Notre Dame Journal of Formal Logic Volume V, Number 3, July 1964

AN AXIOMATIZATION OF PRIOR'S MODAL CALCULUS Q

R. A. BULL

Prior defines a model for a modal calculus Q (cf [1], pp. 43f):

The truth values are infinite sequences of 1's, 2's, and 3's, with the proviso that the first term of each sequence is not 2. The designated values are those with no 3's.

The values of propositional operators are found by applying the tables

Ka	ibi	1	2	3	b_i		Nai	
	1	1	2	3			1	3
	2	2	2 2	2			2	2
a_i	3	3	2	3		a_i	3	1

to the terms of the sequences $\langle a_1, a_2, a_3, \ldots \rangle$ and $\langle b_1, b_2, b_3, \ldots \rangle$. The other propositional operators can be defined from these in the usual way.

For formal convenience I shall use L for what is NMN in Prior's system, and L for his L. These operators are given by

 $L \alpha \text{ is} \begin{cases} <1,1,1,1,\ldots> \text{ when } \alpha \text{ is } <1,1,1,\ldots>; \\ 2 \text{ where } \alpha \text{ is } 2 \text{ and } 3 \text{ elsewhere, when } \alpha \text{ consists of } 1'\text{s and} \\ 2'\text{s}; \\ 2 \text{ where } \alpha \text{ is } 2 \text{ and } 3 \text{ elsewhere, when } \alpha \text{ has a } 3. \end{cases}$ $L \alpha \text{ is} \begin{cases} <1,1,1,\ldots> \text{ when } \alpha \text{ is } <1,1,1,\ldots>; \\ 2 \text{ where } \alpha \text{ is } 2 \text{ and } 1 \text{ elsewhere, when } \alpha \text{ consists of } 1'\text{s and} \\ 2'\text{s}; \end{cases}$

2 where α is 2 and 3 elsewhere, when α has a 3.

This paper is devoted to showing that Q can be axiomatized by adding to PC the following axioms and rules:

1 CLpp2 CLpp3 CKLpLqLKpq $RQLa C\beta\gamma \implies C\beta L\gamma$,

Received September 3, 1963

where (1) β is fully modalized,

and (2) the variables of β each occur in γ .

 $\mathbf{RQ}Lb \ C \mathbf{L} \alpha C \beta \gamma \implies C \mathbf{L} \alpha C \beta L \gamma,$

where (1) β is fully modalized,

and (2) the variables of β each occur in α or γ .

 $\mathsf{RQL} \ C \, \mathsf{L} \alpha \, C \beta \gamma \implies C \, \mathsf{L} \alpha \, C \beta \, \mathsf{L} \gamma,$

where (1) β is fully modalized,

and (2) the variables of β and γ each occur in α .

I do this by giving a reduction of words to a normal form, in Lemma 2, and then showing that I can either construct a derivation for such a normal form in my axiom system (Lemma 3), or construct allocations rejecting it from Q (Lemma 4), Lemma 1 gives some rules used in the other sections. The proofs of these Lemmas involve some lengthy but straightforward derivations, which I shall omit.

I use α , β , γ , etc, and these letters with subscripts metatheoretically for words. I sometimes use $(C\alpha_i)\beta$ as an abbreviation for $C\alpha_1 C\alpha_2 \dots C\alpha_n\beta$ when there is no danger of confusion arising from not stating the subscripts more explicitly. I use \sim as an equivalence relation between sets of words which can be derived from each other. A word α with a part β can be regarded as the value of a function with β as its argument, and with this in mind I sometimes write $\alpha(\beta)$ for such an α . I then use $\alpha(\gamma)$ for the word obtained by replacing that occurrence of β by γ ; in using this device the particular part being replaced must, of course, be stated in the context.

Lemma 1. The following rules can be derived in our axiom system:

I $\alpha \sim CL\beta\alpha, CNL\beta\alpha$

II $\alpha \sim C L \beta \alpha$, $C N L \beta \alpha$

III $CLC\beta\gamma CLC\gamma\beta\alpha(\beta) \sim CLC\beta\gamma CLC\gamma\beta\alpha(\gamma)$, where β and γ have the same variables.

IV $CL\beta\alpha \sim CLCL\beta C\beta\beta CLCC\beta\beta L\beta\alpha$

 $\mathbf{V} \quad CNL\beta\alpha \sim CLCL\beta NC\beta\beta CLCNC\beta\beta L\beta\alpha$

VI $C \perp \beta \alpha \sim C L C \perp \beta C \beta \beta C L C C \beta \beta \perp \beta \alpha$

VII $CNL\beta\alpha \sim CLCL\beta NC\beta\beta CLCNC\beta\beta L\beta\alpha$

Lemma 2. In our axiom system each word is equivalent to words of the form

 $(CL\alpha_i)(CL\beta_j)(CNL\gamma_k)(CNL\delta_\ell)\epsilon$, where the α_i 's, the β_j 's, the γ_k 's, the δ_ℓ 's, and ϵ have no modal operators.

Proof. Given a word α with *m* L's and L's, define words $\alpha_1, \alpha_2, \ldots, \alpha_{2^{m+1}-1}$ as follows:

(1) $\alpha_1 = \alpha$.

(2) β_n is the first part of α_n to the right of the added antecedents which contains no modal operators but lies immediately under one. I shall use $\alpha_n(L\beta_n)$ (or $\alpha_n(L\beta_n)$) for α_n with this occurrence of $L\beta_n$ (or $L\beta_n$) as argument.

212

(3)
$$\alpha_{2n} = CL\beta_n \alpha_n (C\beta_n\beta_n)$$
 if β_n lies under an L;
 $\alpha_{2n} = CL\beta_n \alpha_n (C\beta_n\beta_n)$ if β_n lies under an L.

(4)
$$\alpha_{2n+1} = CNL\beta_n \alpha_n (NC\beta_n\beta_n)$$
 if β_n lies under an L;
 $\alpha_{2n+1} = CN \mathbf{L}\beta_n \alpha_n (NC\beta_n\beta_n)$ if β_n lies under an **L**.

(Note that this does give a unique definition of α_n .) With each step of the defining process a modal operator is removed from the part to the right of the added antecedents, which originally contained m modal operators, so each branch of the defining process terminates after m steps. The terminal words, α_{2m} , α_{2m+1} , ..., α_{2m+1-1} , will be commutants of the required normal form.

Using the rules of Lemma 1 it can be shown that $\alpha_n \sim \alpha_{2n}$, α_{2n+1} .

(When β_n lies under an *L* use I, III, IV, and V; when β_n lies under an *L* use II, III, VI, and VII.) Thus we have that

 $\alpha \sim \alpha_{2m}$, α_{2m+1} , ..., α_{2m+1-1} ,

which gives the required result.

In what follows I shall use $\beta_{j(\alpha)}$ and $\delta_{\ell(\alpha)}$ for β_{j} 's and δ_{ℓ} 's with all their variables in the α_{i} 's; and $\beta_{j(k)}$'s for β_{j} 's with all their variables in the α_{i} 's and γ_{k} .

Lemma 3. The normal form $(C \ \ \alpha_i)(C \ \ L \ \beta_i)(C \ \ L \ \beta_i)(C \ \ L \ \delta_i)\epsilon$

can be derived from any of the (propositional) words

 $\begin{array}{c} (C\alpha_i)(C\beta_j)\epsilon\\ (C\alpha_i)(C\beta_{j(k)})\gamma_k\\ (C\alpha_i)(C\beta_{j(\alpha)})\delta_{\ell(\alpha)} \end{array}$

in our axiom system.

Proof. Derive 4 CLKpqKLpLq; the derivations are then straightforward applications of 1, 2, 3, 4, RQLb, and RQL.

Lemma 4. The normal form

 $(C \mathbf{L} \alpha_i) (C L \beta_j) (C N L \gamma_k) (C N \mathbf{L} \delta_\ell) \epsilon$

can be rejected from Q if all the (propositional) words

 $(C\alpha_i)(C\beta_j)\epsilon$ $(C\alpha_i)(C\beta_{j(k)})\gamma_k$ $(C\alpha_i)(C\beta_{j(\alpha)})\delta_{\ell(\alpha)}$

are rejected from PC.

Proof. We know that there must be allocations of 1's and 3's which reject each of these propositional words in turn. Let us suppose that k ranges from 1 to r, and that ℓ ranges from 1 to s. Assign values to the terms of the sequences for the variables as follows:

(1) To the first terms: give the variables in the α_i 's, the β_i 's, and ϵ

values which reject $(C\alpha_i)(C\beta_j)\epsilon$; and give the other variables value 1. Thus the α_i 's and the β_j 's will have value 1; and ϵ will have value 3.

(2) To the (k+1)th terms: give the variables of the α_i 's and γ_k values which reject $(C\alpha_i)(C\beta_{j(k)})\gamma_k$; and give the other variables value 2. Thus the α_i 's and the $\beta_{j(k)}$'s will have value 1; the other β_j 's will have value 2; and γ_k will have value 3.

(3) To the $(r + \ell(\alpha)+1)$ th terms: give the variables of the α_i 's values which reject $(C\alpha_i)(C\beta_{j(\alpha)})\delta_{\ell(\alpha)}$; and give the other variables value 2. Thus the α_i 's and the $\beta_{j(\alpha)}$'s will have value 1; the other β_j 's will have value 2; and $\delta_{\ell(\alpha)}$ will have value 3.

(4) To the other $(r+\ell+1)$ th terms: give the variables of the α_i 's and β_j 's values which would, with appropriate values for ϵ , reject $(C\alpha_i)(C\beta_j)\epsilon$; and give the other variables value 2. Thus the α_i 's and the β_j 's will have value 2; and δ_ℓ will have value 2.

(5) This defines the values for the first (r+s+1) terms of the sequences; repeat this block of allocations for the other terms.

The sequences will now have the following properties: the α_i 's will have all 1's; the β_j 's will have 1's and 2's; the γ_k 's will have some 3's; the $\delta_{\ell(\alpha)}$'s will have some 3's; and the other δ_{ℓ} 's will have some 2's. Thus each antecedent $\mathbf{L}\alpha_i$, $L\beta_j$, $NL\gamma_k$, $N\mathbf{L}\delta_{\ell}$ will have a sequence of 1's and 2's; in particular each antecedent will have 1 for its first term. Further, ϵ will have a 3 for its first term, so the normal form will have 3 for its first term and be rejected.

Theorem. The system Q is axiomatized by adding to PC the axioms 1, 2, 3 and the rules RQLa, RQLb, RQL.

Proof. We see from Lemmas 3 and 4 that a normal form can either be derived from our basis or rejected from \mathbf{Q} . If all the normal forms for a word can be derived from our basis then that word can be derived from our basis by way of them, by Lemma 2. If one of the normal forms for a word is rejected from \mathbf{Q} then the word itself must be rejected from \mathbf{Q} , since the property of being verified in \mathbf{Q} is preserved by derivations in our axiom system. (For the verification of the rule of detachment see [1], p. 46.)

Corollary. The system Q is decidable.

Proof. Examination of the lemmas will show that a word with m modal operators is rejected from **Q** if and only if it is rejected with sequences where the terms are repetitions of the first (m+1) terms. (In Lemma 4 the blocks are of (r+s+1) terms; these can be expanded to blocks of (m+1) terms by repetition within the block, if necessary.) Given m, the number of such sequences is finite, so the word is decided by a finite model.

REFERENCES

[1] A. N. Prior, *Time and Modality*, Oxford, 1957.

Wadham College University of Oxford Oxford, England