A NOTE ABOUT CONNECTION OF THE FIRST-ORDER FUNCTIONAL CALCULUS WITH MANY VALUED PROPOSITIONAL CALCULI

JULIUSZ REICHBACH

By virtue of a generalization of the satisfiability definition, see [2], we described in [3] an approximation of the first-order functional calculus by Boolean many valued propositional calculi in which the quantifier Π had a finite meaning.

In this paper we shall describe another approximation of the calculus by many valued Boolean propositional calculi based in [4]; the proof of the approximation is analogical to [3] and it is given in [5].

We consider here a Boolean algebra with operations $7 /$ complemention/, $\dot{+} /$ addition/ and with elements which are n-tuples ($w_{1},, \ldots \ldots, w_{n}$) of numbers 0 and 1.

We use notations of [3] and especially the following:

1. variables of the calculus:
(1') free: $x_{1}, \ldots /$ simply $x /$,
(2') apparent: $a_{1}, \ldots /$ simply $a /$.
2. relations signs: $f_{1}, \ldots, f_{c} ; \bar{c}$ - maximum of arguments of ones.
3. $w(E)$ - the number of different free $/ p(E)$ - apparent/variables occurring in E.
4. $i(E)$ - maximum of indices of those and only those variables which occur in E.
5. $n(E)=i(E)+p(E)$.
6. $E(u / z)$ - substitution of u for each occurrence of z in $E /$ with knowing conditions/.
7. $C\{E\}$ - the set of all significant parts of E :
$H \in C\{E\} . \equiv . H=E$ or there exist $E_{1} \epsilon C\{E\}, F, G, H_{1}$ such that:
$(H=F) \wedge\left(E_{1}=F^{\prime}\right) \vee\{(H=F) \vee(H=G)\} \wedge\left(E_{1}=F+C\right) \vee(\exists i)\left\{H=H_{1}\left(x_{i} / a\right)\right\} \wedge$
($E_{1}=\Pi a H_{1}$).
8. $S(k)$ - the set of all atomic formulas R such that indices of free variables occurring in R are $\leqslant k$.
9. Q-function on $S(k)$ with values n-tuples (w_{1}, \ldots, w_{n}) of numbers 0 and 1.
D.1. $g(k, j, t, Q, m) \ldots(k \leqslant m) \wedge(R)\left\{(R \in S(k)) \wedge\left\{Q(R)=\left(w_{1}, \ldots, w_{n}\right)\right.\right.$ for some $\left.\left.w_{1}, \ldots, w_{n}\right\} \rightarrow\left(w_{j}=w_{t}\right)\right\}$

By means of the function Q we give an inductive definition of the functional V which is defined for an arbitrary formula E such that $i(E) \leqslant k$ and $k+p(E) \leqslant m$:
(1d) $V\{k, Q, m, R\}=Q(R)$, if $R \in S(m)$,
(2d) $\left.V\left\{k, Q, m, F^{\prime}\right\}=V\right\urcorner\{k, Q, m, F\}$,
(3d) $V\{k, Q, m, F+G\}=V\{k, Q, m, F\} \dot{+} V\{k, Q, m, G\}$,
(4d) $V\{k, Q, m, \Pi a F\}=\left(w_{1}, \ldots, w_{n}\right)$, for some $w_{1}, \ldots, w_{n} . \equiv$. $(j)\left\{(j \leqslant n) \rightarrow\left(w_{j}=1 . \equiv\right.\right.$.
$(r)\left\{(r \leqslant k) \wedge\left(V\left\{k, Q, m, F\left(x_{r} / a\right)\right\}=\left(w_{1}^{r}, \ldots, w_{n}^{r}\right)\right.\right.$ for some $\left.w_{1}^{r}, \ldots, w_{n}^{r}\right)$ $\left.\rightarrow\left(w_{j}^{r}=1\right)\right\} \wedge(t)\left\{(t \leqslant n) \wedge \bar{g}(k, j, t, Q, m) \wedge\left\{V\left\{k+1, Q, m, F\left(x_{k+1} / a\right)\right\}=\right.\right.$ $\left(v_{1}, \ldots, v_{n}\right)$ for some $\left.\left.\left.v_{1}, \ldots, v_{n}\right\} \rightarrow\left(v_{t}=1\right)\right\}\right)$.
D.2. $J(Q, m, G) . \equiv .(k)\{(i(G) \leqslant k) \wedge(k+p(G)<m) \rightarrow(V\{k+1, Q, m, G\} \subset V\{k, Q$, $m, G\})\}$.
D.3. $F \in P(Q, m, E) \equiv$. ($\exists G)\{(G \epsilon C\{E\}) \wedge(J(Q, m, G) \rightarrow V\{i(F), Q, m, F\}=$ $(1, \ldots, 1))\}$.
D.4. $F \in P[m, E] . \equiv .^{1}\left(Q_{n}\right)\left\{\left(1 \leqslant n \leqslant 2^{c m^{\bar{c}}}\right) \rightarrow\left(F \in P\left(Q_{n}, m, E\right)\right)\right\}$.
D.5. $F \in P|E|$. $\equiv .(\exists m)\{(m \geqslant n(F)) \wedge(F \in P[m, E])\}$.
D.6. $E \epsilon P$. $\equiv . E \epsilon P|E|$.

The meaning of the above definitions is analogical to the given in [3] and is explained in [5].
T.1. If E is a thesis, then $E \in P$.

The proof of T.1, is inductive on the length of the formal proof of E, see [3], and is given in [5].

If we replace D.3. by:
D.3'. $F \in P(Q, m, E) . \equiv . J(Q, m, E) \rightarrow V\{i(F), Q, m, F\}=(1, \ldots, 1)$,
then using Herbrand's proof rules, see [1], we may analogously to [3] prove:
T.2. If E is an alternative of normal forms, then E is a thesis if and only if $E \in P$, see [5].

By an extension of the calculus we mean a first-order functional calculus in which apart of the described signs there are also relations signs $f_{1}^{1}, f_{2}^{1}, \ldots$ of one argument; in this case the number c of all relations may be infinite.

Of course, all notations and theorems remain true for the extended calculus; in one we may prove:
T.3. A formula E is a thesis if and only if $E \in P$.

[^0]We note that in T.5. the number c which occur in D.4. may be infinite, see $[5]^{2}$; analogical remarks relevant to [3].
T.2-3. prove a new possibility of approximation of the first-order functional calculus by many valued Boolean propositional calculi; in the approximation the quantifier Π is interpreted in T.2. as a finite operator, see (4d).

Some problems connected with T.2-3. we develop in [6]; examples in another paper.

BIBLIOGRAPHY

[1] Hilbert, D., Bernays, P., Grundlagen der Mathematik II, Berlin, 1939.
[2] Reichbach, J. On the definition of satisfiability, sent to The Journal of Symbolic Logic.
[3] Reichbach, J. On the connection of the first-order functional calculus with many valued propositional calculi, Notre Dame Journal of Formal Logic, 1962, v. III, pp. 102-107.
On the connection of the first-order functional calculus with many valued propositional calculi /An abstract/. The Bulletin of the Research Council of Israel, Section F, Mathematics and Physics, 1961, X, F1.
[4] Reichbach, J. On generalization of the satisfiability definition and proof rules with remarks to my paper: On theses of the first-order functional calculus, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 1962, 4 /8/.
[5] Reichbach, J. About connection of the first-order functional calculus with many valued propositional calculi, sent to Zeitschrift für mathematische Logik und Grundlagen der Mathematik.
[6] Reichbach, J. Some methods of formal proofs III, in sending to Studia Logica.

Tel Aviv
Israel
2. We explain assuming [3]:

To prove the converse theorem to T.1. we prove an analogical theorem to T.2. from [3] in which we assume:

$$
R(M) . \equiv .(i)(j)\{(M / i /=M / j /) \rightarrow(i=j)\}
$$

Then, the theorem holds for all formulas.
But to construct M with the property $R(M)$ we use a new sequence of relations $f_{1}^{1}, f_{2}^{1}, \ldots$, see [5].

[^0]: 1. Because Q depends on n, therefore we write here $Q=Q_{n}$.
