further series of hierarchies of systems. The systems e $2 \frac{n}{m}$ for $n \leqslant m$ shall have as axioms all axioms of $e 2_{m}$ together with $\square^{n} T$, and sole rule of inference R1. All these systems are closed with respect to substitution, since $\vdash_{\mathrm{e} 2_{m}} \square^{n} T \rightarrow \square^{n}(A \rightarrow A)$ for $n \leqslant m$.

Lemma 7. $\mathrm{e} 2_{m}^{n} \subseteq \mathrm{e} 2^{n}{ }_{m+1}$ for all $m \geqslant n$.
Proof again immediate, since any axiom of e $2 \frac{n}{m}$ is one of $\mathrm{e} 2_{m+1}^{n}$.
Lemma 8. $\mathrm{e} 2_{\bar{m}}^{n} \subseteq \mathrm{e} 2_{\bar{m}}^{n+1}$ for all $n<m$.
Proof by A5, whence any axiom of e $2 \frac{n}{m}$ is either an axiom or a theorem of $\mathrm{e} 2_{m}^{n+1}$.
Lemma 9. $\vdash_{\mathrm{E} 2^{n}} A$ iff $\vdash_{\mathrm{E} 2} \square^{n} T \rightarrow A$.
Proof. If $\vdash_{\mathrm{E}}^{2} \square^{n} T \rightarrow A$, then $\vdash_{\mathrm{E} 2^{n}} \square^{n} T \rightarrow A$ whence of course $\vdash_{\mathrm{E} 2^{n}} A$. Conversely, suppose $\vdash_{\mathrm{E}^{2}} A$. By induction on the length of proof, it is easy to show that $\vdash_{\mathrm{E} 2} \square^{n} T \rightarrow A$.
Lemma 10. $\vdash_{\mathrm{e} 2_{m}^{n}} A$ iff $\vdash_{\mathrm{e} 2_{m}} \square^{n} T \rightarrow A$, for $n \leqslant m$.
Proof similar to that of Lemma 9.
Lemma 11. If $\vdash_{\mathrm{E} 2} A$, then $\vdash_{\mathrm{e} 2_{m}}$ A for some m.

Proof by induction on the number of occasions R2 is used in the E2-proof of A. If B is an axiom of $E 2$, then $\vdash_{\mathrm{e} 2} B$. Suppose $\square B \rightarrow \square C$ results from $B \rightarrow C$ by R2, and suppose $\digamma_{\mathrm{e}_{2}} B \rightarrow C$. Then by the definition of $\mathrm{e} 2_{m+1} \square B \rightarrow \square C$ is an axiom of $\mathrm{e} 2_{m+1}$.
Lemma 12. $\mathrm{E} 2=\bigcup \mathrm{e} 2_{m}$.
Proof immediate from Lemma 11, if we note that $\mathrm{e} 2_{m} \subseteq \mathrm{E} 2$ for all m.
Lemma 13. $\mathrm{E} 2^{n}=\bigcup \mathrm{e} 2_{m}^{n}(m \geqslant n)$ for all n.
Proof. If $\vdash_{\mathrm{e} 2} \frac{n}{m} A(m \geqslant n)$ then $\vdash_{\mathrm{e} 2 m} \square^{n} T \rightarrow A$ by Lemma 10 , whence $\vdash_{\mathrm{E} 2} \square^{n} T \rightarrow A$ and so $\vdash_{\mathrm{E} 2^{n}} A$ by Lemma 9 , so that $2_{m}^{n} \subseteq \mathrm{E} 2^{n}$ for all $m \geqslant n$. Conversely, suppose $\vdash_{\mathrm{E} 2^{n}} A$. Then $\vdash_{\mathrm{E} 2} \square^{n} T \rightarrow A$ by Lemma 9 , whence by Lemma $11 \vdash_{\mathrm{e} 2_{m}} \square^{n} T \rightarrow A$ for some \dot{m}, whence $\vdash_{\mathrm{e} 2_{m+n}} \square^{n} T \rightarrow A$, and so $\vdash_{\bar{e}}^{2} 2_{m+n}^{n} A$ by Lemma 10.
Lemma 14. $\mathrm{E} 2 \neq \mathrm{e} 2_{m}$. for all $m ; \mathrm{E} 2^{m} \neq \mathrm{e} 2 \frac{m_{m}}{m}$ for all m.
Again, we delay a proof by means of matrices until the second part of the paper.

Lemma 15. e $2_{m}^{n} \neq \mathrm{E} 2^{n}$, for all $m, n, m \geqslant n$.
Proof. Suppose $\mathrm{e} 2_{m}^{n}=\mathrm{E} 2^{n}, m \geqslant n$. The case that $m=n$ is ruled out by Lemma 14, so that $m>n$. Then $\mathrm{e} 2_{m}^{n} \subseteq \mathrm{e} 2_{m}^{m}$ (by Lemma 8) $\subseteq \mathrm{E} 2^{\dot{m}}$ (by Lemma 13). Now if $\Vdash_{\overline{\mathrm{E}} 2^{m}} A$ then $\Gamma_{\mathrm{E} 2} \square^{m} T \rightarrow A$ (by Lemma 9), whence $\vdash_{\mathrm{E} 2^{n}}$ $\square^{m} T \rightarrow A$, whence $\vdash_{\mathrm{e} 2_{m}^{n}} \square^{m} T \rightarrow A$ (by the hypothesis), whence $\vdash_{\mathrm{e} 2_{m}^{m}}$ $\square^{m} T \rightarrow A$, whence $\vdash_{\mathrm{e} 2_{m}^{m}} A$; so that $\mathrm{E} 2^{m} \subseteq \mathrm{e} 2_{m}^{m}$, and $\mathrm{E} 2^{m}=\mathrm{e} 2_{m}^{m}$, contrary to Lemma 14. This proves the lemma.

Theorem 4. E2 is not finitely axiomatizable; none of the systems E2 ${ }^{n}$ (including E2 ${ }^{1}=\mathrm{S} 2$) is finitely axiomatizable.

Proof. That E2 is not finitely axiomatizable follows from Theorem 1, together with Lemmas 6, 12, and 14. The cases of E2 ${ }^{n}$ are covered by the same theorem, together with Lemmas 7, 13, and 15.
II. Our proof of Theorems 2, 3, and 4 is incomplete until we have established Lemmas 4 and 14. To this end, we develop sets of matrices of the form \quad 朋 $=\langle M, D, U, \cap,-, P\rangle$, where $\langle M, U, \cap,->$ is a Boolean algebra and D (the set of designated elements of M) is a filter (additive ideal) of M. We intend that $A \rightarrow B$ shall be interpreted as $-x \cup y,-A$ as $-x$, and $\square A$ as $-\mathrm{P}-x$ for $x, y \varepsilon M$. It follows that $A 1-A 5$ will be satisfied by any matrix, and that R 1 is also satisfied (if $x \varepsilon D$ and $-x \cup y \varepsilon D$ then $y \varepsilon D)^{5}$. We use the symbols U and O for the unit element and null element of the Boolean algebra; it will always be the case that $U \varepsilon D, 0 \ddagger D$, of course.

Let P^{n} be the set of the first n positive integers $\{1, \ldots, n\}$, and put $M^{n}=ß P^{n}$, the set of all subsets of P^{n}. For $x, y \varepsilon P^{n}$, put $R=\{\langle x, y\rangle: x=$ $y+1 \vee(x \neq 1 \wedge x=y)\}$. For $A \subseteq P^{n}$, put $\mathrm{P} A=\{x:(\exists y)(R x y \wedge y \varepsilon A)\} \cup\{1\}$. For $A \subseteq P^{n}$, put $D^{n}=\{A: n \varepsilon A\}$ so that D^{n} is a filter of M^{n}. Finally, put $\mathbb{R}^{n}=$ $<M^{n}, D^{n}, \cup, \cap,-, \mathrm{P}>^{6}$.

For a sentence A ，we write $f^{n(A)}$ for the matrix－function corresponding to A in $\mathbb{H 月 H}^{n}$ ．Then it is easy to verify that the axioms and rules of E2 are satisfied by MR^{n} ．Indeed，we have that if $\vdash_{\mathrm{E}_{2}} A$ then $f^{n(A)} \equiv U .^{7}$ Further， putting $\mathrm{N} A\left(A \subseteq P^{n}\right)=-\mathrm{P}-A$ ，we have：

$$
\begin{aligned}
& \mathbf{N} U=-\mathbf{P} 0=U-\{1\} ; \\
& \mathbf{N N} U=\mathbf{N}(U-\{1\})=-\mathbf{P}\{1\}=U-\{1,2\} ; \\
& \mathbf{N}^{i} U(\underbrace{\mathbf{N} \ldots \mathbf{N} U}_{i})=U-\{1, \ldots, i\} \quad(i \leqslant n) .
\end{aligned}
$$

Theorem 5． \＆$^{n+1}$ satisfies E2 ${ }^{n}$ ．
Proof．As already observed，if $\vdash_{\mathrm{E} 2} A$ then $f^{n+1(A)} \equiv U$ ；since $\vdash_{\mathrm{E} 2} T$ ， $f^{n+1\left(\square^{n} T\right)} \equiv U-\{1, \ldots, n\}=\{n+1\}$ ．But $\{n+1\} \varepsilon D^{n+1}$ ，so that all axioms of $E 2^{n}$ are satisfied by $\mathbb{R H}^{n+1}$ ．Since D^{n+1} is a filter of $M^{n+1}, \mathrm{R} 1$ is also satisfied，which proves the theorem．
Theorem 6．明 ${ }^{n+1}$ falsifies $\square^{n+1} T$ ．
Proof．Since $f^{n+1(T)} \equiv U, f^{n+1\left(\square^{n+1} T\right)} \equiv 0$ and $0 \ddagger D^{n+1}$ ．
Lemma 4 is an immediate consequence of Theorems 5 and 6，since $\vdash_{T} \square^{n+1} T$ for any n ．

For Lemma 14，we define a different series of matrices．M^{n} ，as before，is the set of all subsets of P^{n} ．Also，the relation R is as defined earlier，but we employ a new possibility operator P^{\prime} ：

$$
\begin{aligned}
& \mathrm{P}^{\prime} 0=\{1\} \\
& \mathrm{P}^{\prime} U=U \\
& \text { for } A \neq 0, A \neq U\left(A \subseteq P^{n}\right), \mathrm{P}^{\prime} A=\{x:(\exists y)(R x y \wedge y \varepsilon A)\}
\end{aligned}
$$

We have correspondingly，for $\mathbf{N}^{\prime}=-\mathbf{P}^{\prime}-$ ，that

```
\(\mathbf{N}^{\prime} U=U-\{1\} ;\)
\(\mathrm{N}^{\prime} 0=0\);
for \(A \neq 0, A \neq U\left(A \subseteq P^{n}\right), \mathbf{N}^{\prime} A=\{x:(\forall y)(R x y \rightarrow y \varepsilon A)\}\).
```

D^{n} is still $\{A: n \varepsilon A\}$ ，but we shall also be interested in subsets $D_{i}^{n}(i \leqslant n)$ ， where $D_{i}^{n}=\{A:(\forall x)(x \geqslant i \rightarrow x \varepsilon A)\}$ ．Then $D_{n}^{n}=D^{n}$ ，and，for each $i \varepsilon P^{n}$ ， $D_{i}^{n} \subseteq D^{n}$ ．Further，D_{i}^{n} is always a filter of M^{n} ．We put $\mathrm{MH}^{1 n}=<M^{n}, D^{n}$ ， $\left.\cup, \cap,-, \mathrm{P}^{\prime}\right\rangle$ ，and $\mathrm{MH}_{i}^{\prime n}=<M^{n}, D_{i}^{n}, \cup, \cap,-, \mathrm{P}^{\prime}>$ ．

We note the following \mathbf{N}^{\prime}－values in $\mathrm{Al}^{\prime n}\left(\mathrm{PR}^{\prime n}\right)$ ：

$$
\begin{aligned}
& \mathbf{N}^{\prime} U=U-\{1\} ; \\
& \mathbf{N}^{\prime} \mathbf{N}^{\prime} U=-\mathbf{P}^{\prime}\{1\}=U-\{2\} ; \\
& \mathbf{N}^{\prime} \mathbf{N}^{\prime} \mathbf{N}^{\prime} U=-\mathbf{P}^{\prime}\{2\}=U-\{2,3\} ; \\
& \mathbf{N}^{\prime} i U=U-\{2, \ldots, i\}(2 \leqslant i \leqslant n) .
\end{aligned}
$$

As before，T is $p \rightarrow p$ ；we also put T^{\prime} as $\square p \rightarrow p$ ．
Lemma 16． 盟＇n $_{2}$ satisfies $2 .{ }^{8}$
Proof．It is obvious that if A is a tautology then $f^{n(A)} \equiv U$ ，so that $A 1-A 3$ are satisfied．（In particular，$f^{n(T)} \equiv U$ ．）For $A 5$ ，it suffices to test the matrix－function $-A \cup \mathrm{P}^{\prime} A\left(A \subseteq P^{n}\right)$ ．If either $A=0$ or $A=U,-A \cup \mathrm{P}^{\prime} A=U$ ．

If $A \neq 0, A \neq U$, then, if $x \neq 1$ and $x \varepsilon A$, since $R x x$, we have $x \varepsilon P^{\prime} A$. Hence $-A \cup \mathrm{P}^{\prime} A \cup\{1\}=U$. Thus either $-A \cup \mathrm{P}^{\prime} A=U$ or $-A \cup \mathrm{P}^{\prime} A=U-\{1\}$; in any case, $-A \cup P^{\prime} A \varepsilon D_{2}^{n}$, so that $A 5$ is satisfied by $\not \mathrm{Hf}_{2}^{\prime n}$. (In particular, either $f^{n^{\prime}\left(T^{\prime}\right)}=U$ or $f^{n\left(T^{\prime}\right)}=U-\{1\}$ and there is an assignment from $\mathrm{H}^{\prime \prime}{ }_{2}^{n}$ such that $f^{n\left(T^{\prime}\right)}=U-\{1\}$, namely that assigning to p the value $U-\{1\}$.) For $A 4$, it suffices to test the matrix-function

$$
g=-\left(\mathbf{N}^{\prime} A \cap \mathbf{P}^{\prime} B\right) \cup \mathbf{P}^{\prime}(A \cap B)
$$

If $A=0, N^{\prime} A=0$, and the left-hand side of g is U, so that $g=U$. If $A=U$, the right-hand side is $\mathrm{P}^{\prime} B$, so that by Boolean algebra $g=U$. If $B=0$, the right-hand side is $P^{\prime} O$ and the left-hand side -($\left.N^{\prime} A \cap P^{\prime} O\right)$, so that by Boolean algebra $g=U$. If $B=U, g$ becomes $-N^{\prime} A \cup P^{\prime} A$, so that $g=U$ or $g=U-\{1\}$ by reasoning identical with that in the case of $A 5$ above. Finally, suppose $A \neq 0, A \neq U, B \neq 0, B \neq U$, and suppose $x \varepsilon \bar{N}^{\prime} A \cap^{\prime} B$. Then $(\forall y)(R x y \rightarrow y \varepsilon A)$, $(\exists y)(R x y \wedge y \varepsilon B)$. It follows that $(\exists y)(R x y \wedge y \varepsilon A \cap B)$; since $A \cap B \neq 0, A \cap B \neq U$, we have $x \varepsilon \mathrm{P}^{\prime}(A \cap B)$ and $g=U$. Hence for any assignment either $g=U$ or $g=U-\{1\}$, so that $A 4$ is satisfied by ${ }^{A l}{ }_{2}^{\prime n}$. That R1 is also satisfied follows from the fact that D_{2}^{n} is a filter.

Lemma 17. $\mathrm{AH}_{m+2}^{\rho^{n+2}}$ satisfies $\mathrm{e} 2_{m}^{m}$, for $m \leqslant n$.
Proof by induction on m up to n. As basis, by Lemma 16 we have 酚 ${ }^{n+2}$ satisfies $\mathrm{e} 2_{0}^{0}=\mathrm{e} 2$. Suppose then that $\mathrm{AR}_{\boldsymbol{m}}^{\boldsymbol{n}+2}$ satisfies $\mathrm{e} 2_{m}^{m}$ for $m<n$, and consider $\mathrm{ff}^{\top}{ }_{m+3}^{n+2}$, e 2_{m+1}^{m+1}. The axioms of e2 2_{m+1}^{m+1} contain all axioms of $\mathrm{e} 2_{m}$, together with all sentences $\square A \rightarrow \square B$ where $\vdash_{\mathrm{e} 2_{m}} A \rightarrow B$ and also $\square^{m+1} T$. If A is an axiom of $\mathrm{e} 2_{m}$, then $f^{n+2(A)} \varepsilon D_{\bar{m}+2}^{i+2}$ (by Lemma 7 and the inductive hypothesis), whence $f^{n+2(A)} \varepsilon D_{m+3}^{n+2}$ (by definition of D_{i}^{n}), so that A is satisfied by $A^{\prime+n+2}+\boldsymbol{m}+3$. Suppose $\vdash_{e 2}{ }_{m} A \rightarrow B$. Then $f^{n+2(A \rightarrow B)} \varepsilon D_{m+2}^{n+2}$. It follows that $f^{n+2(\square(A \rightarrow B))} \varepsilon D_{m+3}^{n+2}$ (compare the analysis of N^{\prime} preceding Lemma 16). But $f^{n+2(\square(A \rightarrow B) \rightarrow(\square A \rightarrow \square B))} \varepsilon D_{2}^{n+2}$, as is shown in the proof of Lemma 16 , and so $\varepsilon D_{m+3}^{n+2}$. Since D_{m+3}^{n+2} is closed under detachment, we
 since $f^{\dot{n}+2(T)} \equiv U$, either $\left.f^{n+2\left(\square^{m} m+1\right.} T\right) \equiv U-\{1\}\left(\right.$ when $m=0$) or $f^{n+2\left(\square^{m+1} T\right)} \equiv$ $U-\{2, \ldots, m+1\}$ (when $m \geqslant 1$). But all values $U-\{1\}, U-\{2, \ldots, m+1\}$ $\varepsilon D_{m+3}^{n+2}$, so that $\square^{m+1} T$ is satisfied by $\not \mathrm{ml}^{\frac{n}{m+2}+3}$. Since R 1 is also satisfied, ${ }^{4 n}{ }_{m+3}^{n+2}$ satisfies e2 ${ }_{m+1}^{m+1}$, and the induction is complete.
Theorem 7. , flin $^{n+2}$ satisfies $\mathrm{e} 2_{n}^{n}$.
Proof immediate from Lemma 17, if we put $m=n$ and note that $\frac{18}{} \frac{i n}{n+2}=$解 ${ }^{n+2}$.

Theorem 8. An $^{n^{n+2}}$ falsifies $\square^{n+1} T \rightarrow \square^{n+1} T^{\prime}$.
Proof. We noted in the proof of Lemma 16 that $f^{n+2(T)} \equiv U$ in $\mathbb{A l}^{n^{n+2}}$, whilst there is an assignment such that $f^{n+2\left(T^{\prime}\right)}=U-\{1\}$. For this assignment, $f^{n+2\left(\square^{\bar{n}+1} T\right)} \equiv U-\{1\} \quad$ (when $n=0$) or $U-\{2, \ldots n+1\} \quad$ (when $n \geqslant 1$), so that $f^{n+2\left(\square^{n+1} T\right)} \varepsilon D^{n+2}$. For the same assignment, however, $f^{n+2\left(\square^{n+1} T^{\prime}\right)}=$ $U-\{2, \ldots, n+2\}=\{1\}$, and $\{1\} \& D^{n+2}$. This assignment thus falsifies $\square^{n+1} T \rightarrow \square^{n+1} T^{\prime}$.

Lemma 14 follows from Theorems 7 and 8, if we note that $\vdash_{\mathrm{E}_{2}} \square^{n+1} T \rightarrow$ $\square^{n+1} T^{\prime}$ by $n+1$ applications of R2 to $T \rightarrow T^{\prime}$. Thus our proofs of Theorems 2-4 are now complete.
III. Final Remarks. It is shown in [3] that E2 is decidable. It therefore follows from Lemma 9 that all the systems E2 ${ }^{n}$ (including S2) are decidable. E2 admits as a derived rule the substitutability of material equivalents, but none of the systems $\mathrm{E} 2^{n}(n>0)$ does; thus for $n \geqslant 1$ $\vdash_{\mathrm{E} 2^{n}} \square^{n-1} T \longleftrightarrow \square^{n} T$, but it is not the case that $\vdash_{\mathrm{E} 2^{n}} \square^{n+1} T$ (compare Theorem 6). Also, none of the systems e $2 \frac{n}{m}$ admit this rule, since $\vdash_{\mathrm{e} 2} T \longleftrightarrow T^{\prime}$ but it is not the case that $\vdash_{\mathrm{e} 2 \frac{n}{m}} \square^{p+1} T \longleftrightarrow \square^{p+1} T^{\prime}$, where $p=\max (m, n)$ (compare Theorem 8). If we $a d d$ the rule (or equivalently $\mathbf{R} 2$) to the systems E2 ${ }^{n}(n \geqslant 1)$ then the systems all collapse into T. This shows the importance, in defining extensions of systems, of specifying the rules of inference. In a recent paper [1], Åqist (p. 81, compare (d)) in effect assumes that any extension of S 2 will preserve Becker's rule; that this is not so is shown by the system $E 2^{2}$, an extension of $S 2$ containing $\square^{2} T$ but not equal to $\mathrm{T} .{ }^{9}$

The system $\mathrm{T}(\mathrm{D})$ of [3], which is T modified by replacing $A 5$ by $\square A \rightarrow-\square-A$, can be shown not finitely axiomatizable by very simple modifications of the above arguments, and the same holds for $T(C)$ of [3], which is T modified by dropping $A 5$ altogether. The systems E3, E4, E5 (see [2]) turn out to be finitely axiomatizable (I owe this result to an idea of Dana Scott's). It seems reasonable, with this evidence, to conjecture that, if a modal system has finitely many distinct and irreducible modalities, then it is finitely axiomatizable. The converse does not hold, if only because of e2. More interesting counterexamples are the systems T^{n}, which result from T (with R3) by adding $\square^{n} A \rightarrow \square^{n+1} A$. These can readily all be shown to be finitely axiomatizable, although for $n \geqslant 2 \mathrm{~T}^{n}$ contains infinitely many distinct and irreducible modalities, as is shown in Sugihara [10].

NOTES

1. See also Sobocinski [8] for further results.
2. For definitions of these systems, see [2]. Thus an open question of Sobociński [7] is settled in this paper, and the partial results of Aqvist [1], 6 and 6.1, are extended.
3. This theorem is merely a special case of a theorem due to Tarski in 1928; see [11], p. 36, Theorem 20. In fact, the condition that $S_{n} \subseteq S_{n+1}$ is redundant, as Tarski's theorem shows. It is useful for our purposes, however, since without it the matrix proof that $S_{n} \neq S$ in particular applications would not go through. Our present formulation is in [11], p. 362, Theorem 25 (Tarski, 1935-36).
4. All modal systems considered are thought of as having \rightarrow, - , and \square as primitive connectives. Equivalence of these formulations to those in [2] is trivial.
5. See, for example, Stoll [9], Chapter 6 (esp. p. 280).
6. The elements of M^{n} may be thought of, in the manner perhaps more familiar to some modal logicians, as n-sequences of 1 's and 0 's, where a 1 in the i 'th position represents that i is a member of the corresponding element. In this light, the operation P can be described in a quite intuitive way.
7. This follows from [3]; indeed, $\left\langle M^{n}, \cup, \cap,-, P\right\rangle$ are epistemic algebras in the sense of that paper; notice that R is reflexive in $U-\{1\}$.
8. The matrix Hl_{2}^{2} is used in [2] to distinguish S 0.5 from S 0.9 .
9. Thus the question whether all systems between S 2 and T are Halldén-unreasonable seems still open (compare Aqvist [1], 4.1), though I conjecture that all systems E2 ${ }^{n}$ are in fact Halldén-unreasonable.

BIBLIOGRAPHY

[1] L. Åqvist. Results concerning some modal systems that contain S2. J.S.L., Vol. 29 (1964), pp. 79-87.
[2] E. J. Lemmon. New foundations for Lewis modal systems. J.S.L., Vol. 22 (1957), pp. 176-186.
[3] E. J. Lemmon. Algebraic semantics for modal logics I. Forthcoming in J.S.L.
[4] E. J. Lemmon. Algebraic semantics for modal logics II. Forthcoming in J.S.L.
[5] J. C. C. McKinsey and A. Tarski. Some theorems about the sentential calculi of Lewis and Heyting. J.S.L., Vol. 13 (1948), pp. 1-15.
[6] L. Simons. New axiomatizations of S3 and S4. J.S.L., Vol. 18 (1953), pp. 309-316.
[7] B. Sobociński. Note on a modal system of Feys-von Wright. The Journal of Computing Systems, Vol. 1:3 (1953), pp. 171-178.
[8] B. Sobociński. A contribution to the axiomatization of Lewis' system S5. Notre Dame Journal of Formal Logic, Vol. 3 (1962), pp. 51-60.
[9] R. R. Stoll. Set theory and logic. Freeman and Co., 1961.
[10] T. Sugihara. The number of modalities in T supplemented by the axiom $C L^{2} \mathrm{pL}^{3} \mathrm{p}$. J.S.L., Vol. 27 (1962), pp. 407-408.
[11] A. Tarski. Logic, semantics, metamathematics. O.U.P., 1956.

