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A GENERALIZATION OF SIERPINSKI’S THEOREM ON
STEINER TRIPLES AND THE AXIOM OF CHOICE

WILLIAM J. FRASCELLA

In the language of combinatorial analysis, a finite set F is said to
possess a Steiner triple system if and only if there exists a family 3 of
subsets of F such that 1) each element of # contains exactly three elements
of F and 2) every subset of F, containing exactly two elements, is contained
in exactly one of the elements of #. It has been long established that a
necessary and sufficient condition for the existence of such a system for a
finite set F is that F = 1 or 3 (mod 6).

In [1], W. Sierpifiski has showed that a Steiner triple system always
exists for any set which is not finite. The proof of this result depends upon
the axiom of choice. In [2], B. Sobocifiski has proved that the assumption
that every non-finite set possesses a Steiner triple system is, in fact,
equivalent to the axiom of choice.

The aim of the present paper is to further generalize these two results.
We begin by making a

Definition 1: An arbitrary set E is said lo possess a Steinev system of
ovdev k (wheve B is a natural number >1) if there exists a family 3 of
subsets of E such that 1) each element of 3 contains exactly k elements of
E and 2) every subset of E, containing exactly k-1 elements, is contained in
exactly one member of the family Fy.

§1. With the aid of the axiom of choice we shall show that every set
which is not finite possesses a Steiner system of order » for n = 2,3,4,....
In addition, we shall establish that the assumption that every set which is
not finite possesses a Steiner system of order #, for n = 3,4,..., is equiva-
lent to the axiom of choice. We are not able to demonstrate the necessity
of the axiom of choice to establish the existence of a Steiner system of
order 2 for any set which is not finite.

To this end we first prove, with the aid of the axiom of choice,

Theorem 1: Let E be any set which is not finile. Then E possesses a
Steiner system of ovder n for n = 3,4, ... .
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Proof: As mentioned above, the theorem has been proved by Sierpifski for
n = 3. In the manner of induction we will assume

(1) Theovem 1 is true for n-1,n > 3.

Now the axiom of choice tells us that the non-finite set £ has as its cardinal
number some aleph. That is,

(2) E = 8§).

Thus without loss of generality we may impose a well-ordering on E such
that £ = W), where w, is the initial ordinal number of the class of all ordi-
nals whose cardinality is 8). Hence, we may take E to be the set of all
ordinal numbers less than w).

In (1], Sierpifiski remarks that the set P, = {<a,f>:a <B <w,} can be
given a well-ordering such that P, = w). (Here, as elsewhere in this paper,
<,> is to be taken as the symbol for an ordered pair. Similarly, <,, > is
to be taken as an ordered triple, etc..... Also, all small Greek letters are
to be regarded as ordinal numbers.) The proof of Theorem 1 will depend
upon a generalization of this remark. Its statement will be given the form
of a lemma whose demonstration will follow the proof of the theorem.

Lemma 1: The set Py = {<ay,...,q>:0,<a,<...<oy <wy} can be
given a well-ovdering such that P, = w), for b =2,3,4, ... .

Now, in virtue of this lemma, we are in a position to index the elements
of P,_, and express this set as follows:

(3) Py ={<a”,...,a{""" >: £ <wyl

By (1) we know E possesses a Steiner system of order n-1. Hence there
exists a family 3, _, satisfying the properties of Definition 1 for% ==n-1.
Before proceeding it is necessary to make some definitions.

Definition 2: Let v be an ovdinal number less than w). Then F("'D is that
unique member of the family 3,., which contains the set {a5) , .. oz(” 21,

In addition, suppose that

4) F(n—l) {a(l) (n-z)’ B}
and that
(5) ey’ < ...<a‘yi) <B<a)‘,i+1’ <...<ay™® < w,.

We now formulate another

e ege 1
Definition 3: (n=-1)

ay if ayt +

=1y _ -
Sy = <Ela(i’> +1 ifal™P=8
i=1 7 4

1. In this paper the symbol Z will represent the standard addition of either ordinal
or cardinal numbers. On the other hand, the symbol U, which later appears in
(10), represents the standard concept of set-theoretical union.
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We are now in a position to construct, after the manner of Sierpifski in
[1], with certain modifications, a transfinite sequence of ordinal numbers
indexed by all ordinals less than w). Let ¢, = 1. Assume 0 to be an arbi-
trary ordinal number such that 7 <6< w). Now suppose ¢; has been de-
fined for all £ < &. Then we let ¢; be the smallest ordinal y which satisfies
the following condition:

6 {o”,...,a0 "}« {Fj;;'”u S(Fg’e'”): £E< 8}

To establish that this construction is non-vacuous it is sufficient to
exhibit a p such that (6) holds. To accomplish this we construct the follow-
ing sets:

(M) R; ={f;(ee): <5}
where f,'(‘Pg) = a(;)g for i=1,2,..., (m-1). It is clear that for each? we have
(8) R, =50

where R; has the order induced by the indices of the elements of the trans-
finite sequence already defined. Hence

(9) R; ST for i=1,2,...,(n-1).

But clearly 6 is either a finite cardinal number or an aleph. If we now con-
struct

n=1

(10 r=U &
i=1
— n_l —
it is clear that R S Zz 1_3,-. Now if & is a finite cardinal number it is
1= —

immediate that R< Ry = E. On the other hand, however, if & is an aleph,
say 84, we have, in virtue of the fact that 8, + 8, = 8,

(11) Rs N,

But since § < w) and w) is an initial number
(12) Ry < By

and therefore we again arrive at

(13) R< Ry =E.

It is clear, then, that there must exist #n-2 elements of E which are not con-
tained in R. That is, there exists a ” ,...,2” % such that

(14) a® eE—Rfor i=1,2,...,(n-2).

Hence by (7) and (14) no a®> can be considered an image point of the func-
tion f; for all <i,j> € {1,2,...,(n-2)} X {1,2,...,(n-1)}. Therefore
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(18) a® ¢ {Fy}: <o} for i=1,2,..., (n-2).

If we suppose a®’ <...< a®? we have
PP

(16) <a®,...,a"? a™®+1>€P,
In virtue of (3) we may write

(1) = [¢V] A (P=2) _ _(n=2) , _(n=2) = (n=1)
(17 a a,”; ... =0, a +1=ay

for some p < w).

Therefore
(18) {a(l) . (n 1)} ¢ {F(fl—l) U S(F -l)) §< 5}

Thus the construction of the transfinite sequence is well formed. We
now state and prove an important property of this transfinite sequence.
Lemma 2: The transfinite sequence {49; }e <wy is strictly increasing.
Proof: To the contrary suppose we have either of the following:

Case 1: < n:< w) and P, =,
Case 2: m<n2<w) and ¢q > ¢y, .

If Case 1 occurs we have by (6), ¢n, = u, to be the smallest ordinal
such that

(19) {a,..., ‘"'”} ¢ {F("’” U s(F"‘"’ £ < mat.

Ko o
But sincen , <7,, we must have

(20) {a w de.,a (n 1)} ¢ {F(”'l) U S(F(ﬂ-l) :

Ka?

But by assumption, ¢4, = ¢¢,; hence

(1) (n—l) (n=1) (n=1)
(21 ey, ..., €107 USRS D)}

which contradicts the very definitions of F‘;’;l; and S(F.ﬁ,",’l'l)). Thus Case 1
2
never obtains.
Suppose Case 2 occurs. By (6) we have ¢, =p ,» the smallest ordinal
such that
(22) {o,),...,a0" ¢ {F‘”"’ U s(F"'“’) E< k.

In the same manner we have P, = Ha to be the smallest ordinal such that

@9 2,0l 4R US(FE): £< )
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But (23) and the fact that n, <7, implies
(24) fay,, .., et ¢ PG US(FE): 6 <mi}

But (24) and the fact that p, < pu, contradict the definition of ¢n, . Thus
Case 2 never obtains and Lemma 2 is proved.

Finally we are in a position to define a family of subsets of E which
will insure the existence of a Steiner system of order x.

Definition 4: 3, {F‘"'” Us (F""” ) & < wyt

To show this is the family in question, let a® , a®,...,a “ "be any

n-1 distinct elements of E. We may assume that
(25) @@ <a® <...<a?"P<w,.
Clearly we have <a“,...,a” ™ >¢P,_,. Therefore by (6) there must
exist an ordinal number p < w), such that
(26) @ =a® for i=1,2...,(n-1).
But since the sequence {we }e<wx is strictly increasing, there exists an
ordinal 6 <w) such that
(27) ¢6 > M.

But by the definition of ¢; , there must exist an ordinal £, < & such that
(28) {a(l) . -l)} C {F(n-l) U S(F(n—l))}

for otherwise (27) could not hold. Therefore (28) shows every n-1 distinct
elements of E is contained in at least one member of the family %,.

On the other hand, suppose we have n-1 distinct elements of E con-
tained in two distinct members of the family #,. That is, suppose we have
n < ¢ < w) such that

(29) {a®,..., 0"} c {FEP U S(FS™)}

(30) {a 6D} yenn ’a(ﬂ—l)} cC {F n=1) U S(F(n-l))}

Again by (6) there must exist an ordinal number p < w) such that ¢ = o“ i
for i = 1,...,n-1. By Definition 3, S(F‘”"’) and s(F‘”'”) are the greatest ele-
ments (according to magnitude) of the sets {Fé”{” u S(F;,”q Dy} and

{F(”'D U S(F("'D)}, respectively. But since we assume a® <...<a®™",

we must have

(3D {a®,...,a"?} ¢ F



168 WILLIAM J. FRASCELLA

and

32) fa®,...,a"?} c R,

But since

(33) F;”n'” € 9,1 and FgV € 3,4,
we must have

(34 Fg" =Fg™

since #,_, is the Steiner family of ordern-1.
There now follows two cases:

. - D _ D
Case 1: a®™ ¢ F;,'j, =Fg;
Case 2: a®™ ¢ Fé':,"’ = F‘;Z-D .
I Case 1 occurs, by Definition 3 we must have

(35) S(F«(,’:’_D) =S(F§g‘$-l)) = d(l) +a(2) +o+ a(n_l) +1.

But this contradicts our assumption that the members of #, are distinct.
If Case 2 occurs we must have

(36) S(F;,':;D) = a(n—l) = S(F;Z_l)

But this, too, leads to the same contradiction.

Thus the family %, has the properties of Definition 1 and the existence
of a Steiner system of order # for the set E is assured. The induction being
completed, Theorem 1 is proved.

We now return to the unfinished business of proving Lemma 1.

Proof of Lemma 1. Since the lemma is true for n =2 it will be sufficient to
proceed by induction. Hence we assume

(37) Lemma 1 to be true for k =n-1 (nZ 3).
Since E = R » and the fact that 8- 8 = & for any aleph, &, we have

(38) (Ex...XE) = R).

n-times

But according to the definition of P, we have

(39) P, C(EX...XE)

n-times

and hence
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(40) P, = W,.
We now consider the following subsets of P,_;:

(41) B, ={<0,0®,...,¢"">:0<a® <...<a"P < wy}
(42) BX =P, —P,., .
By (37) we have P,_, = 8) . Also since, by (42), P}, c P,_:

(43) P7.k.1 = R)\.

But it is possible to map the set E in an one-one manner onto a certain
subset of P¥.,. Let

(44) f:E— PX,
where,

<LL2...,n-2),a> if a>n-2
(45) f(a) =

<a+l,a+2,...,0+n-1> if a =n-2.

We remark that f is well constructed, since by the definition of P;*_l, no n-1
tuple in this set has 0 as its first coordinate. Thus the set E is equinumer-
ous to some subset of P}_,. Hence

(46) P* z N, =E.
Thus (43) and (46) yield

(47) Pnfl = N/\ M
We now construct the following subset of P,:
(48) P¥r=1{0,0,,...,0,>:0<0,< ... <0, <wy}

An one-one correspondence naturally arises between the sets P¥and Bx..
Namely,

(49) g:P¥ — P}

where

(50) g(<ay,...,0,-1>) =<0,01, ..., 0>

The very definitions of the sets P%_, and P} insure that the map g is well
defined. Hence,

(51) B¥, =PF.

Together with (47) we have

(52) P} =Ny

But since P} C P, we conclude
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(53) B,z §,.
Therefore (40) and (53) establish

(54) P, = ¥,.

Thus we may impose a well-ordering on P, such that P,=w r»- The induc-
tion being completed, Lemma 1 is proved.

§2. In order to further our results, we will establish a functional
characterization for a Steiner system of arbitrary order.

Theovem 2: Lel E be any set which is not finite. Then E possesses a
Steiner system of ovder n, for n =2,3,... if and only if there exists a set
Junction f such that

1°  The domain of f is the family of all subsets of E which contain exactly
n-1 elements.

2° The vange of f is some subset of E.
3° f({al,az geen ;an.-l}) ¢ {ax,az, e ,an-l}-

4° Iff({al,...,a,,_l}) =b e E then f({al,...,a,-_l,b,ai“,..,a,,_l}) =a; for
t=1,2,...,n-1.

Remark: It is important to observe that the proof of Theorem 2 will not
employ the axiom of choice.

Proof:

Necessity: Suppose the non-finite set E possesses a Steiner system of
order n. Let us now construct

(55) oA ={A CE:A =p-1}.

By Definition 1, we know that for every Aeof there exists a unique element
of 9, which contains A. We represent such an element of 4, by the symbol
F4 . Next, we construct a map

(56) f:A— E
where
(57 f(A) =F4 —A for each A € .

Since F4 € 9,, it follows that F, =#. But also A =#%-1 and A C Fy.
Hence f(A)e E. Thus f satisfies properties 1° and 2° of the theorem.
Clearly f(A) = (F4 — A) ¢ A, and property 3°is thereby satisfied.

Now suppose A ef. Thus we may write

(58) A={ay,...,am1}
And suppose

(59) F4 ={ay,...,a,.1,b}.
Therefore by (57) we have
(60) f(A) =b.
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Now construct the set A' ={ay, ..., a;_;,0,0;,1,+++,2,-1}. By (59) we see
A' CF,. Hence

(61) Fy4* =Fy4.
Therefore we have
(62) f(A') =Fpqr1—A'=F4y —A=a.
Property 4° holding for f, necessity is established.

Sufficiency. Suppose we have given the function f with the stated properties
1°-4°, We now define for each Aedf,

(63) Fi =AU f(A).

By properties 2° and 3° of f we see that F; is a subset of E consisting of
exactly » elements.

We are now in a position to define a family of subsets of E consisting
of exactly » elements. Namely,

(64) 3, = {Fi:A4 eA}.

It remains to show that #, establishes a Steiner system of order#.

By property 1° of f and (64) it is clear any subset of £, consisting of
exactly n-1 elements, is contained in at least one member of the family %,.
Specifically

(65) A C FX for each A edf.

It remains to show that every Aeof is contained in, at most, one mem-
ber of the family #,. To the contrary, suppose

(66) ACFy €3,
and

(87) ACFy €3,
where

(68) Fx # Fy.

Suppose A = {a,,...,a,_,}. Then we have
(69) FX ={ay,...,an1x}
and

(70) F; ={ah'°':an.—17y} .
But (69) and (70) together with property 4° of fyields
(11) f(A) =x and f(A) =y.

Hence x = y, which contradicts (68).

Thus the family %, has the desired properties and, therefore, E
possesses a Steiner system of order xn. Sufficiency established, Theorem 2
is proved.
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§3. After constructing and characterizing the Steiner system of order
n, one naturally raises the question as to whether the existence of a Steiner
system of arbitrary order implies the axiom of choice. An answer is ob-
tained in

Theovem 3: The assumption that every non-finite set possesses a Steiney
system of ovder n implies the axiom of choice for any n=3.

Remark: The proof of this theorem follows, in substance, the proof given
in [2] by B. Sobocifiski, who has established the result for the case when
n=3.

Pyroof: Let m be an arbitrary cardinal number which is not finite. As is
well known, to m we may associate a certain aleph, 8(m), called Hartogs’
aleph for m, where 8(m) is the least aleph with the property:

(72) R(m) % m.
Since N(m) is an aleph, there must exist an ordinal number A such that
(73) &(m) = N)\'

Let w) represent the initial number of the class of all ordinals whose
cardinality is 8). Elementary results tell us there exists a cardinal num-
ber, m + 8(m), which is not finite.

Hence, there must exist non-finite sets E, R and P such that

(14) P= 8(m) = 8,

(75) P ={a:a is an ordinal < wx}
(76)
M RNP=¢

(78 E=RUP

(719) E=R+P=m + 8(m).

=11

=m

By the hypothesis of Theorem 3, the non-finite set E possesses a
Steiner system of order n, where n is a natural number greater than 3.
Thus, by Definition 1, there must exist a family 3 of subsets of E such that

(80) every element of 3 is a subset of E containing exactly n elements
and

(81) every n-1 distinct elements of E is contained in one, and only one,
member of the family 3.

Remavk: As in Lemma 1, P, will represent the collection:
82) {<a,,...,x>:0,<...<a < wy}

where the ¢;’s are all ordinal numbers and w) is the initial number re-
ferred to above. The conclusion of Lemma 1 was

(83) P, =w)y for 2= 1,2,....
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An immediate corollary to this result would be
(84) P,=wm) = N8y for k=1,2,....
We now introduce another

Definition 5: For any naturval number n, P, will vepresent the family of all
subsets of P which contain exactly n elements.

A correspondence naturally arises between P, and P,. For, every ele-
ment peP, is of the form p = {oy,.. ., Qnt, where a;e P for i=1,...,n I
we assume,

85) a;<...<a,

we may associate to this element p € P, the element <a,,...,0n > € P,.
Such an association is clearly an one-one onto correspondence of the sets
P} and P,. Hence,

(86) P} =P, .
Together with (84) we have

(87 Pl=w), =8, for n=1,2....

n

As a matter of fact we have,

(88) P, = 8(m) for n=1,2,... .

This concludes our remark.
Returning to the proof of Theorem 3 we make a

Definition 6: Fov any v € R we define a family of sets F, as follows: x € F,
if and only if 1) x €3 and 2) theve exists n-2 distinct elements of P, say
Qy,...,0Q,. 5, Such that a) the ovdinal numbers 1,2, ...,n-3 ave contained in
the set {y, ..., 0, s and b) {r,ay, ..., 02} C x.

Definition 6 immediately implies
(89) F, c ¥ for any 7 € R.
Lemma 3. The family F, is not empty for every v € R.

Pyoofi Let ¢ R. Then by (78), »¢ E— P, Certainly the set P contains the
ordinals I1,...,n-3, and, at least, one additional ordinal a. Thus
{1’,1,2, .. .,n-3,oz} is a subset of E consisting of exactly n-1 elements. By
(81), there exists a unique x €  such that

(90) {r,1,2,...,n-3,0}C x.

Clearly this x satisfies the requirements of Definition 6, and hence

(91) x e F,.

Thus for each 7 € R, F, is not empty. Lemma 3 is proved.
We now wish to exhibit certain distinguished members of the family F, .
To this end we state
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Lemma 4. Let v e€R. Then there exists an x €F, such that x =
{r,ai,... ,a,,_l} where all the a;’s are elements of the set P.

Remark: Since x € F,, we are guaranteed that at least -2 of the a;’s are
elements of P, In fact, we know that the ordinals 1,2 ..., (®-3) must be
among them.

Proof: To the contrary, we assume

(A) reR

and

) if 1,2, ...,(n-3),a,0} € F,, wheve
{1,2,...,(n-3), a} c P, then 2¢R.
It is now possible to construct a mapping

(92) f1:P—{1,2,...,n-8} = F,

where

(93) for a eP—{1,2, ...,n-3}, f1(a) vepresents the unique element of 3 which
contains the n-1 distinct elements {r,1,2, .. .,n-3,a}.

It is clear from (93) and Definition 6, thatf,(a) € Fr and thus f, is well-de-
fined. For each z€F, we must have z ={r,1,2,...,n-3,x,9}. But by Defi-
nition 6, at least one of the elements x,y must be an element of
P—{1,2,...,n-3}. But by (B), at most one of the elements ¥,y can belong
to P. Hence, z contains a unique element aeP—{1,2,.. o n—3}, such that
f1(a@) = z. Thus f, is onto.

Suppose 0,8 € P—{1,2, ces ,n-3} such that @ ¥ B. Then we have

(94) fi(2) = {r,1,2,...,(n-3),a,x} e F, C 3

and

95) £ ={r,1,2,...(n-3),B9} e F, C 3.

By (B) we know

(96) x,y ¢ P.

Thus, if we suppose f,(0) = f,(B) we must have by (94) and (95)

(97 x =Band y = a.

But this contradicts (96). Thérefore,

(98) f1(a) *£1(B)

which establishes the fact that f, is an one-one onto correspondence of the

sets P—{1,...,n-3} and F,. Hence,

(99) P—{1,...,n-3} = F,.
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But it is clear, since Pis not finite, that

(100) P—{1,...,n-3} = P = R(m).

Therefore (99) and (100) yield

(101) F, = 8(m).

To complete the proof of Lemma 4 we shall need another

Definition 7 Let v € R. Then R, will denote the set of all L€ R such that
1) L%7 and 2) there exists an x € F, such that £ € x.

We note that Definition 7 implies
(102) R, C R

while (B) insures that

(103) R, is not empty.

Now we construct a mapping
(104) f2:F, — R,

where

(105) for each x € F,, f,(x) vepresents that element of x, which belongs to
R, but diffevent from r.

Since x € F., by Definition 6 we know x contains the element 7 ¢ R, the
ordinals 1,2, ...,n-3 and, at least, one additional ordinal a. But (B) insures
that ¥ contains, at most, one additional ordinal @. Thus x, which contains 7,
must contain a unique element of R which is different from 7. This shows
f» to be well defined. Let £¢ R,. By Definition 7, we know

(106) £ ##
and
(107) there exists an x € F, such that lex.

By Definition 6, and using the same argument following (105), we see that x
contains a unique element of R different from ». But (106) and (107) imply
this element must be £. Thus f,(x) = £ and f, is shown to be onto. Let
x,y € F; such that x * y. And suppose

(108) fa(x) =f(3) =z.

But (108) implies that both x and y have the following -1 elements in com-
mon:

(109) 7,1,2,...,(n-3,z.
But since x,y € 3, (81) gives
(110) x =y

contradicting our assumption. Hence we conclude that (108) is not true and
the map f, is one-one. Thus
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(111) F, =R,.

This, together with (101), gives

(112) R, = 8(m).

But R, C R. Therefore we obtain from (112)
(113) 8(m) SR=m

which contradicts (72). Thus, the assumption that Lemma 4 is false leads
to an absurdity. By the law of the excluded middle, Lemma 4 is proved.

In retrospect, we have been able to establish that for each » ¢ R, there
exists an element xeF, such that x={7,1,2,... ,(m -3),01,B} where
1,2,...,n-3), a and B are all elements of P. Continuing we introduce,

Definition 8: Letv € R. Then FY denotes the set of all x € F, such that x
satisfies the conditions of Lemma 4.

In a natural way, we may construct, for each » € R, a map
(114) fs: F*—P,) |
where

(115) for every x € FJ, f3(x) represents the set of n-1 distinct elements of
P, which by Definition 8 must be conlained in x.

It is clear that f; is well defined. Suppose x,y € F, such that x +y. Since,
F¥ C F,, we must have

(116) 7€ x and 7 € y.

Thus the n-1 remaining elements of x (i.e. those different from 7) cannot be
identical with the n-1 remaining elements of y. But these sets of remaining
elements for x and y are f;(x) and f,(y), respectively. Hence

(117) fs(x) # fs(9),
and therefore f; is an one-one correspondence between F} and some subset
of P,_,.

Let f4(FF) represent the range of o Clearly,

(118) fs(F:) CP‘.1-

Lemma 1 has showed that P,_, is a well-ordered set. By (86) and (87) it is
clear that P:,_l can also be considered a well-ordered set whose order is
induced by P, _,. Thus

(119) fs(F¥) is a non-empty subset of the well-ordered set P,:_l for each
v €ER

and, therefore, fy(Fy) is, itself, well-ordered This enables us to make the
following

Definition 9: For each v € R, fH fs(F¥)] is defined to be the initial element
of the well-ordered set f3(F ).
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Finally we are in a position to construct a mapping
(120) f:R — B,
where
(121) for each 7 € R, fa(r) =*[fs(FH].

Definition 9 and (119) show thatf, is well defined. Now suppose?, L € R
such that

(122) 7 * L.

In order to *show that f,(#) # f4(2) it will be enough to show that the sets
f{FY and f4F,) have no elements in common. Since, if this were true, it
would follow that their respective initial elements, f,(#) and f4(£), could not
be identical. Therefore, suppose there exists a p € P]_, such that

(123) p efs(FP N fo(Fy).
Since p € P,_, we may express p ={ay...,®,_,, where a; ¢ P fori =
1,...,n-1. But (123) and the definition of the mapping f;, given in (115),
immediately imply
(124) {7’,‘11, . ',an—l} € F;k .- 5
and
*
(125) {¢,a;,...,0,.,} e F, C 9.

Thus (81) shows 7 = £, contradicting (122). Therefore the sets f,(F) and
f3(Ff) are disjoint and, thereby, the mapping f, is one-one.

Since f, is a well defined one-one map of the set R onto some subset of
B!, it naturally follows

(126) R=P,_,.

Thus, from (76) and (87), it follows that
(127) m S8, = 8(m).

But (72) restricts us further to

(128) m <8, = R(m).

We have thus shown that in assuming any non-finite set possesses a
Steiner system of order #, for #n> 3, one can establish the fact that any non-
finite cardinal number m is strictly less than some aleph, and, conse-
quently, is itself an aleph. This is nothing other than the establishment of
the axiom of choice. Theorem 3 is proved.

§4. With regard to the Steiner system of order 2, we recognize at
once that a non-finite set E possesses of Steiner system of order 2 if, and
only if, there exists a decomposition of E into disjoint pairs. Thus we may
prove, with the aid of the axiom of choice,

Theorem 4: Any non finite set E possesses a Steiner system of ovder 2.
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Proof: It is well known that, with the aid of the axiom of choice, we can
establish, for any non-finite cardinal m, the relation:

(129) m + m = m.

Thus, if E is any non-finite set, there must exist a non-finite cardinal m
such that

(130) £ = m.

Therefore, there must also exist non-finite sets S and T such that
(131) §=T=m

(132) sNT= ¢

(133) E=S U T.

By (131) there must exist an one-one onto correspondence

(134) g:S—T.

We construct a family of pairs of E as follows:

(135) 9 = {{s,g(s)}: seS}.

Clearly, 3 represents a collection of disjoint pairs of E which exhausts E.
Hence, by Definition 1, E possesses a Steiner system of order 2. This
proves Theorem 4.

Final Remavrks: In virtue of Theorem 1, we have shown that the axiom of
choice is sufficient to establish the existence of a Steiner system of order
nfor n= 34, ..., for any non-finite set E. By Theorem 4 we extended this
result to the case where n = 2.

Moreover, since Theorem 3 was established without the aid of the
axiom of choice, the existence of a Steiner system of order = for n =
3,4, ..., always implies the axiom of choice. Hence, the axiom of choice is
necessary to establish the existence of a Steiner system of order #n forn =
3,4, ..., for any non-finite set E.

It therefore follows that the existence of a Steiner system of order »
for n =3,4,..., for any non-finite set E, is equivalent to the axiom of
choice.

We conclude, on the basis of the above discussion, with a simple
corollary to Theorem 2:

Covrollary: I we designate the function f in Theorem 2 as f,, where nre-
fers to the order of the Steiner system f, establishes for E, we then have,
for n=3,4,..., the following equivalent to the axiom of choice:

For every non-finite set E, theve exists a function f, with properties
1%>4°as stated in Theovem 2.
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