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THE POST-LINEAL THEOREMS FOR ARBITRARY RECURSIVELY
ENUMERABLE DEGREES OF UNSOLVABILITY*

ANN H. IHRIG

Introduction

In 1949 Post and Lineal announced the existence of partial propositional
calculi with unsolvable decision problems for theoremhood, completeness
and independence of axioms. Unfortunately, they never published the proofs
but only indicated in an abstract the idea of how a proof might be given. In
1963, Yntema and Harrop, independently, supplied proofs. As indicated in
the abstract and carried out by Yntema, the main idea of the proof is that a
semi-Thue system can be represented in a particular partial system in
such a way that the word problem for the semi-Thue system is reducible to
the decision problem for the partial system. Since the word problem for
Thue systems is unsolvable as shown by an earlier theorem of Post (1947),
the unsolvability of the corresponding decision problems for the partial
systems then follows.

Post's earlier work (1944) on recursively enumerable sets of positive
integers discussed recursive sets (those with solvable decision problem)
and complete sets (those with decision problem of the highest degree of un-
solvability) and tried to find sets whose decision problem was unsolvable
but not of the highest degree. Although he did not succeed in this effort,
since then and since the Post-Lineal theorems first appeared, Friedberg
(1957) and Mucnik (1958) have found such sets. Consequently, old problems
which have already been shown to be unsolvable are being reconsidered in
the hope of proving that for each recursively enumerable degree of unsolv-
ability there is such a problem.

One such problem is the word problem for Thue systems and Boone
has proved that for every recursively enumerable degree of unsolvability
there is a Thue system whose word problem is of that degree (1962).1 The

•This paper is the first part of the author's doctoral dissertation written under Prof. W.
W. Boone at the University of Illinois. The work was supported in part by the National
Science Foundation, contract GP-1568.

1. There are similar results by A. A. Fridman, G. S. Cetin and by C. R. L. Clapham the
proofs of which are unknown to us.

Received February 22, 1964



THE POST-LINEAL THEOREMS 55

natural question then arises as to whether or not the Post-Lineal theorems
can be generalized in a similar way. The main effort of this paper is de-
voted to showing that they can be. Some of this work duplicates work done
by Gladstone (1963) and has subsequently been done by Singletary (1964).

Preliminaries

Definition 1: A partial propositional calculus is given by:
Propositional variables: P, q, r, pl9 qlf r19 p2, ..
Primitive connectives: D, ~, [, ]
Formation rules:

(i) A propositional variable is a wff.
(ii) If A and B are wffs, [A D B] is a wff.

(iii) If A is a wff, ~ A is a wff.
Axioms: a finite number of tautologies
Rules of inference: modus ponens and substitution

Abbreviations:
(i) AB for ~ [ A D ~ £ ] .

(ii) In order to omit some occurrences of brackets we make the fol-
lowing conventions: (a) the outermost pair of brackets may be omitted—e.g.,
X D Y is an abbreviation of the wff [X => γ]9 and (b) a dot, , immediately
after the principal implication-sign may be used so that the pair of brackets
around the antecedent and the pair around the consequent may be omitted—
e.g., [X D Y =>. U z> V] is an abbreviation for the wff [[X 3 Y] D [U D V]],
and (c) conventions (a) and (b) may be used together so that X D Y' D U D V
is also an abbreviation for [[X D Y] D [U D V]j.

Definition 2: A semi-Thue system is given by:
An alphabet: α x , α 2 , . . . _ , α» _
Operation rules: Gt —» G* , i = 1, 2, ... ,m, for G, , G* fixed words on

the alphabet.

We say C\—D if there is a finite sequence of statements:

d I— Dl9 C2 ϊ—D2, ..o,Cn \—Dn

where C = Cl9 D = Dn, and each statement holds according to one of the fol-
lowing rules:

(i) Ch-C.
(ii) Gi I—G{ i = 2, 2, . . , or mo

(iii) CA I—DA where C I—D is a previous statement,
(iv) AC I—AD where C I—D is a previous statement,
(v) C I—D where C I—E andi? I—D are previous statements.

When these rules are used in a proof they will be referred to as rule
(i), . . . , rule (v).

We will now show that for any semi-Thue system, T, one can effectively
construct a partial propositional calculus, P j , whose theoremhood problem
will be of the same recursively enumerable degree of unsolvability as the



56 ANN H. IHRIG

word problem for T. Thus in Pr there will be certain wffs, W\ which are
the words of T coded in terms of P?. Further, the mechanism of proof in
Pτ will be at least sufficient to encompass that of T. In particular, Theo-
rem 2 below will specify exactly which wffs of P? may be theorems of Pτ.
This will be done so as to show (i) that the theoremhood of wffs involving
code words and the relationship of those words in T are interdependent and
(ii)that any other wffs in Pτ are decidable. Thus, not only is the word prob-
lem for T reducible (one-one reducible) to the decision problem of Pγ9 but
also the decision problem for Pτ is reducible to the word problem for T.
(It will be clear after Theorem 2 that the latter reducibility is by unbounded
truth-tables.) It will then follow that the two problems are of the same de-
gree of unsolvability.

The Construction

Since a semi-Thue system may have operation rules of the form A -> 1
or 1 -+ A, where 1 represents the empty word, and since there is no way to
represent the empty word in a partial propositional calculus, we will first
construct from any such T a semi-Thue system T* where both sides of
every operation rule are non-empty. The construction will be degree pre-
serving.

Let T be any semi-Thue system. Designate its alphabet by Z and its
operation rules by U. Define the semi-Thue system T* to be the system
which has as alphabet both Z and an additional letter q, and operation rules
as follows: qA -* qB for A, B words on Z and A —> B in U, and the set
aq —> qa and qa —> aq for all a in Z.2 Define two mappings on words in T*.
First, if W is a word in T*, then e(W) is the word on Z obtained by erasing
all occurrences of q in W. Second, if W is a word in T*9 then n(W) is the
non-negative integer which is the number of q's occurring in W.

Lemma 1: (a) W1

 IT*W2 implies n( Wλ) = n( W2).
(b) Wx *T*W2 and n(W\) = n(W2) = 0 implies that W, =W2.
(c) If niWj = n{W2) and e{Wx) = e(W2), then Wx '^γ*W2 and

W2 Ύ*W l β

(d) // Wι «-τ*W2, and W[ and W2 are such that e(W\) ^e{Wt)
for i = 1, 2, and n(W[) = n(Wl) > n{Wλ), then Wl *γ* W2'.

Proofs: These are all immediate.

Lemma 2: Wx Ί 7 * W2 iff {ft n{W±) = n(W2) = 0 and Wx = W2, or (it) n(Wj =

n(W2) > 0 and e(Wt) ^ e(W2).

Proof: (i) is by Lemma i(b) and rule (i). If Wx Hp * W2 and n{Wy) = n(W2)> 0,
then by erasing q's in a proof in T* one obtains a proof in T. For the con-
verse, Lemmas l(c)(d) mean that it suffices to show that if Wx *~fW2 then
qWx tγ*qW2. But this is clear since rules A{ —» B{ in T correspond to

2. This construction is found in ^The Word Problem", W. W. Boone, Annals of Math.,
vol. 70(1959), p. 250.
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rules qAi —• qBi in T* and rule aq —» qa means that the q's can always be
moved to the left.

Theorem 1: The word problems of T and T* are of the same degree of un-
solvability.

In order to continue the construction of Pτ we may now assume that the
semi-Thue system, T, has no operation rules which include empty words.
Let alf az, . . . , an be the letters of the alphabet of T. Define a mapping
from the words ^ of T to certain wffs, W\ of a partial propositional cal-
culus as follows.

Let a\ = ~ ~ [~ p D ~ p]
a\ = [~ p D ~ P]

a>\ = ~ ~ ,y ~ y [~ /> 3 - />]
2n

(Wa{y= ~ [Wτ 3 ~ Λ J for i = 1, 2, ..., n.

We note that distinct words in T have distinct images under \ 3

Thus, for any given semi-Thue system, T, define the corresponding
partial propositional calculus, P?9 as follows: Pτ has the primitive sym-
bols, formation rules and rules of inference as in definition 1. Let the
axioms of Pηr be

Identity Axiom: p z> p

Transitivity Axiom: [~ρ Ξ>~q] => . [~q => ~r] ^ [~/> 3 ~ r ]
Right Multiplication Axiom: [~ /> D ~ #] z> . [~ ^>]r ^> [~ q] r
Left Multiplication Axiom: [~/> ̂ > ~ q]n . r[~/>] 3 r[~^]
Associativity Axioms: p[qr] ^ [pq]r

[pq]r^_p[qr]
Semi-Thue Axioms: If d ->Giy i = 1, 2, ..., m, are the operation

rules of T, then {G\ DG , i = 1,2,.. β , m, βrβ #ze semi-Thue axioms of PTo

The reader may wonder why we have chosen to include so many not-
signs in the axioms. The purpose is to restrict the number of theorems by
restricting the possible uses of modus ponens.4 To indicate that their
presence will not interfere with that part of the proof which shows that any
semi-Thue system can be represented by this partial propositional calculus,
we make two observations. Every a\ begins with at least two not-signs.
Every wff W of the form AB is in reality ~ [A 3 ~ B] and so begins with a
not-sign. Hence, any ~ p, ~ q or ~ r that occur in an axiom may be re-
placed by Wf for any W in T.

3. This is an extension of the procedure given by Martin Davis on p. 139 of Computability
and Unsolvabίlity.

4. I would h a v e p r e f e r r e d t h e m o r e o b v i o u s s e t of a x i o m s : [p ZD p],[{p3#]^>\q D r ]

=>[/Or]], [[pZ)q]^[pr^qr]l [[pΏq] 3 [rp D rq]]9 [[pq]r Dp[qr]]9 [p[qr] D [pq]r],
and the semi-Thue axioms. However, I have been unable to prove that these axioms
without the semi-Thue axioms give a decidable system.
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These axioms, in the order given above, are referred to by the abbre-

viations: id., trans., r.m., l.m., assoc. These abbreviations will also be

used to refer to a substitution instance of the same axiom where no confu-

sion can arise. Also, m.p. will refer to modus ponens. Following Church,

§B WI is to mean the result of substituting the wff B for the propositional

variable a at every occurrence of a in the wff W.

Definition 3: W i s a minimal conjunct if W is not of the form ~ [A ^> ~ £ ] .
Let Al9 A2, . . . , An be any non-empty, finite sequence of wffs, possibly with
repetitions. We say a wff W is a conjunction on Al9 A29 . . . , An if either
(i) n = 1 and W is AΣ, or (ii) n = s + t, 1 < s ^n - 1, 1 5= t ^ n - 1 and W is
~ [U 3 ~ V] where U is a conjunction on Al9 A2, . . . , As and V is a conjunc-
tion on As+ι, As+2, . . . , As+t. If W is a conjunction on Al9 A2, . . . , A W and
each Ai, i = 2, 2, . . . , n9 is a minimal conjunct then Ax, A 2 , . . . , An is the
total factorization of W and W has length w.

We had already noted before definition 3 that we allow ~ [A 3 ~ B] to
be abbreviated by AB. However, without further specification the abbrevia-
tion of an arbitrary wff is not necessarily unique. For example,
~ [A 3 ~ [£ -3- C]} may be abbreviated by (i) [A[B ^ ~ C]] or by
(ii) ~ [A ^ BC]]. Definition 3 specifies that all abbreviations are to be like
those in (i). In abbreviating a wff according to the definition, we work from
the outside to the inside and as soon as a conjunct is minimal we do nothing
further to it. Because we have specified a recursive procedure for finding
the total factorization of any given wff, W, the total factorization and length
of W are unique.

Definition 4: If a wff W has total factorization Al9A29 . . . , An9 then define
&{W) to be ~ [ ~ [ . . . - [ - [ ^ 3 ~ A 2 ] 3 ~ A 3 ] . . . 3~An-x] ^ ~ A j . Us-
ing BC for ~[BO~C] we may write Λ(W) as [ [ [ . . . [[A1A2]A3] . . . ]
A w - i ] A j . If Wx and W2 are two wffs such that Λ(W,) = d?(W2)9 then we say
that Wλ and W2 are associates.

Lemma 3s If U9 V9 and W are wffs where each is of length n ^ 29 and if
Hp-T [U D V], and ^[V 3 W]9 then ψτ[U D W].

Proof: U, V9W each of length n ^ 2 means that *7 is of form - [ ^ => - ί72 ],
F is of form ~ [T^ D ~ F 2 } and W is of form - [Wx D ~ W2 ]0 Since ί/, 7,
and W each begin with a not-sign, they can be used for substitution into the
transitivity axiom.

Lemma 4:5 (a) \j~τ W ^J?(W) and (b) ^ <K(W) => PF.

The proof of (a) is by induction on n9 the length of W. Let W have total
factorization Al9 A2, . . . , A«. If w = 2 or 2, the <R(W) = W and so the
lemma holds by simply substituting Ax or AγA2 for p in the identity axiom.

5. See Jacobson, Lectures in Abstract Algebra, vol. I, p. 20.
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If n > 2 then let W be ~ [U D ~ V], i.e. UV. Suppose U has total factor-
ization A1} A2, ... 9 At of length i, i < n, and V has total factorization

Ai+1, . . . , An of length n - i. Then by the induction hypothesis

(1) % V D [ [ . . . μ i + 1 A / + 2 ] . . . ] Λ j ;

by substituting U for r, V ίor ~p9 and [[ . . . [Ai+1Ai+2]... ]A 8 ] ίor ~# in-
to the left multiplication axiom and using modus ponens

(2) VjrTUV ^ U [ [ . . . [ A i + 1 A i + 2 ] . . . ] A n ] ;

by substituting Uioτp,[... [Ai+1Ai+2 ] . . . An^1 ] for q, and Aw for r into the

axiom p[qr] z> [pq]r

(3) ^ [ϋ[[. o [Λ +iΛ +2 ] . . .An^]AΛ]] 3 [[ί/[[β.. [Ai+iAi+2]... J A . - J ] ^ ] ;

by the induction hypothesis

(4) ^ [u[[.oo[Ai+1A^2]...]An^]] ^ [ . β o [ U 1 ^ 2 ] A 3 . . . ] A w . 1 ] ;

by substituting C/[[... Ut+iA+*l. . . \An^\ for - ^ and [[[... [AtA^]Az... 1

An-!] for ~# and A^ for r into the right multiplication axiom and using

modus ponens

(5) % [[U[[.. λAi+ιAi+2l. Mn-ι]]An] D [[[.. .[AiA2]A3.. .]A»-M*];

and finally, by several uses of Lemma 3

(6) ψΎ UV 3 [[[.. .[A.A^As.. o]An-i]An].

The proof of part (b) is similar.

Corollary 1: If Wι and W2 are associates, then ^ [Wx o W2] and

ήrT [W2 D ψ J .

Corollary 2: 7/ V and V are associates of length n ^2^ if V and V are αs-

sociates of length n, and if ^ [?7 D F ] , then ^ [& b 7 ] .

Proof: Corollary 1 and Lemma 3.

The idea of total factorization gives a unique decomposition of a con-
junction into its conjuncts. Lemma 4 and its corollaries mean that intui-
tively we may disregard the way in which a conjunction is associated.

Definition 5:6 A wff, W, of Pψ is a regular wff if (i) W is a\, a\, ... or is

αL, or (ii) W is of the form ~ [Wx D ~ W2], where Wx and W2 are regular

wffs. Let R, R}, R2f . . . be variables whose range is the regular wffs. We

write RA for Q p R\, where A is any wff. If W is of the form RA we say W

is a subregular wff, and when it is necessary to refer to the specific A in-

volved, we say W is an A-subregular wff.

6. These definitions are modifications of those given by M. K. Yntema in "A Detailed
Argument for the Post-Lineal Theorems," Notre Dame Journal of Formal Logic, vol.
5, no. 1(1964), pp. 37-50.
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Definition 6: Since the mapping τ is one-to-one, we may define <R > to be
the word in T obtained from the regular wff R in Pτ by taking the pre-
image with respect to τ of <R{R).

Although the word W = a^a^... cun in T translates to W =
[... [[«/i«i2«^]. . . ain ] in Pr, Corollary 2 means that, informally, W1 may
be identified with any of its associates.

Lemma 5s For any two regular wffs> Rι and R2, <Ri> *~f <R2> implies

hFτ [Ri 3 ^ 2 ] O

Proof: Rules (i) through (v) of definition 2 describe, inductively, the struc-
ture of a proof in any semi-Thue system. Thus, for the proof this lemma
notice that ίi <Rλ> ~τ <R2>, then one of the following is true.

(i) <Rλ> is <R2>. T h e n _ ^ [Rx D R2] by Corollary 2.
(ii) < # ! > is G, , <R2> is G , for some operation rule, G{ -* G{ in T.

Then ^ [i?x D i?2 ] by the corresponding semi-Thue axiom of P r and
Corollary 2.

(iii) <JR1> is <RaR> and < # 2 > is <RbR> where <i? x> ^r < ^ 2 > is
inferred from a previous statement <Ra> *~γ <Rι> .

By the induction hypothesis, ^p~τ [Ra ^ Rb ], so by r.m. and m.p.
Hp-T [RaR D RbR ]. Then Corollary 2 gives ^ [Λi D R2 ].

(iv) Where <i? x> is <RRa> and <Λ 2 > is <RRb>,

the proof is similar to (iii).

(v) < # ! > is < Λ Λ > , < J R 2 > is < # * > where <RX> *Γf<Λ2> is in-

ferred from the previous statements <Ra> hr <ΛC'> and < Λc >

By the induction hypothesis ^ [,RΛ D i?c] and *~F [Re ^ i?*], so by Lemma
3 and Corollary 2 p^ [.R̂  D R~b] which is the same as ήrτ [Ri ~) R2 ].

Earlier we remarked that the many not-signs in the axioms of P<τ re-
strict the number of uses of modus ponens. The next two lemmas will show
that this is indeed true. This will be done using the following forms:

form i: [~ X, o ~ X2] D [~ X3 D ~X 4] D [~^5 ^ ~^β]

form ii: [^ Xι => ~ X2 ] => [ ~ Xs D ~ ^4 ]

form iiia: [ ~ Xι 3 ~ X2 ]

Lemma 6: T/ze following table shows all possible uses of modus ponens
among wffs which are of form i, ii, or iiiai

major premiss possible minor premiss result of modus ponens

i iiia ii
ii iiia iiia

iiia none possible —
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Proof: That is, if form i is to be the major premiss, then the minor pre-
miss must be [~ Xx => ~ X2 ], but this is, in fact, form iiia. Further, the
result, [[~ X3 =>~Xj =>[~Xj ^~X6]] is of form ii. If form ii is to be
the major premiss, then the minor premiss must be [~ Xλ 3 ~ X2 ] which
is of form iiia. The result then is [~ X3 => ~ X4 ], also of form iiia. If the
major premiss is to be form iiia, then the minor premiss must be [~ Xι ]
which is not form i, ii or iiia.

Lemma 7: fc W implies that W is of form i, form ii, form iiia above or
of form iiibi [Xi D l i ] ,

The proof is by strong induction on the proof of W. n = 1: Then W is
an axiom. The identity, associativity and semi-Thue axioms are of form
iii. The right and left multiplication axioms are of form ii and the transi-
tivity axiom of form i.

n> 1: If the nth step is obtained by substitution into form i, ii or iii,
then we have these again. Suppose that the nth step is obtained by modus
ponens. Without loss of generality we can assume that form iiib is never
used as the major premiss. If U is of form iiib and is the minor premiss
to be used in modus ponens with a wff of form i or ii as major premiss,
then U must itself be of form iiia. Hence the lemma follows from Lemma 6.

Lemma 8: ^ ^ # 1 = R , for any propositional variable a, and any
wff U.

Definition 7: Let V have total factorization Vu . . . , Vn. Suppose a conjunc-
tion, U, on Vk, . . . , Vk+ί is an ̂ 4-subregular wff while Vk-i and Vk+j+i are
not, then U is a maximal subregular conjunct of F. If V has total factoriza-
tion V*, . . . , F*, we define the Thue factorization, Vi9 . . . , Vs, of V by re-
cursion on n as follows,, Ii n = 1, then the Thue factorization, Vl9 is Vf*
For n = k+ly suppose V has total factorization Ff, . . . , V%, V\+1 where,
inductively, V with total factorization F?, . . . , F* has Thue factorization
Fi, . . . , Vt. Then the Thue factorization of F is either Vl9 . . . , Vtvf+1

and s = t or F x , . . . , Vt, F*+i and s = t + 1 according as VtV*+i is an
^4-subregular wff for some A, or not. If V has Thue factorization Vχ9 . . . ,
Vn, the Vi are the Thue factors. We remark informally that by this proced-
ure every wff has a unique Thue factorization which can be obtained by
looking at its total factorization and regrouping these factors into maximal
subregular conjuncts and minimal conjuncts.

We are now ready to prove Theorem 2 which shows that the construc-
tion of P^r has preserved the degree of unsolvability of T. This is done by
showing that only certain, recognizable wffs of Pτ can possibly be
theorems. Among these, some wffs, W, will contain, in a specified way, a
finite number of pairs of subregular wffs, R f i and R*l~. Then, whether or
not W is a theorem of Pτ depends on whether or not <Ri>a > l~r <Ri,b >
for each pair. For the other wffs, one can decide directly whether or not
each is a theorem of Pτ.

Theorem 2: y-p W iff W is one of the following:

Case 1: W is the transitivity axiom or a substitution instance thereof,
or
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Case 2a: W is the right or left multiplication axiom or a substitution
instance thereof, or .

Case 2b: W is [[~X2 ^~X3] => [~*i =>~X3]] where [~XiΏ~X2] falls
in case 3 below, or

Case 3: W is [ϋ D F] where, for some positive integer n, U has Thue
factorization Ul9 . . . , Un and V has Thue factorization Vl9 . . . , Vn and
either Ui = Vi is a minimal conjunct, or there are Aι, Ri>a and R^ such
that Ui = R*t and V4 = RfX and <RiιΛ > ^f <Ri,b >.

Proof: Before beginning the actual proof of Theorem 2, we prove the fol-
lowing lemma.

Lemma 9: If [U -) V] falls in case 3, then so does Q [ί7 D F] where a is
any propositional variable and B is any wff.

The proof is by induction on, n, the number of Thue factors in U which is
the same as the number in F.

Let n = 1: Then U is Z7χ and V is F x . We distinguish two cases. Case
A: Suppose U = V is a minimal conjunct, then § t # 1 = S B ^ ^ a s T l l u e * a c~
torization Ux = Vx, . . . , Um = Vm where each U^ = Vi is either a minimal
conjunct or the subregular conjunct Rit*a = Rit*b. Then, since the latter al-
ternative implies <Ri>a > hr <ft-f^> by rule (i) of definition 2, the lemma
holds. Case B: .Suppose U is R£- and 7 is Λĵ  where <Ra> ^Ί <Rb>

Then 5 i r ^ l = Λ * B ^ a n d
 S B F ' = J R F B ' b y L e m m a 8 τhus> s i n c e

<Ra > 1-7 <72fe >, the lemma holds in this case.
Assume that the lemma holds for n = k - 1 and show that it holds for

n = k, Now, U has Thue factorization Ul9 . . . , U% and 7 has Thue factori-
zation V19 ..., Vk and [ϋ Z) V] falls in case 3. But then, clearly, so does
[U b V] where U is any wff with Thue factorization U\, . . . , IΓA_i and 7 is
any wff with Thue factorization Vl9 . . . , Vk-i This is true since case 3 is
specified in terms of corresponding pairs, Ui, Vi, of Thue factors. So by
the induction hypothesis of this lemma, ^ β \ U ^V]\ falls in case 3β Since
[ί/3 v] falls in case 3 it is also true that either £/& = Vk is a minimal con-
junct or Uk is R~^ and V^ is R\t,k

k^vhere <Λ;Afβ >
 Hr<Rktb >•• Let^^ίλ I

have Thue factorization & u ... ,ΊJm , and Q^ίfyi have Thue factorization
Uk,!,..., Uk,t, and 5 B ̂  [have Thue^factorization t x , . . . , Ύm , and §"ivk I
have Thue factorization 7*,i, . . . , F * / . By the induction hypothesis, for
each pair ί/2 , Vi, i = i , . . . , m, either C/, = F t is a minimal conjunct or £7,
is Λ£* and F/ is 72^ where <i2z> > Hr<Ri,b > . Similarly, by case w = Ί ,
for each pair Uk.j ,^Vk,j, j = 1, . . . , f,'either Uk,j = V\j is a minimal con-
junct or Uk,j is Λ^JΊ- a n d F^7 is Λ^^-where <Rktja> ^r<Rk,j,b> τ h e n

either (1) the ^ , C/̂ y and the F, , F^y; are exactly the Thue factors of J j f ^ I
and Sg-Fl, respectively, and so Qg[U D F ] | falls in case 3; or (2) ϋm is
Rta , Vm. is K,b , Hi is Λjί;lfβ and F Λ l is Λjff 1#4 (all for the same A).
In this case, there are m + t - 1 Thue factors since both Um U\k 1 and
VmVk,i collapse to form single maximal subregular conjuncts. That
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§B [U => v]\ falls in Case 3 now follows from the induction hypothesis, case
n = 1, Corollary 2 and

<Rm,a > Hr<Rm,b> (indue, hyp.)

<Rk, i,« > "T <Rk. i.b > ( c a s e n = 1)

<Rm>aRk,i,a > [-T<Rm,b,Rk,i,a> ("lie (iii))

<Rm,b&k.i.a> Hr<Rm,b>Rk,i,b> (rule(iv))

<Rm,a RkΛ,a> ""T <Rm,b R k,i,b> ( r u l e W)

Proof of Theorem: =^> (Induction on the number of steps, n, of the proof
of W.)

n = 1: Then W is an axiom. Case 1 is the transitivity axiom, case 2
includes the right and left multiplication axioms, and case 3 includes the
identity, associativity and semi-Thue axioms.

n > 1: I. Suppose that the nth step is obtained from an earlier one by
substitution. That substitution into each case results again in that case is
clear from their forms and from Lemma 9.

II. Suppose that the nth step is obtained from two previous steps
by use of modus ponenso By the induction hypothesis both the major and
minor premisses fall into case 1, 2, or 3. Since case 3 covers all theorems
of form iii of Lemma 7, by Lemma 6 and the induction hypothesis, the minor
premiss must fall in case 3. That is, the minor premiss is [U D V] where
U and V have n Thue factors as described by the conditions of case 3. Again
by Lemma 6 we may assume that the major premiss falls in case 1 or
case 2.

1. Let the major premiss be a substitution instance of the transitivity
axiom, i.e., case 1. The result of modus ponens clearly falls in case 2b,
since as we have just remarked, the minor premiss, here [~ Xι ^> ~X2],
falls in case 3.

2a. Let the major premiss be a substitution instance of the right multi-
plication axiom, say [ ί / ^ F ^ . UX D VX]. Let X have Thue factorization
Un+u , Um. Then the result of modus ponens is ^~Fτ [UX 3 VX]. If Un

is R*ιtt and Vn is R^b and Un+1 is RA, then each pair UnUn.+i and VnUn+1

collapses to a single maximal subregular conjunct as described in the proof
of Lemma 9. If there is no collapse, ^γτ[UX => VX] falls in case 3 because
[ί/z>7] does. And if there is a collapse, [ϋ D V] in case 3 implies that
<Rn,a > '"r <Λ»,*> a n d so < Rna R> ^-ψ < Rn>b R> by rule (iii). Then again
~P"T {UX ^ VX] falls in case 3. The argument follows in a similar fashion

for the major premiss a substitution instance of the left multiplication
axiom.

2b. If the major premiss is 2b, then the minor premiss, [U D F ] , is
[~X2

 D ~Xj]. Case 2b further requires that [~ Xι => ~X2] be in case 3.
Consequently, since ~ X2 is the conjunction U, with Thue factorization
Ul9 . . . , Un, ~ Xx must be a conjunction Y with Thue factorization
Fi, . . . , Yn such that [Y 3 ϋ] falls in case 3. The result of modus ponens
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is then ^ [ 7 ^ 7 ] , To see that this result falls in case 3, note that C/y = F;

is a minimal conjunct iff Yi - U{ is, and £/;, F f are maximal subregular

conjuncts, Rfa and κftb, iff Γ; and ί// are also maximal subregular con-

juncts # 4 c and # 4 β (all for the same A). Since [ p y ] and [F D ί/] fall in

case 3, <RiιU> hf<i2;,&> and <Ric>
 }~f<Ria>. Hence, by rule (v),

< Rί,c > hf < #i,i > > and so ip^ [F => F] also falls in case 3.

<=: Cases 1 and 2a are obvious since they require W to be an axiom or a

substitution instance thereof. For W as specified in case 3, the proof is by

induction on, n, the number of Thue factors in U equal to the number in F.

n = 1: Case A: Suppose < JR l f Λ> l~τ <ϋ£if&>, then by Lemma 5 and substi-

tution ^[R^a ^ R?,b]' Case B: Suppose U = V is a minimal conjunct.

Then hp̂  [C/" D F] by substitution into the identity axiom. Show that this

part of the theorem holds for n = k on the assumption that it holds for

n = k - 1: Let U have Thue factorization Ul9 . . . , Uk and V have Thue fac-

torization Vι, . . . , Vk' Let ΰ be any wff with Thue factorization

Ul9 . . . , Uk-i and F be any wff with Thue factorization F x , . . . , Vk-i- Since

[[/ D F ] falls in case 3, then so does [ϋ 3 F]. But then, by the induction

hypothesis, *T^[U ̂  v]. Further, since Un and Vn are Thue factors in U

and F where [u => F] falls in case 3, either Un = Vn is a minimal conjunct,

or C/w is R^a , and F, is < ^ and <Λ Λ , β ^ ""f < Λ β f * > . So.

(1) ^ [ ί / D F ] (indue, hyp.)

(2) ^[Un ^> Vn] (id. or Lemma 5 and substitution)

(3) ^[bϋn => F^w] (r.m. and m.p.)

(4) %[VUn ^ FFW] (l.m. and m.p.)

(5) ^[ilUn =>FFj (Lemma 3)

(6) y^F] (Cor. 2)

We finish the proof of the theorem by showing that if W is as specified in
case 2b, then VTT W. In this case we have that [~ Xλ 3 ~ X2 ] falls in case
3, so by the proof just above we have hp~τ [~ X\ => ~ X2 ]• Further, by sub-
stituting into the transitivity axiom we have l~p̂ r [~ Xx => ~ X2 ]

 D

[~ X2 ^>~X3]i>[~X1 3 - X 3]. So by modus ponens, ^ [~ ̂ 2 D ~ ̂ 3] J

T/ze Post-Lineal Theorems for arbitrary recursively enumerable degrees
of unsolvability

In this section, the Post-Lineal theorems for recursively enumerable
degrees of unsolvability are stated and proved. For the first of these we
need Boone's theorem and the fact that P τ , as constructed, preserves the
degree of T. However, it is of interest to note that neither the second nor
the third of our analogues of the Post-Lineal theorems uses the fact that Pτ

has the same degree of unsolvability as T. And, indeed, Boone's theorem
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is not actually required although we use it for the sake of convenience.7

However, we do use the fact that the structure of the theorems of Pj is
known from Theorem 2; in particular, for U and V in T, U ' f V iff

^ T [Uf D V'].

Boone's Theorem* For any recursively enumerable degree of unsolvability,
D, there exists a Thue system, T(D), such that the word problem for T(D) is
of degree D.

Theorem 3:9 (Analogue of the first Post-Lineal Theorem) For any re-
cursively enumerable degree of unsolvability, D, there exists a partial
propositional calculus, Pj(D), whose decision problem is of degree D.

Proof: By Boone's theorem, for any recursively enumerable degree of un-
solvability, D, we have a Thue system T(D). (This may equally well be con-
sidered as a semi-Thue system.) Using it to start with, we construct Pj(D)
in the manner we have described in the previous section. First notice that

by case 3 of Theorem 2, U lT(b)I/Γ iff ^1(D)[U' D v'1 a n d s o t h e w o r d

problem for T(D) is one-one reducible, as defined by Post,10 to the decision
problem for Pj(D) To see that the decision problem for Pjφ) reduces to
the word problem for T(D), we consider the form of theorems as described
in Theorem 2. Let W be a wff of Pj(Dy Then, to decide whether or not it is
a theorem one checks first to see if it is described by case 1. If so, then
I~PT ( D ) W; if not, one tries 2b. Either (a) W is of the form
[[~X2 3 ~X3] 3 [~XX ^~X3]] and so one must check to see if O ^ =* ~χ2 ]
is in case 3, or (b) W is not of form [[~X2

 D ~^ 3 ] D [~^i D ~-Xs]] and so
W cannot be a theorem according to 2b and one must check to see if it is in
case 3. If (a) holds, let Y be [~XX Ί~X2], and if (b) holds, let Fbe W.
For Y to be in case 3, it must be of the form [~ Yλ 3 ~Γ 2 ] where ~ Y\ and
and ~Y2 each have the same number of matching Thue factors as described
in case 3. If these conditions are not met, then Y is not a theorem. If they
are met, then let the m pairs of Thue factors which are maximal subregular
conjuncts be called R^a and RΪy, i = 1, 2\, . . . , m. Then ^ ( l > ) ^ iff
<Rίa> ^TΪD) <Riit~b> And so, the decision problem for P T ( / ) ) reduces to
the word problem for T(D). Further, since we have no bound on the number
of pairs of maximal subregular conjuncts in any given wff in case 3, the re-
duction is by unbounded truth tables as defined by Post.10

7. We will indicate the simplification when we prove those theorems. See footnote (12).

8. W. W. Boone, *'Partial Results regarding word problems and recursively enumerable
degrees of unsolvability'% BAMS, vol. 68 (1962), pp. 616-623.

9. A stronger version of this theorem, Dthe unique connective, was proved in 1963 by
M. D. Gladstone of the University of Bristol, England. His paper will appear in the
Transactions of the American Mathematical Society.

10. E. L. Post, "Recursively enumerable sets of positive integers and their decision
problems", BAMS, vol. 50 (1944) pp. 296-7 and pp. 299-301.
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Definition 8: Let Px and P2 be partial propositional calculi. We say that

P x coincides with P2 if they have exactly the same theorems.

Definition 9: Let C be a class of partial propositional calculi and F a

single, specified partial propositional calculus. Then, the problem of de-

termining of an arbitrary member of C whether or not it coincides with F

is called the class coincidence problem for C relative to F.

Definition 10: Let C be a class of partial propositional calculi, then the

problem of determining of an arbitrary member of C whether or not it is

complete is called the class completeness problem for C.

Definition 11: Let T be any semi-Thue system. Let Fj be a partial propo-
sitional calculus which includes among its theorems the axioms of Pj (as
described in the last section) and the wff [p D [ q D p]]. We call such an FΎ,
a P^fragment,

Theorem 4: For any recursively enumerable degree, D, there is a semi-
Thue system, T, such that for each P+γ-fragment, Fj, there is a class CPj
such that the class coincidence problem for OF- , relative to Fj is of
degree D.

Proof: Let T be a semi-Thue system of degree D and construct Pj as

described in the last section. Let Al9 A2, . . . , An be the axioms of Fτ.
n

Suppose U and V are a pair of words of T. Let P(U,V) be the partial prop-

ositional calculus whose axioms are those of P τ plus the "coincidence"

axioms [[|Z7f D VX] O Ai], i = 2, . . . , n. We will see from the following

lemma that the theorem is true for the class C F T whose members are all

such P(U,V) where U and V vary over all pairs of words of T.12

Lemma 10: P( U, V) coincides with Fτ iff U hψ- V.

11. This aspect of the proof is not necessarily constructive as we may not be given the
axioms of Fj. However, in the three corollaries which follow, the axioms can be
specifically given.

12. We do not, in fact, need all pairs of words of T. Boone proves his theorem by starting
from the following result which is easily inferred from Post ("Recursive Unsolvabil-
ity of a Problem of Thue," JSL, vol. 12(1947) pp. 1-11) and Kleene (chapter 13 of In-
troduction to Metamathematics): For any recursively enumerable set, S, {and there-
fore, recursively enumerable degree, D), there is a semi-Thue system, Ju such
that neS iff hs"+1q1h *~jjιqh> where h, sly q^, and q are among the specified letters
of the alphabet of Tx\ (Lemma 1, see (8)). Call such word pairs, hs"+1 q\h,hqh the
"unsolvable pairs." He then constructs from TΊ a Thue system T4 and shows that
its word problem reduces to the word problem for the "unsolvable pairs ." In the
analogue of the first Post-Lineal theorem it was necessary to consider the Thue
system as a whole and so Boone's theorem was required. In this and Theorem 5 we
need only some infinite set of word pairs in a Thue system such that the problem of
determining of an arbitrary pair whether or not they are equivalent is of degree D.
For such purposes we could take the Thue system, Ύ{D), corresponding to each D,
and take as the required infinite set of word pairs in T(D) the "unsolvable pairs ."
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Proof: I. Suppose U ̂ 7 . We first show that tjpίu,v)ιW implies te W.
The axioms of Pj are theorems of Fj by definition and the coincidence
axioms are theorems of Fj because

!FΪ [P DU^P\\ (def. of Fτ)

Ψ1[Aί Ώ[[U' DV?]=>ΛJ (subst.)

^ A{ (axiom of Fτ)

^[[ f f 1 D F ' W J (m.p.)

Conversely, we see that ip- W implies ^pfoy; W. Since £7 Hp γy by Theo-
rem 2, ^ [ ί / ' ^ ' l s o ^ v ) ^ ^ ' ] . Since ^UtV)\[U' ^ V']oAi]

is an axiom, H^(ι/ y ) At by modus ponens. II. Supposing that not U ̂ 7 , we
now show that the theorems of P(U9V) are exactly the theorems of P τ , the
coincidence axioms and substitution instances thereof. Recall that the coin-
cidence axioms are [[U1 D F 1] ~D A{] and that U1 and V1 each begin with a
not-sign. Refer now to the forms of theorems in P τ as given in Lemma 7.
Let U' be ~ Yx and 7T be ~ Y2. Then consider the following four forms:

form i: [~ΛΊ D ~ χ 2 ] D . [ - χ 3 =)-X 4 ] D [~X5 D ~X 6]
form ii: [ - ^ D - X 2 ] D [ - χ 3 D - χ 4 ]

form iiia: [~j?Ί D ~JJΓ2] form iiib: [ ^ D X X ]
coincidence axioms: [[~ Γx 3 ~ F 2 ] ^ 4 ]

It is clear by their form that the only possible uses of modus ponens among
these, outside of Pj, depend on there being a first use of modus ponens with
the minor premiss in form iiia and the major premiss a substitution in-
stance of a coincidence axiom. For there to be such a first use of modus
ponens, the theorem of Pj used as minor premiss would have to be
[U'Λ D F t Λ ] . But, by Theorem 2, not ^ [U'A => V'A] since by hypothesis
not U l~f V. Hence, Fj and P(U9V) do not coincide since, in particular, not
'"pd/.v) [p ̂ [Q D / > ] ] although fe [p D [ # Z>/>]]. This completes the proof of
Lemma 10 and hence of Theorem 4.

Corollary 1 to Theorem 4: (Analogue of the second Post-Lineal Theorem)
For any recursively enumerable degree of unsolvability, D, there exists a
class of partial propositional calculi, C, such that the class completeness
problem for C is of degree D.

Proof: The complete propositional calculus includes all tautologies and is
thus a Pj -fragment for any T.

One can easily show that for any T, the axioms of Pj are theorems in
the minimal propositional calculus, M, and in the intuitionistic propositional
calculus, I. Since [p z> [q D p]] is an axiom in each of these, it follows that
each is a Pj -fragment for any T. So we have two further corollaries.

Corollary 2 to Theorem 4: For any recursively enumerable degree of un-
solvability, D, there exists a class of partial propositional calculi, C, such
that the class coincidence problem for C relative to M is of degree D.



68 ANN H. IHRIG

Corollary 3 to Theorem 4: For any recursively enumerable degree ofun-
solvability, D, there exists a class of partial propositional calculi, C, such
that the class coincidence problem for C relative to I is of degree D.

Definition 12: Let C be a class of partial propositional calculi, then the
problem of determining of an arbitrary member whether or not the set of
axioms by which it is given is an independent set is called the class inde-
pendence problem for C.

Definition 13: We say that an occurrence of an implies-sign is superior if
it does not occur in the scope of a not-sign.

Lemma 11: If T is a semi-Thue system whose operation rules are inde-
pendent and contain no empty words, then the axioms of Pj are independent.

Proof: To prove this lemma we will consider each subsystem obtained from
P j by removing one axiom. For each such subsystem we will look at the
forms of wffs (schemata) which might be theorems in the subsystem so as
to ascertain whether or not the deleted axiom can be derived as a theorem
from the others. This will be done with the aid of the accompanying chart.

1 2 3 4

Trans. [~Xι D ~X2] =>. [~X2 ̂ ~X3] [~X1^~ΛΓ3] [~X2 D-XgJDf-X! =>~X3] ~X^~X3 ~ ^

R M. ~X1D~X2D.[~Xι]X3=>[~Xa]X3 [~XX]X3Ώ[~X2]X3 t^%K

L.M. ~X1^~X2?.X3[~Xl]l)X3[~X2] XΛ-XjDXat-Xj JίA^^f

lStAssoc. XjXAjDtX^Xa JX^W

2n dAssoc. [XiX2]X3DXi[λ'2X3] JCr&pGI ~

semi-Thue S / A ^ 3 ^ ' %rX^~

In the chart the axioms as schemata (except identity) appear in the first
column. In each row of the second column is the consequence of a use of
modus ponens if the first column entry of that row is taken as major
premiss. The third column is the consequence of the second and the fourth
of the third in the same way. Thus these entries include all schemata which
might have a theorem of P τ as an instance. By Theorem 2 we know im-
mediately that certain of these cannot yield theorems in P^ and so these
have been crossed out. Recall also that every schema of the form [UV] is
actually of the form ~[Z7 D ~7] and that, by definition, both G\ and G; are
associated to the left.

The schema for the identity axiom has not been included in the chart
since no other axiom is an instance of it, and, further, the result of modus
ponens with an instance of it as major premiss produces nothing new. Since
it is also true that the identity axiom, [p ̂ >p\ is neither a substitution
instance of any other axiom nor a consequence thereof, it is independent.

To prove each of the other axioms independent we, in effect, cross out
the row of the chart in which the axiom in question appears and then look at
the remaining entries to see if that axiom could have been derived as a
theorem from the others.



THE POST-LINEAL THEOREMS 69

The transitivity axiom,

[~p Ώ~q]5. [~q =>~r] =>[~P =>^r],

is independent since no entry in the table has five superior implies-signs.
The right multiplication axiom,

~p Ώ~q D . h ί l r ^ h d ^

is independent: In the chart we notice that the only other entries with
exactly three superior implies-signs are the left multiplication axiom
schema and the second column result from the transitivity axiom schema.
Consider the unabbreviated forms of the consequences of both the left mul-
tiplication axiom schema and the right multiplication axiom:

~[~p D ~ r] D ^ ^ g D . ^ r].

They cannot be the same. Nor can the right multiplication axiom be of the
form [[~X2

 D ~ ^ 3 ] D [~-XΊ D ~%3]] since, in particular, here ~X3 cannot
be both ~ q and [~#]r. That the left multiplication axiom is also independent
follows from similar arguments.

The first associativity axiom, <p[qr] D [pq]r, is independent: We con-
sider all entries in the chart which have exactly one superior implies-sign.
The first associativity axiom certainly is not an instance of the second as-
sociativity axiom schema, nor can it be a semi-Thue axiom schema since
in these each G] and G) is left associated. In the second column right mul-
tiplication result the right conjunct on each side, X3, is the same, and so
the first associativity axiom cannot fit there. Similarly, it cannot fit into
the second column result from the left multiplication axiom schema since
this has the same left conjunct, X3f on both sides. To show that the first
associativity axiom could not have been derived from the transitivity axiom
schema by two uses of modus ponens is somewhat more complicated. Sup-
pose, on the contrary, that the third column transitivity result [~Xι ^ ~X3]
is [/>[#r] =) [/>#]H> a n d further that we are examining the shortest proof
that this is a theorem. For this to be a theorem in the system Pγ without
the first associativity axiom, both (a) [~-X\ ^>~X2] and (b) [~X2 ^> ~X3]
must also be theorems. That is, (a) is the theorem used as minor premiss
to derive the second column result from the first, and (b) is the theorem
used as minor premiss to derive the third column result from the second,,
Since [~Xj is p[qr] and [~ X3] is [pq]r, we must find a [~X2] so that both
(a) and (b) are theorems. To see how (a) might be a theorem consider the
identity axiom schema and all the entries in the chart with exactly one
superior implies-sign. A brief examination of these indicates that there
are three ways in which (a) might be a theorem: (1) it is an instance of the
identity schema, (2) it is a second column left multiplication result, or
(3) it is a third column transitivity result. We consider each in turn.
(1). If (a) is an instance of the identity schema, then [~Xj is also p[qr]
and so (b) is [/>[#r] D [pq]r]. But this (b) cannot already be a theorem since
we are considering the shortest possible proof. (2). If (a) is a theorem as
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a result of modus ponens with the left multiplication axiom schema as ma-
jor premiss, then (a) is [p[qr] 3 />[~F]], for some wff Y. But for this
modus ponens to occur, it is also necessary that [qr 3 ~F] be the theorem
acting as minor premiss. However, if [qr 3 ~ Y ] is a theorem, Theorem 2
implies that [~|F] is also [qr], and so again it follows that (b) is
\fr\JqrV^> OHM- (3).. Let (a) and (b) be redesignated as [p[qr] 3 ~VΊ] and
["^i 3 [|^]|r] respectively. If (a) is itself a third column transitivity re-
sult, then in order for it to be a theorem there must be an (aτ),
JSpίkr] D ~^2 L and (bf), [~F2

 D ~ F j , which are the theorems used as
minor premisses in obtaining (a) from the transitivity schema. Again, (af)
can then be a theorem only according to one of the three possibilities given
above. Eventually, for some n, (a ( w )) must be a theorem by (1) or (2) rather
than (3). If (a i (w)) is [fi[qr] 3 ~ F n + 1 ] and, as in (1), is an instance of the
identity schema, then [ ^ F w + 1 ] is p[qr\ But then (b ( w ))is [p[qr] 3 ~Vn]
which is the same as (a ( w~^), etc. Suppose, as in (2), [/>[^r] 3 ~V-n+1] is a
left multiplication result. Then by the same arguments as those given for
(2) above, this immediately reduces to the case for (α ( w )) an instance of the
identity schema. The arguments showing the independence of the second
associativity axiom follow in a similar way.

Consider the semi-Thue system, T), obtained from T by deleting the
jth operation rule, Gj —> Gj. Theorem 2 applies to any arbitrary semi-Thue
system, so that Ό H^ V iff Ψ^. [IT 3 V']. Since not Gj ^γ{j Gj, it follows
that not te,. Gj D Gf. Hence the semi-Thue axioms are also independent.

Modus ponens is independent since there are theorems of Pγ which are
not substitution instances of axioms, for example, case 2b of Theorem 2.
And, of course, substitution is independent since without it no theorem could
be longer than the longest axiom.

Theorem 5: (Analogue of the third Post-Lineal Theorem) For any recur-
sively enumerable degree of unsolvabίlity, D, there exists a class of partial
propositional calculi, C, whose class independence problem is of degree D.

Proof: For each D choose some semi-Thue system TD whose word prob-
lem is of degree D. Reduce the set of operation rules of the semi-Thue
system to an independent set. That is, take the first operation rule and if it
is not independent, discard it, and so on with the second, third, etc.1 3 Then
for U and V words of TD, define P(U,V) to be the partial propositional cal-
culus whose axioms are the axioms of Pγ plus the "independence" axioms
~ ~ [P ^>p] and [[t/f 3 y»]p ~~[pΏ-p]]. Notice that not hp̂ . ~~|>3/>]

and not ^ - [IP 3 y1 3 . [p 3 p]] by Theorem 2. Further, the axioms
of Pj are independent in P^ by construction and Lemma 11, and the inde-
pendence axioms are independent of each other. The independence axioms
cannot be used in modus ponens with each other. The only theorem of P τ

that could be used in modus ponens with a substitution instance of an

13. This procedure is, of course, highly non-effective However, Boone conjectures that
the set of axioms he has given in his theorem—see footnote (8)—could be shown to be
independent.
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independence axiom is [ϋ%A =>F | Λ]. But by Theorem 2, ^ [U'A 3 V'A] iff
U ^~j V. Hence, if U l-j 7, JP(ί7, V) can be axiomatized by the axioms of P τ

and [£/f D Fτ D . ~~[/> D/>]], and to take ~~[/> D />] as an axiom would be
redundant. If not U ~χ V, then the theorems of P(U,V) are exactly those of
Pj plus the independence axioms and substitution instances thereof. (See
part Π of the proof of Lemma 10.) In this case, then, —[p D p] is also re-
quired as an axiom in order to axiomatize P(U,V). Thus, since for any re-
cursively enumerable degree of unsolvability, D, there is a Thue system,
TD, whose word problem is of degree D, the theorem holds for the class C
whose members are P(U,V) where U and V vary over all pairs12 of words
in TD.
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