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THE ARITHMETIC OF THE TERM-RELATION NUMBER THEORY

F. G. ASENJO

1. Purpose. In a previous paper [l], as a result of the formalization of
the concept of internal relation, a term-relation number theory was intro-
duced. The former work showed that term-relation numbers are either
terms or relations obtained by following determined formation rules and by
imposing certain postulates. Addition and multiplication of terms on the
one hand, and relations on the other, were defined, and the following prop-
erties proved: associativity, commutativity, and distributivity of addition
and multiplication; the existence of identity elements for addition (0,0); the
nonexistence of identity elements for multiplication; and the invalidity of the
well-ordering principle for a concept of order similar to the one usually
defined for natural numbers. The present paper will provide further defini-
tions and examine further properties of term-relation numbers. These will
include: definition of negative numbers; study of rings of term-relation
numbers as partially ordered sets, leading to the characterization of such
rings as modular lattices; definition of prime numbers; and study of divisi-
bility and factorization. The paper will end with a question about the uni-
versal relevance of Weierstrass' final theorem of arithmetic.

2. Terminology and notation. The set of all terms Γ°°, defined in [l],
contains as a proper subset the set of all terms without proper components
T* (Γ* = {0,1,2,...}). The set of all relations R°°, also defined in [l], con-
tains as a proper subset the set of all relations without proper components
R* (R* = {θ, 1,2,...}). By a "final component" of a term or relation, we
mean a component without proper components, i.e., a component belonging
either to T* or to R*. Every term or relation can be analyzed and ex-
pressed in its final components. Let us now introduce the set T1 =
{θ,±l,±2,...}, which can be obtained by an extension of T* into a system of
integers. Similarly, we obtain R' = {θ,±ϊ,±2,...} as an analogous extension
of R*. By "s.f.r," we mean the phrase "similarly for relations." Ob-
viously, terms from Tf (like terms from T*) do not have proper compo-
nents. S.f.r.

3. Negative term-relation numbers. If we let terms and relations have
final components from Tτ and R'9 instead of from T* and#* only, we have
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extended T°° and R°° into two new sets, T001 and R°°* respectively. Then, for
every term x of TOOt there exists in T00' a term -x such that # + (-#) = 0. The
term -x will be called the negative of the term x—and clearly, it is unique.
S.f.r. The difference between x and y is defined x + {-y). S.f.r. In order to
avoid confusion in notation, the difference will be indicated only by the ex-
pression x + {-y), and not by x-y. The sign - will be reserved to represent
negative terms or relations.

The triple (7°°%+,.) is a commutative ring without identity (e.g., 3*21.1
= 301). This ring is not an integral domain (e.g., 0Ϊ2 100 = 0), and every
element in the additive group is of infinite order. As a consequence, equa-
tions of the form a + x = b are always solvable, but this is not so for equa-
tions of the form ax = b. S.f.r.

4. Rings of term-relation numbers as modular lattices. Given the two
terms x and y, we define x ^ y_iί and^nly if x + (-y) belongs to T°°; e.g.,
-34(69-2)^-52-3, since -34(69-2)+5-23 = 22(991). S.f.r. Clearly, the
Archimedean property is satisfied for term-relation numbers. The relation
^ introduces a partial ordering in T°°f and R°°\ This order is not total
(e.g., 201 is neither greater than, equal to, nor less than 102).

In order to prove that T001 and R001 are lattices, we must prove this ex-
istence of a l.u.b. and a g.l.b. for every pair of elements in each ring. Let
us consider the term x of order m [l] and the term y of order n. Two cases
are possible: (a) x and y are comparable (i.e., either x ^ y or y ^x); (b) x
and y are not comparable. Case (a) is trivial. Let us assume case (b) and
write x = wϊvz and y = uΰv (w and z terms of order less than m\ u and v
terms of order less thann; w and ΰ relations of order greater than or equal
to 1). We again have two cases: (b.l) w and u, w and ϋ, and z and v are
respectively comparable; (b.2) one, two, or all of the three pairs w,u; w,ΰ;
z,v are not comparable. Case (b.l) allows four possibilities concerning the
sense of the relation ^ . Let us assume, e.g., w<u, w > u, z>v (the
senses of the first and third pairs must be opposite in order that x and y
not be comparable). In this case, uwz is the l.u.b. and wuv is the g.l.b. (the
other three cases lead to the obviously similar l.u.b. and g.l.b.). Clearly,
uϊvz + (-{wwz)) = fμ + (-w))00εT°° and uwz +(-(uΰv)) = 0(w + (-u))(z + (-v))zT°°;
i.e., uwz ^ wwz and uwz > uuv. It is also clear that every other term t
such that t ^ x and t ^ y will also satisfy t > uwz. Similar reasoning fol-
lows for the g.l.b. Case (b.2), in turn, allows several possibilities, but all
of them can be treated in like fashion. Let us assume, e.g., w ^u, w ^u,
and z and v not comparable. Let z = ppq be of order h<m and v = rrs be
of order k<n. Again, two cases are possible: (b.21) p,r; p,r; q,s are
respectively comparable, say, e.g., p ^ r ; p — r; q — s. In this case,
reasoning as for (b.l), we find that wu\prs) would be the l.u.b. a.nduw(rpq)
the g.l.b. Case (b.22) assumes that one or more of the pairs p9r; />,r; q,s
are not comparable. Repeating the analysis of case (b.2), and reiterating it
as many times as necessary, we shall always find some components of x
and y (eventually their final components) that are comparable for every
possible case in which x and y are not comparable. In other words, the
l.u.b. and g.l.b. exist and can always be determined by following the in-
dicated analysis. S.f.r. T°°% and R°°' are then lattice rings.
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Such lattices are not complete, since they contain neither a zero nor an
all element. However, these lattices are modular, since x n (y U z) =
(x Γ) y) U (x Π z), as the following example shows. Let us wr i te* = aab,y =
ccd, z = eef, and assume: a ^ c, a and c not comparable, b andd not com-
parable, a < e, a ^e, b ^ / , c ^ e, c^e,d<f. Let us also write a = ssζ
c = u u v , b = hhk, d = />/>#, a n d a s s u m e : s ^ u , s ^ u , T ^ v , h > p , Έ ^ p ,
h < q. With these assumptions.

x Π(y{j z) = a(ssΊ) b Π e(uuv)f = a(uut) b

and

(^ Π 3;) U (ΛΓ Π £) = c(uut)(ppk) U β i δ = a{u~ut)(hhk).

This example can be considered as part of a longer proof by cases in which
incomparable pairs occur in different numbers and in different places as
components of x, y, and z. The proof is a matter of routine and follows
lines that are similar to those of the example just given. S.f.r.

As a consequence of Γ001 being a modular lattice, intervals of the form
\[aUb, «]and \[b9a Πδ](where I [a,b] = {x: a ^x ^b}) are isomorphic. S.f.r.
This lattice ring is also a lattice-ordered group ([2], p. 214) in the sense
that T°°τ is a lattice ring in which the relation ^ is invariant under transla-
tions x —» a+x+b. (Because of monotony of order with respect to addition,
x ^ y implies a+x+b ^a+y+b for all afi in T001.) S.f.r. The absolute value
\x\ of a term x is defined as follows. Let x =aab...mn be the term ex-
pressed in its final components (with some adequate arrangement of the
corresponding parentheses [l]), then \x\ = \a\_\a\ | δ | . . \m\ \n\ (with the
same parenthesis arrangement) where \i] and \i\ have the meaning of abso-
lute value in the ordinary sense. S.f.r. It is clear, then, that \x\ is positive
in the sense that \x\ ^ 0 (or equivalently |*| ε T°°). It is also true that the
product of two positive terms is positive. However, nonpositive terms do
not necessarily satisfy 0 ^3>; then, even if the product of the negatives of
positive terms is positive, the product of the negatives of nonpositive terms
is not necessarily positive (though it may be in some cases). This is a con-
sequence of the fact that > is not a total order; for this reason, T°°τ is a lat-
tice-ordered group, but not a lattice-ordered ring in Birkhoff's sense ([2],
pp. 214, 227). S.f.r.

We can now define a " lattice -ordered ideal" (or 1-ideal) of the ring
T°°' as a normal subgroup of the additive lattice-ordered group of Γ00' that
with every a also contains every* with \x\ ^ \a\. Then the congruence re-
lations in T001 become the partitions of T°°f into the cosets of its different
1-ideals. S.f.r.

4. Multiplies, divisibility, prime elements, factorization. Let x be an
arbitrary term-relation number, namely, a term. By a multiple of x, we
mean a term z of the form z = xy. We shall also say that x and y are
factors of z. S.f.r. The algorithm of division can be defined as follows:
let x = rrs and y = ttu\ then x/y = (r/t)(r/t)(s/u) (Definition 1). This is a
recursive definition, and x/y will have a definite value if_and only if the
following three conditions are satisfied: (i) y has no 0 or 0 as component;
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(ii) the order of y is greater than or equal to the order of x, (so that postu-
late P22 [ l] does not have to be applied for y); (iii) the parenthesis struc-
tures of x and y are such that, by applying Def. 1, the orders of r9 r, and s
are respectively less than or equal to the orders oϊt,t, and u, this being
true recursively at every stage of the parallel analysis of x and y in their
components, until the final components of x are reached. If these three
conditions are not satisfied, division by 0 or 0 would be unavoidable at some
stage during the iteration of Def. 1. With (i), (ii), and (iii) satisfied as
necessary conditions, it is easy to see that they are also sufficient to let
Def. 1 provide an answer to the problem of finding, for every x andy, a pair
of terms q and r such that x = qy+ r with r in T°°, and such that r ^ \y\.
The following example shows that the proof of sufficiency consists of an
iteration of Euclid's fundamental theorem. Let us consider the quotient

x/y = (-l)7((20(-4))Ϊ5)/(3(-7)(-6))5((276)63).

Here x is of order 4, y is of order 5. Applying Def. 1,

x/y = [(-l)0(-l)/3(-7K-6))][ 7/5] [((2^(-4H5)/((276)63))_=J(-l+2/3)(0+0/(-7))
(l+5/(-6))] [l+(2/5)][((l+O/2)(αHθ/J7)(-l+2/6))(O+l/6)(l+2/3)] =
((-l)0l)l((10(-l))01)+((205)2((002)12))>

The remainder (205)2(002)12) is less than|y| S.f.r.
In order to determine the g.c.d. of two-term-relation numbers, two

conditions must be satisfied. Since the g.c.d. z of two terms x and y divides
them both, condition (iii) for divisibility must be satisfied for x/z and y/z .
The second condition covers situations such as this: pairs of terms like
201 and 102 do not have a g.c.d. because every number of the form lal, with
any arbitrary relation a, is_a common divisor of both terms; however, the
set of terms of the form lal9 for every arbitrary α, has no uppe_r bound.
Therefore, condition (iv), x and y may not have zeros (either 0 or 0) in the
same respective places in their given parenthesis structures. With condi-
tions (iii) and (iv) satisfied, the g.c.d. always exist and can be characterized
recursively in this way: if x = rrs and y = ttu, then

g.c.d.(x,y) = (g.c.d.(r,O)(g.c.d.(r,7))(g.c.d.(s,w).

Because there is no g.c.d. in any other case, (iii) and (iv) are necessary and
sufficient conditions for the existence of the g.c.d.

The l.c.m. presents similar problems, except that instead of condition
(iv), x and y must satisfy condition (i), since they must divide the l.c.m.
Further, condition (v), x and y must have the same order. Then,

l.c.m.(x,y) = (l.c.m.(r,t))(l.c.m.(r,t))(l.c.m.{s,u).

(Condition (v) assures that r,t r,t s9u will not yield zeros at any stage of
the division process). Conditions (i), (iii), and (v) are necessary and suf-
ficient for the existence of the l.c.m. S.f.r.

By a prime term-relation number, we mean a term or relation such
that its final components are exclusively prime^ terms (1,2,3,5,7,...) and
prime relations (1,2,3,5,7,...). E.g., 213((7917)561) is a prime term. The
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factorization theorem holds, then, for term-relation numbers: any term of
T°° (0 excluded) admits a unique factorization as a product of prime terms
PιP2t..Pr such that P i ^ j P ^ . ^ P r . SJ.r. E.g., the term 21(33457)2
has the factorization: (1( 131)1)(3(331)1)(7( 1157)2), and this is the only one
that satisfies Px ^ P2 ^ . . . =s pu

5. Rational term-relation numbers. Equations. In the multiplicative
semigroups of T°°τ and R°°\ cancellation laws for multiplication do not hold
(unless we exclude from T°°τ and R°°J all terms and relations with zero
components 0 or 0, limiting, then, the scope of multiplication to pairs of
terms and pairs of relations that have the same order and the same paren-
thesis structure). However, we can construct commutative rings of ra-
tional term-relation numbers (which will not be fields) by allowing the final
components of every term and relation to be expressions of the form a/b or
a/by where a and b are elements of T001 and a and b elements of R001 * with
b + 0 and H O . The arithmetic of these rational term-relation numbers
can be obtained by generalizing the arithmetic of T0 0 1 and R001 developed
above.

With respect to the solvability of equations with coefficients in T001 and
R°°\ when a term or relation has a zero component, it plays a role of inde-
termination similar to the role that the integer zero plays in the theory of
equations with integral coefficients. Therefore, ax = b is uniquely solvable
if a does not have a zero component, and if b and a satisfy conditions (ii)
and (iii) for divisibility. Also, the linear equation ax + by = c has an in-
finity of ordered pairs of solutions (x,y) if a and b do not have zero com-
ponents, and if c and a on the one hand, and c and b on the other, both
satisfy conditions (ii) and (iii) for divisibility.

6. The relevance of the final theorem of arithmetic. Term-relation
number systems are new generalizations of the system of natural numbers
T* that differ greatly from the usual generalizations considered in theory
of numbers. A question arises as to how term-relation number systems
compare with hyper complex systems. In this comparison, differences are
more striking than similarities, since there is no complex or hyper-com-
plex system isomorphic to the rings T°°τ or R001 or to any extension of them
that we can foresee. However, some definitions and concepts from the
theory of hypercomplex systems can easily be transferred to term-relation
number systems. For example, we can define the_modulus of a term-rela-
tion number in this form: given the term x = aabb.. .mn (with some ar-
rangement of the corresponding parentheses), the modulus of x is the pair
(r,r) where r =V#2 + δ2+ + ^2 andr =-\/a2+b2 + .. , + m2. S.f.r. It is clear
that a necessary condition for equality of terms or relations is that their
respective moduli be equal in the sense that r = r τ and r = r\

An important issue develops at this point. It is well known that Weier-
strass' final theorem of arithmetic eliminates the possibility of obtaining
hypercomplex systems by generalizing the field of complex numbers C to
hold all the formal laws of arithmetic. This theorem is "final" in the
sense that the usual extensions of number systems reach an end in C, inso-
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far as the validity of all those formal laws is concerned. But Weierstrass*
proof does not apply to all possible extensions of rings obtained from T*.
The question here is: Is Weierstrass* theorem "final" also in the sense
that it can be properly generalized for all possible field extensions obtain-
able from rings that are generalizations of T*, field extensions eventually
not isomorphic to the field of rational, real, or complex numbers? The
term-relation number systems presented here do not answer the question,
but they certainly open it for consideration. (Note: It is not possible to
map Γ00' onto a difference ring that would be an integral domain, since_the
least prime ideal of T°°τ that contains the set of all terms with 0 or 0 as
components—the set of proper zero divisors of T°°τ — is T°°τ itself).
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