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ON A CLASS OF REGULAR SETS

VLADETA VUCKOVIC

1. Introduction. In this paper we study a subclass of the class of all

regular sets, the class of strictly (or strongly) regular sets. We introduced

this class in [l], where it was shown that every regular set is some pro-

jection of a strictly regular set. Here we give a sample of theorems about

strictly regular sets, as announced in [l], in order to show more closely

their intrinsic properties. Methodologically, we insist on the use of the

language of the recursive arithmetic or words, regarding this language as a

natural device in the theory of finite automata.

We point that, independently of us, V. G. Bodnarcuk introduced in [9]

also strictly regular sets, under the name of R-sets. This paper was writ-

ten when the paper of Bodnarcuk appeared. As there are not many connec-

tions between our and Bodnarcuk's exposition, we did not rewrite our paper,

but we made only following changes: as Bodnarcuk has the proof of our

theorem 3.2 we eliminated our proof which followed the same lines; with

theorems of Bodnarcuk's paper our paper has in common only this theorem

and the theorem 4.2 (Here we bring the proof, as it differs from that one of

Bodnarcuk).

In our paper [lO] it was shown how strictly regular sets can be em-

ployed in the proofs of theorems about regular sets.

2. Notations, We shall use in some extent the notions of the recursive

arithmetic or words, which were introduced in our paper [2]. As we need

here a very minor part of the content of this paper, we give the necessary

notions in a form which is suitable for our purposes.

Let

(2.1) U = K ul9 , ttΛ_i}

be a finite alphabet (in the sequel, when we speak about an alphabet we sup-

pose it always finite). The words in U are finite strings of letters of U,

which we shall write by simple juxtaposition: Ui1Ui2 uik. By Ω(C7)

we denote the set of all words in U, inclusive the empty word O.

By X + Y, the sum of words X and Y, we denote the concatenation YX.

By definition
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X + O =X,X + UiY = Ui(X+ r ) , / = o , i , . . , « - i ;

one can prove easily

O +X =X

and the associative law

X + ( y + Z) ={X + Y) + Z .

For every letter meU we call U{X =X +Ui the z-th successor of the

word X,

We can imagine all words of Ω(L7) as ordered partially in a tree, with

O at bottom, its successors on the first level, their successors on the

second level and so on. So, we can speak about all words Y which are less

than or equal to the word, X, in sign: of all words Yy such that O ̂  Y^X;

that are exactly the words (including O and X) which are obtained from X by

deleting from its beginning one letter after other, until the empty word O

is reached.

a(X) denotes the beginning letter of X; a(O) = O9 a(u{X) = u{.

£{X) denotes the last letter of X: I (O) = O, i(Xui) = w.

v(X), the predecessor of X, is the rest of X after deleting its first

letter: v(O) = 0 , v(mX) = X.

V{X,Z), the Z-th predecessor of X, is the word obtained from X by de-

leting from its beginning as many letters as they are in the word Z\

V(X,0) =X, V(X, UiZ) =v(V(X,Z)).
X
Λ p{Y), where p(Y) is some word-predicate, means the predicate: For

Y=0
all words F, such that O < F< X, p{Y).

\j p(Y) means the predicate: There is a word 7, O^ Y^X, such that
Y=0

P(Y)

We employ other logical and mathematical symbols in their usual

meaning.

By an initial U-automaton we understand a quadruple

(2.2) A =<Q, Q\λ,qo>

where

(2.3) Q ={<7o, qu , tf/-i}

is some finite set (the set of internal states), Q1 c Q is the set of /matf states

and λ (the transition function) is a total function mapping the set Q x U into

the set Q. q0 is called the initial state.

A word Uiιuι2 . . . . ẑ  £ e Ω(£7) - {0} is accepted by A if and only if there

is a word in Q, qjλqj2 qfk, such that λ(q0, uiχ) = qh, λ(qjv,uiι/+1h

qjv+1 for all v = 1,2, . . . , k-1 and ^ e Q'.

By convention, the empty word O is accepted by A if and only if qoeQ\

The set of all accepted words of A is denoted by T(A). Every set

a c Ω (C7) for which there exists an automaton A, such that α = T(A), is

called U-regular, (or simply, regular).
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3. Strong automata.

Definition 3.1. Let U be the alphabet (2.1). The quadruple

A = <Q, Q\ λ, qo> is a strong U-automaton if its set of internal states

(3.1) Q = ίq09qu , qn-u qn> Qn+i}

contains exactly n +2 states, if its transition-function λ is subject of the

conditions: for every UjβU

(3.2) λ(qiy UJ) =either # / + 1 or qn+i, for all i = 0,1,. . . , n-1, n,

(3.2) Hqn+1,Uj) = qn+1,

and if qn+1 k Qf.

Characteristic for strong automata is the manner in which the

accepted Z7-words are correlated with corresponding Q-words: if

utlui2,.. . UikeT(Λ) then the corresponding Q word is exactly the word

tfz'i+i qΐ2+ i #*£ + !• Further, if a Q-word ends with qn+ί, then the cor-

responding £/-word is surely not accepted (This is only a sufficient condi-

dition for non-acceptance).

Definition 3.2. If a c Ω(u) and if there exists a strong ^/-automaton A,

such that a = T(A), a is called a strongly U-regular set.

Obviously, the class of all strongly regular sets is a subclass of the

class of all regular sets. We shall now proceed as to get an intrinsic cri-

terion of strong regularity.

Definition 3.3. Let U be some alphabet and r a binary relation on it

(i.e. a subset of the set U x U). If we allow r to be fulfilled also for every

single word of the length 1 (i.e. for every single letter of U), we call r a

Mr elation on U.

Definition 3.4. Let r be a birelation on U. We extend it on the set Ω (U)

by

(3.3) r(X,Y) ++r{a(X),a(Y)).

I.e. two words P and Q are r-related if and only if their beginning let-

ters are r- related.

In the sequel we suppose always that every birelation on an alphabet is

extended by (3.3) into the set of all words in this alphabet.

Definition 3.5. A set a c Ω(ί/)is called strictly U-regular if there

exist two subalphabets U1 c U, U" c U and a birelation r on U such that

Xea- {θ}<-> a(X)eU' Λ

(3.4)
v(x)

A r(V(X,Z), V{X,Z,+ u0)) Λί(X)eU"

z=o

The second condition on the right side of (3.4) means the following: if
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UixUi2.... Uik ea— {0} then every two consecutive letters are r-related, i.e.

r(uiv,Uip+1) for v = 1,2,..., k-1.

In the case that X consists of only one letter, we suppose Λ r{V(X,Z).
Z=O

V(X,Z + Uo)) always fulfilled.

Theorem 3.1. Every strongly U-regular setts strictly U-regular.

Proof. Let a = T(A), where A is a strong [/-automaton, say the auto-

maton A from the definition 3.1. Define

(3.5) U' = {uj\λ(qo,Uj) = 0.+ 1 ,

(3.6) U"= iuo\qi + ιeQ'},

and the birelation r in the following way:

(3.7) r(ui,Uj) *+λ(qi+l9Uj) =tf/ + i.

Define the set β by
v(x)

/o o\ Xeβ- {0}*+a(x)eU'Λ A r(V(X,Z), V(X,Z +uQ)) Λ
(3.8) z = 0

t{X)eϋ",

and add O to the set β if and only if Oea (i.e. if #oeQf). We shall prove a= β.

Let first

(3.9) uίιui2 uike a - {0}

and let the length of it be greater than 1.

The corresponding Q-word is

(3.10) qiι+1 qi2+1 . . . . . qik + i,

a n d f o r v = 1,2, . . . ,k-l

(3.11) HqotUiJ =qi1+i,Hqi1/,Uiv) =qiv+ι.

By the first condition in (3.11) and by the definition (3.5) we have

(3.12) uhelΓ

by the condition before (3.11) and by the definition (3.6) we have

(3.13) uikeU",

and by the second condition in (3.11) and by the definition (3.7) we have

(3.14) r(uiv, uiv+1) for all v = 1,2, . . . , k-1.

From (3.12), (3.13) and (3.14) follows: uiιui2,... uike β-{0}.

If Uiβa- {0} is of length 1, then the corresponding Q-word is #z + 1 ; so

meU1 and, as then qi+YeQ , also UiβUr\ By the definition of a birelation

follows Uiββ- {O}.
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Let now

(3.15) ui±Ui2 uikeβ - {0}

and let the length of it be g r e a t e r than 1.

F o r m the Q-word

(3.16) 4* 1+i<2V2+i q ik+i

As Ui eU1 we have by (3.5)

(3.17) HqoyUiJ =qil+ί.

As r{uίv,Uiv+l) for v = 1,2, . . . , k-1 we have by (3.7)

(3.18) Mqiv+ί,uij/+1) = qiv+1 + ί for v = 1,2,..., k-1,

and as mk eU", we have by (3.6)

(3.19) qik+ieQ\

Therefore Ui1Ui2 . . . U{k ea- {0}.

If Uiββ-{0} is of the length 1, then u^Ό\ UiβUu, λ(qo,Ui) = qi + 1 and

qi+ίeQ\ from where follows u{ea- {O}.

Theorem 3.2. Every strictly U-regular set a is strongly U-regular.

As mentioned in the section 1, this theorem is proved by Bodnarcuk in

[9], as theorem 5. As our original proof was almost the same we omit it.

Theorem 3.3. The class of all strongly regular sets is effectively equal

to the class of all strictly regular sets. Given a strong automaton one can

effectively obtain the sets Ό% and U" and the birelation r of the correspond-

ing strictly regular set. Given such a set, one can effectively construct the

strong automaton for the corresponding strongly regular set.

On the ground of this theorem the predicates "strictly regular" and

"strongly regular" are equivalent. We shall use them therefore inter-

changeable.

Nevertheless, to point the fqrmal difference, we introduce

Definition 3.6. The quadruple

(3.20) A =<U, U\ U", r>,

where U is some alphabet, ί/τ c u, Un c U, and r a birelation on U, is called

a strict U-automaton.

A word XeΩ (U) is accepted by A if and only if

v(x)
(3.21) a(X)eU' A Λ r(V(X,Z),V(X,Z + u0))A l(X)eU".

Z=O

The set of all accepted words is denoted by T{A). A set α c Ω (U) is

strictly regular if there is some strict ^/-automaton such that a - {0} = T(A).

As every birelation r on an alphabet U can be put in the form of a finite

disjunction
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(3.22) r(x,y)++(x = Uiι *y = uj^) v {x = ui2*y = Uj2)v v(x = uil* y=UjX)

the predicate r{X,Y) is primitive recursive; it is not difficult, by means of
[2], to prove that (3.21) is primitive recursive also. So, we have

Theorem 3.3. Every strictly {or strongly) regular set is primitive re-
cursive.

4. Strictly regular sets. In this section we shall give more insight into
the structure of strictly regular sets. Much of the material of this section
will consist of counterexamples, which show that many theorems for regular
sets became invalid if the adjective " r e g u l a r " is changed to "strictly
regular".

Let V be the alphabet

(4.1) V = {v0, vu v2}.

Example 4.1. The set a, consisting of the only word v1v2v1v0, is not
strictly regular.

Proof. If a were strictly regular, we would have: V% = \vι\, Vft = {̂ 0}
and r = {(vl9v2), (v2,v1), (vχ,v0)}. The condition

v(x)

Xea- {0}<r>a{X)eV% A Λ r(V(X,Z) ,V(X,Z + vo))*l(X)eV"
Z=O

is satisfied not only by v1v2v1v0 but also by words vλvQ, vιv2vιv2vxv0 and
so on. So, with ^ i ^ ^ i ^ o every strictly regular set must contain these
words too. (Naturally, a is a regular set).

As known, the product a* β of two sets a and β is defined by

a-β= {XYlXea ΛYeβ}.

Example 4.2. There exist strictly regular sets whose product is not
strictly regular.

Proof. Let a= {vxv2} and β = {t>if0}. Both sets are strictly regular:
for rx = {(vlfv2)}, r2 = {(vl9v0)},

v(x)
Xea- {0}<r>a{X)e{v1}A Λ r^V(X,Z),V(X,Z + vo))jκi{X)e{v2},

Z=O

v(x)

Xeβ-{O}*+a{X)e{v1}Λ A r2{V{X,Z) ,V{X,Z + VO))A i(χ)e {v0}.

z=o
The direct product a β is {vγv2v γv$ } by the foregoing example this set is
not strictly regular.

Example 4.3. There exist strictly regular sets whose union is not
strictly regular.

Proof, a= {v ov1 } and β= { z ^ ^ J a r e strictly regular. If their union
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aΌβ = {vovlf v1v2) were strictly regular, for the corresponding strict auto-
matonA =< V9V9V", r> we had: V = {vQ9υλ}9 V" = {vx ,^2}and r = {(vθ9vj9

(V\,v2)}. Then we would have v0vίv2eT(A), although this word is not in a u β.

Example 4.4. There exists a strictly regular set a whose complement
~ a is not strictly regular.

Proof. Let α = {v0v1v2 }, ~ α contains the word vov1 v2 voυ1 v2, so its
corresponding birelation r must contain the pairs (vθ9Vi)f {vl9v2) also, and
the corresponding set V must contain the letter v0 and the set V11 the letter
υ2. Then obviously we would have v ovι v2 e ~a, what is impossible.

By foregoing examples we have

Theorem 4.1. The complement of a strictly regular set is not neces-
sary strictly regular; the union and the product of two strictly regular sets
are not necessary strictly regular.

We give now some positive results.
As known, the iteration α* of a set a is the infinite union

a* = {0} Ό aUa - aUa a - oU

Theorem 4.2. The iteration of a strictly regular set is strictly regular.

Proof. Let

v(x)
Xea-to}*+a(X>eU% Λ Λ r(V(X,Z),V{X,Z + uj) A P(X)eU" .

Z=O
Define

rι(x,y) <r+r(x,y)v {xeU" ΛyeU1}

Let Oeβ and

v(x)
Xeβ-{0\ *+ a(X)eUΆ A n(V(X,Z),V{X,Z + u0)) Λ l(X)eU" .

z=o
We shall prove: β = a*. If ^eα*, then obviously Peβ. Let now ^eβ-jO}.

If the length of P is 1 this is possible only if W(MJ" ^ 0 , so P e α c α * , i . e .
pea*. Let therefore the length of P be greater than 1.

As a(P)eU' there exists a beginning part P x of P of maximal length,
which is in a (in the case a(P)e u' Π [/τt ^ ^, we have eventually p1 =a(P ) ) .
Therefore P = P1Q1, where P ^ α , aiP^eU', ί(P 1 )eί/ τ t and r ί ^ P i ) , ^ © ! ) ) ~*
« ( Q i ) ^ M » Similar situation is with all consecutive letters of Qγ\ but
lHQ^eU". Therefore α(Qi)eC7τ. Repeat now the process with Qλ. We get

P = P1P2Q2 , Pi,P2eoι, a(Q2)eU' .

Repeating the process, as the lengths of Pι, P 2 and the following Pv-s are
^ i , and as P is of finite length, we get at last

P = PXP2 Pk, PpC®, v = 1,2,. . , k i.e. Pea* .
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Theorem 4.3. The intersection of two strictly regular sets is strictly

regular also.

Proof. Let a and β be strictly U-regular and

(A 2) υ(χ)

v ' ; Xea-\θ\ ++a(X)eU\Λ Λ rγ(V(XyZ)9V(X,Z + u0)) A $(χ)eU"
Z=O

v(x)
(4.3) Xeβ-lθ} <r*a(X)eU'2* Λ r2(V(X,Z)9V(X9Z+u0)) * !(X)eU*2' .

Z=O
Define the birelation p by

p(x,y) <-> rι(x,y) Λ r 2 (Λ:,^)

and the set γ by:

Oey <r> Oea Π β ,

^ )
Xey-{θ}«-β(X)€Z7{ Π ^ A Λ p(F(X,^),F(X,Z + U0)) Λ &(X) eU['Γ\ u".

Z=O
Obviously γ= an β.

Definition 4.1. The reversion-function R(X) is defined by: R(O) = 0 ,

Λ(w, X) =w, +Λ(X).

The reversion of the set a is the set R(a) = {R(X)\Xea}. Obviously
R{uiιui2 . ,,uik) =uik . . . ui2uiι.

Theorem 4.4. T&£ reversion of a strictly regular set is strictly regu-
lar.

Proof. Let a be defined by (4.2.) Define the birelation p by p(x,y) <->
niy ,*) . Then

Xeβ(Q!)-{θ}^^α(X)€ί7 f

1

tΛ Λ p{V{X,Z),V{X,Z +u0)) *&{X)eU[ .
Z=0

(To this theorem compare [3], Th. 4, for regular sets).

Definition 4.2. If X = YujUi uiy where ϋ{Y) ̂ Ui, then the right m-
truncation of X is the word Y, in sign: Xui - Y. If α is a set of words, its
right U{ -truncation is the set aU{ = \xUi\Xea\. Similar for the left in -trun-
cation. (Compare [4], Def. 4).

Theorem 4.5. The truncation of every strictly regular setts strictly
regular.

Proof. (Only for the right ^--truncation; for the left-similarly, or by
Theorem 4.4.). Let αbe defined by (4.2). Define

Ίi = \uj\ujeU Λrι(uj ,M, ) }

(Ur(ui ,U{), the set T can contain M, ) . Then
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v ( x )
X e a U i - { θ } * * a ( X ) e U [ Λ Λ r Ί ( V r ( X , Z ) , V r ( X , Z + U O ) ) Λ

z=o
ί(X)e(U\'-{ui}) U { τ z -U,}} .

(For regular sets this theorem was proved by C. C. Elgot: [4], Lemmas 4.1

and 4.2).

5. A proof of the primitive recursiveness of regular sets. Although

our end here is not the application of foregoing results onto the study of

regular sets, we give here such an application by proving that every regular

set is primitive recursive. Naturally, the theorem is not new, but the proof

proceeds along completely new lines, employing only the devices of the re-

cursive arithmetic of words. Exceptionally we suppose here that the reader

is acquainted with the notions of the primitive recursive arithmetic of words

in a greater extent than it was exposed in the section 2,; we suppose f.i. that

he knows the first half of our paper [2], or of Asser's paper [6], or of Miss

Peter's paper [7]. We employ the notations of [2], but chiefly that ones of

the section 2.

Definition 5.1. Let U be the alphabet (2.1) and S = {Sθ9Sι, , Spmml],

p ^ n, another alphabet. Every mapping 0 of U onto S, which is (uniquely)

extended to a mapping of Ω(£/) onto Ω(S) by

φ(O) = 0

φ(uiX) = φ(ui)φ(X), i = 0,1, ....,n-l

is called a projection.

We note that O represents the empty word in every alphabet. We shall

employ

Theorem 5.1. Every regular set a is some projection of a strictly

regular set; if a. is given, one can effectively find the corresponding strictly

regular set and the projection.

A proof of this theorem was given by the author in [l]. We point that

this theorem is implicitely contained almost in every essential study about

finite automata.

To simplify the treatment we suppose: if U is the alphabet

(5.1) U = {M O ,«I, , «,/-il

then S is an initial subalphabet of U:

(5.2) S = {«(,,Mi, , ^ _ ^ , k ^ n .

This convention makes possible to regard every projection Φ: U-*S

as a primitive recursive word-function in Ω(U): φ(Ui)=uV(, ) ,

i - 0,1, . . . ,n -1, v(ί) ^/e-i, is a finite application. Now the definition

Ψ(0) = O,

( 5 * 3 ) φ(uiX) = φ(X) + φ{m), i = 0,1, ...,n-l
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makes φ & primitive recursive word-function in Ω(Z7), with values in the
subset Ω(S) c Ω(t/).

Let ax be a strictly regular set in Ω( £/), and let

v(x)

(5.4) to1-{θ}oβ(^^lA Λ r(V(X,Z),V(X,Z + u0)) Λ£(X)eU"
Z=O

By theorem 3.3 the set ax is primitive recursive. But with this it is
not proved that the set a = φia^ is primitive recursive also.

To prove this, remark first that

(5.5) Xea*+ V (Yeaλ *φ{Y)=X)

Y

where V is the unbounded existential quantifiers: "there is an Y such that

" . To establish the primitive recursive character of a one has to
bound this quantifier.

To this end we remark that Y in (5.5) is not to be searched in the whole
set Ω( U), but only in the finite subset γ{X) of all words which are of the
same length as the word X. As the alphabet U consists of /? letters, there
are n s ° ( x ) such words, where so{x) denotes the length of X: s0(θ) = 0 ,
so(uiX) =uoso(x).

A simple Gδdelisation is best suited for our purpose. (Numerals are
part of Ω(i7): that are words written with the only letter uo; see [2], the end
of the section 10; we write 1 for uQ, 2 for uouo, 3 for uououo,.. . ).

Correspond the numeral v + 1 to the letter up, v = 0,1,.. . , n-1, (zero is
corresponded to the empty word). To the wordw0^o correspond the numeral
n + 1, to the word uγuQ the numeral n + 2, , to the word un_ι un-ι the
numeral n2+ n.

In general, to all words of the length k we correspond numerals, begin-
ning with the word UOUQ...UQ (to which we correspond the numeral

^ Hi + ϊ) and ending with the word un_ιun_1. ... un_x (to which we corre-

spond the numeral Σ n* )•
1 = 1

The correspondence of Q,{U) ontoΩ({w0}) is 1-1. Letgn(X) denote the
numeral corresponding to the word X, and exp(^) the word to which corre-
sponds the numeral n. It is not difficult to prove that exp(w) is a primitive
recursive word function. (Our correspondence is not other than the known
enumeration of all variations with repetition).

If k is the length of the word X, then all words of the same length have
k-l k

their Gδdel numerals between ψ^kji) = Σ n* + 1 and ψ2(k,n) = £ n i (inclu-

sive both numerals). Therefore the set

(5.6) γ(X) ={βyφ{Z)\ψ1{s0(X)9n)^Z^ ψ2(s0(X),n)}
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is primitive-recursive and can be enumerated effectively, Then

Xea^exp{ψ1(s0(X)9n))ea1 AX= φ(exp (ψ^s 0(X) ,n)) }

,v{exp(ψι{so(X)9n) + Dea, A X = φ(exp (ψ1(s0(X),n) + l))}v

(5.7) v v

v v

fexp(ψ2{s0(X),n))eoι1 Λ X= φ(exp(ψ2 {so{X),n)))} .

This predicate is obviously primitive recursive. So we have

Theorem 5.2. Every regular set is primitive recursive.

Accidentaly, our proof gives

Theorem 5.3. Every projection of a primitive recursive set is primi-
tive recursive.

Obviously there are primitive recursive sets which are not regular.
The simplest is the set of all words in the alphabet {S0,S1} which have the
same number of letters SQ and S1. (See [8] for the proof that it is not regu-
lar). Its characteristic function is (in notations of [2]).

aOsoiX-SoiXfiyX-SiiX) I)

what proves its primitive recursive character.
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