AN AXIOMATIZATION OF PRIOR'S MODAL CALCULUS Q•

R. A. BULL

Prior defines a model for a modal calculus Q (cf [1], pp. 43f):
The truth values are infinite sequences of 1 's, 2 's, and 3 's, with the proviso that the first term of each sequence is not 2 . The designated values are those with no 3's.

The values of propositional operators are found by applying the tables

$K a_{i} b_{i}$	1	2	3	b_{i}		$N a_{i}$	
1	1	2	3			1	3
2	2	2	2			2	2
$a_{i} 3$	3	2	3		a_{i}	3	1

to the terms of the sequences $\left.<a_{1}, a_{2}, a_{3}, \ldots\right\rangle$ and $\left\langle b_{1}, b_{2}, b_{3}, \ldots\right\rangle$. The other propositional operators can be defined from these in the usual way.

For formal convenience I shall use L for what is $N M N$ in Prior's system, and \boldsymbol{L} for his L. These operators are given by
$\boldsymbol{L} \alpha$ is $\left\{\begin{array}{l}\langle 1,1,1, \ldots\rangle \text { when } \alpha \text { is }\langle 1,1,1, \ldots\rangle ; \\ 2 \text { where } \alpha \text { is } 2 \text { and } 3 \text { elsewhere, when } \alpha \text { consists of } 1 \text { 's and } \\ 2 \text { 's; } \\ 2 \text { where } \alpha \text { is } 2 \text { and } 3 \text { elsewhere, when } \alpha \text { has a 3. }\end{array}\right.$
$L \alpha$ is $\left\{\begin{array}{l}<1,1,1, \ldots\rangle \text { when } \alpha \text { is }\langle 1,1,1, \ldots\rangle ; \\ 2 \text { where } \alpha \text { is } 2 \text { and } 1 \text { elsewhere, when } \alpha \text { consists of } 1 \text { 's and } \\ 2 \text { 's; } \\ 2 \text { where } \alpha \text { is } 2 \text { and } 3 \text { elsewhere, when } \alpha \text { has a 3. }\end{array}\right.$
This paper is devoted to showing that Q can be axiomatized by adding to PC the following axioms and rules:

$$
\begin{aligned}
& 1 \quad C L p p \\
& 2 C C \mathbf{L} p p \\
& 3 C K \boldsymbol{L} p q \boldsymbol{L} K p q \\
& \mathrm{RQLaC} \mathrm{\beta} \mathrm{\gamma} \Longrightarrow C \beta L \gamma,
\end{aligned}
$$

where (1) β is fully modalized,
and (2) the variables of β each occur in γ.
$\operatorname{RQLb} C L \alpha C \beta \gamma \Longrightarrow C L \alpha C \beta L \gamma$,
where (1) β is fully modalized,
and (2) the variables of β each occur in α or γ.

$$
\operatorname{RQL} C \mathbf{L} \alpha C \beta \gamma \Longrightarrow C \boldsymbol{L} \alpha C \beta \boldsymbol{L} \gamma,
$$

where (1) β is fully modalized,
and (2) the variables of β and γ each occur in α.
I do this by giving a reduction of words to a normal form, in Lemma 2, and then showing that I can either construct a derivation for such a normal form in my axiom system (Lemma 3), or construct allocations rejecting it from Q (Lemma 4), Lemma 1 gives some rules used in the other sections. The proofs of these Lemmas involve some lengthy but straightforward derivations, which I shall omit.

I use α, β, γ, etc, and these letters with subscripts metatheoretically for words. I sometimes use $\left(C \alpha_{i}\right) \beta$ as an abbreviation for $C \alpha_{1} C \alpha_{2} \ldots C \alpha_{n} \beta$ when there is no danger of confusion arising from not stating the subscripts more explicitly. I use \sim as an equivalence relation between sets of words which can be derived from each other. A word α with a part β can be regarded as the value of a function with β as its argument, and with this in mind I sometimes write $\alpha(\beta)$ for such an α. I then use $\alpha(\gamma)$ for the word obtained by replacing that occurrence of β by γ; in using this device the particular part being replaced must, of course, be stated in the context.

Lemma 1. The following rules can be derived in our axiom system:
I $\quad \alpha \sim C L \beta \alpha, C N L \beta \alpha$
II $\alpha \sim C L \beta \alpha, C N L \beta \alpha$
III $C L C \beta \gamma C L C \gamma \beta \alpha(\beta) \sim C L C \beta \gamma C L C \gamma \beta \alpha(\gamma)$, where β and γ have the same variables.

```
IV CL \beta\alpha ~ CLCL\betaC\beta\betaCLCC\beta\betaL\beta\alpha
```

V CNL $\beta \alpha \sim C L C L \beta N C \beta \beta C L C N C \beta \beta L \beta \alpha$
VI CL $\beta \alpha \sim C L C L \beta C \beta \beta C L C C \beta \beta \boldsymbol{L} \beta \alpha$
VII $C N L \beta \alpha \sim C L C L \beta N C \beta \beta C L C N C \beta \beta L \beta \alpha$
Lemma 2. In our axiom system each word is equivalent to words of the form
$\left(C L \alpha_{i}\right)\left(C L \beta_{j}\right)\left(C N L \gamma_{k}\right)\left(C N L \delta_{\ell}\right) \epsilon$, where the α_{i} 's, the β_{j} 's, the γ_{k} 's, the δ_{ℓ} 's, and ϵ have no modal operators.

Proof. Given a word α with $m L$'s and L's, define words $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{2}{ }^{m+1}{ }_{1}$ as follows:
(1) $\alpha_{1}=\alpha$.
(2) β_{n} is the first part of α_{n} to the right of the added antecedents which contains no modal operators but lies immediately under one. I shall use $\alpha_{n}\left(L \beta_{n}\right)$ (or $\alpha_{n}\left(L \beta_{n}\right)$) for α_{n} with this occurrence of $L \beta_{n}$ (or $L \beta_{n}$) as argument.
(3)
$\alpha_{2 n}=C L \beta_{n} \alpha_{n}\left(C \beta_{n} \beta_{n}\right)$ if β_{n} lies under an L; $\alpha_{2 n}=C L \beta_{n} \alpha_{n}\left(C \beta_{n} \beta_{n}\right)$ if β_{n} lies under an \boldsymbol{L}.
(4) $\alpha_{2 n+1}=C N L \beta_{n} \alpha_{n}\left(N C \beta_{n} \beta_{n}\right)$ if β_{n} lies under an L;
$\alpha_{2 n+1}=C N L \beta_{n} \alpha_{n}\left(N C \beta_{n} \beta_{n}\right)$ if β_{n} lies under an \boldsymbol{L}.
(Note that this does give a unique definition of α_{n}.) With each step of the defining process a modal operator is removed from the part to the right of the added antecedents, which originally contained m modal operators, so each branch of the defining process terminates after m steps. The terminal words, $\alpha_{2 m}, \alpha_{2 m+1}, \ldots, \alpha_{2^{m+1}-1}$, will be commutants of the required normal form.

Using the rules of Lemma 1 it can be shown that $\alpha_{n} \sim \alpha_{2 n}, \alpha_{2 n+1}$.
(When β_{n} lies under an L use I, III, IV, and V; when β_{n} lies under an L use II, III, VI, and VII.) Thus we have that

$$
\alpha \sim \alpha_{2 m}, \alpha_{2 m+1}, \ldots, \alpha_{2^{m+1-1}},
$$

which gives the required result.
In what follows I shall use $\beta_{j(\alpha)}$ and $\delta_{\ell(\alpha)}$ for β_{j} 's and δ_{ℓ} 's with all their variables in the α_{i} 's; and $\beta_{j(k)}$'s for β_{j} 's with all their variables in the α_{i} ' s and γ_{k}.

Lemma 3. The normal form
$\left(C \boldsymbol{L} \alpha_{i}\right)\left(C L \beta_{j}\right)\left(C N L \gamma_{k}\right)\left(C N L \delta_{\ell}\right) \epsilon$
can be derived from any of the (propositional) words
$\left(C \alpha_{i}\right)\left(C \beta_{j}\right) \epsilon$
$\left(C \alpha_{i}\right)\left(C \beta_{j(k)}\right) \gamma_{k}$
$\left(C \alpha_{i}\right)\left(C \beta_{j(\alpha)}\right) \delta_{\ell(\alpha)}$
in our axiom system.
Proof. Derive $4 C \mathbf{L} K p q K \boldsymbol{L} p \boldsymbol{L} q$; the derivations are then straightforward applications of $1,2,3,4, R Q L b$, and RQL.

Lemma 4. The normal form

$$
\left(C L \alpha_{i}\right)\left(C L \beta_{j}\right)\left(C N L \gamma_{k}\right)\left(C N L \delta_{\ell}\right) \epsilon
$$

can be rejected from Q if all the (propositional) words
$\left(C \alpha_{i}\right)\left(C \beta_{j}\right) \epsilon$
$\left(C \alpha_{i}\right)\left(C \beta_{j(k)}\right) \gamma_{k}$
$\left(C \alpha_{i}\right)\left(C \beta_{j(\alpha)}\right) \delta_{\ell(\alpha)}$
are rejected from PC.
Proof. We know that there must be allocations of 1's and 3's which reject each of these propositional words in turn. Let us suppose that k ranges from 1 to r, and that ℓ ranges from 1 to s. Assign values to the terms of the sequences for the variables as follows:
(1) To the first terms: give the variables in the α_{i} 's, the β_{j} 's, and ϵ
values which reject $\left(C \alpha_{i}\right)\left(C \beta_{j}\right) \epsilon$; and give the other variables value 1. Thus the α_{i} 's and the β_{j} 's will have value 1 ; and ϵ will have value 3 .
(2) To the $(k+1)$ th terms: give the variables of the α_{i} 's and γ_{k} values which reject $\left(C \alpha_{i}\right)\left(C \beta_{j(k)}\right) \gamma_{k}$; and give the other variables value 2. Thus the α_{i} 's and the $\beta_{j(k)}$'s will have value 1 ; the other β_{j} 's will have value 2 ; and γ_{k} will have value 3.
(3) To the $(r+l(\alpha)+1)$ th terms: give the variables of the α_{i} 's values which reject $\left(C \alpha_{i}\right)\left(C \beta_{j(\alpha)}\right) \delta_{\ell(\alpha)}$; and give the other variables value 2. Thus the α_{i} 's and the $\beta_{j(\alpha)}$'s will have value 1 ; the other β_{j} 's will have value 2 ; and $\delta_{\ell(\alpha)}$ will have value 3 .
(4) To the other $(r+\ell+1)$ th terms: give the variables of the α_{i} 's and β_{j} 's values which would, with appropriate values for ϵ, reject $\left(C \alpha_{i}\right)\left(C \beta_{j}\right) \epsilon$; and give the other variables value 2 . Thus the α_{i} 's and the β_{j} 's will have value 2 , and δ_{ℓ} will have value 2 .
(5) This defines the values for the first $(r+s+1)$ terms of the sequences; repeat this block of allocations for the other terms.

The sequences will now have the following properties: the α_{i} 's will have all 1's; the β_{j} 's will have 1's and 2's; the γ_{k} 's will have some 3 's; the $\delta_{\ell(\alpha)}$'s will have some 3's; and the other δ_{ℓ} 's will have some 2's. Thus each antecedent $\boldsymbol{L} \alpha_{i}, L \beta_{j}, N L \gamma_{k}, N \boldsymbol{L} \delta_{\ell}$ will have a sequence of 1 's and 2 's; in particular each antecedent will have 1 for its first term. Further, ϵ will have a 3 for its first term, so the normal form will have 3 for its first term and be rejected.

Theorem. The system Q is axiomatized by adding to PC the axioms 1 , 2,3 and the rules $\mathrm{RQ} L a, \mathrm{RQLb}, \mathrm{RQL}$.

Proof. We see from Lemmas 3 and 4 that a normal form can either be derived from our basis or rejected from Q. If all the normal forms for a word can be derived from our basis then that word can be derived from our basis by way of them, by Lemma 2. If one of the normal forms for a word is rejected from Q then the word itself must be rejected from Q, since the property of being verified in Q is preserved by derivations in our axiom system. (For the verification of the rule of detachment see [1], p. 46.)

Corollary. The system \mathbf{Q} is decidable.
Proof. Examination of the lemmas will show that a word with m modal operators is rejected from Q if and only if it is rejected with sequences where the terms are repetitions of the first $(m+1)$ terms. (In Lemma 4 the blocks are of $(r+s+1)$ terms; these can be expanded to blocks of ($m+1$) terms by repetition within the block, if necessary.) Given m, the number of such sequences is finite, so the word is decided by a finite model.

REFERENCES

[1] A. N. Prior, Time and Modality, Oxford, 1957.
Wadham College
University of Oxford
Oxford, England

