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ON A CLASS OF REGULAR SETS

VLADETA VUCKOVIC

1. Introduction. In this paper we study a subclass of the class of all
regular sets, the class of strictly (or strongly) regular sets. We introduced
this class in [1], where it was shown that every regular set is some pro-
jection of a strictly regular set. Here we give a sample of theorems about
strictly regular sets, as announced in [1], in order to show more closely
their intrinsic properties. Methodologically, we insist on the use of the
language of the recursive arithmetic or words, regarding this language as a
natural device in the theory of finite automata.

We point that, independently of us, V. G. Bodnaréuk introduced in [9]
also strictly regular sets, under the name of R-sets. This paper was writ-
ten when the paper of Bodnarcuk appeared. As there are not many connec-
tions between our and Bodnarcuk’s exposition, we did not rewrite our paper,
but we made only following changes: as Bodnarcuk has the proof of our
theorem 3.2 we eliminated our proof which followed the same lines; with
theorems of Bodnaréuk’s paper our paper has in common only this theorem
and the theorem 4.2 (Here we bring the proof, as it differs from that one of
Bodnaréuk).

In our paper [10] it was shown how strictly regular sets can be em-
ployed in the proofs of theorems about regular sets.

2. Notations. We shall use in some extent the notions of the recursive
arithmetic or words, which were introduced in our paper [2]. As we need
here a very minor part of the content of this paper, we give the necessary
notions in a form which is suitable for our purposes.

Let

(2.1) U={uo, ty,..... , Un-1}

be a finite alphabet (in the sequel, when we speak about an alphabet we sup-
pose it always finite). The words in U are finite strings of letters of U,
which we shall write by simple juxtaposition: u; #ip...... ui, . By Q(U)
we denote the set of all words in U, inclusive the empty word O.

By X + Y, the sum of words X and Y, we denote the concatenation YX.
By definition
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X+0=X,X +u;¥ =ui(X +Y),i=0,1,, n-1;
one can prove easily
O+X=X
and the associative law
X+(Y+2Z)=(X+7Y) +Z.

For every letter u;eU we call u;X =X +u; the i-th successor of the
word X.

We can imagine all words of §(U) as ordered partially in a tree, with
O at bottom, its successors on the first level, their successors on the
second level and so on. So, we can speak about all words Y which are less
than or equal to the word, X, in sign: of all words Y, such that 0 =Y =X;
that are exactly the words (including O and X) which are obtained from X by
deleting from its beginning one letter after other, until the empty word O
is reached.

a(X) denotes the beginning letter of X; a(0) = 0, a(u;X) =u;.

2(X) denotes the last letter of X: £(0) = 0, L(Xu;) =u;.

v(X), the predecessor of X, is the rest of X after deleting its first
letter: v(0) =0, v(u;X) = X.

V(X,Z), the Z-th predecessor of X, is the word obtained from X by de-
leting from its beginning as many letters as they are in the word Z:
V(ng)) =X, (X, wZ) =v(V(X,Z)).

A p(Y), where p(Y) is some word-predicate, means the predicate: For

Y=0
all words Y, such that O= Y =X, p(7).

X
v p(Y) means the predicate: There is a wordY, O= Y =X, such that
Y=0
p(Y).
We employ other logical and mathematical symbols in their usual
meaning.
By an initial U-automaton we understand a quadruple

(2.2) A=<Q, Q" q0>
where
(2.3) Q = {40, Giyeveeen-- ’ qt-l}

is some finite set (the set of internal states), Q' C Q is the set of final states
and A (the framsition function) is a total function mapping the set @ X U into
the set Q. ¢, is called the initial state.

A word %i Ui, . ... u; € Q(U) - {O}is accepted by A if and only if there
is a word in @, gj,qjz. . ... gj,,» such that Aqo, uiy) = qj,, Mgy, ui,, )=
Qj,,., forallv=12,..., k-1and gj;, €Q’.

By convention, the empty word O is accepted by A if and only if g, Q".

The set of all accepted words of A is denoted by T(A). Every set
a C Q(U) for which there exists an automaton A, such that a = T(4), is
called U-regular, (or simply, regular).
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3. Strong automata.

Definition 3.1. Let U be the alphabet (2.1). The quadruple
A =<@Q, @', A, qo> is a strong U-automaton if its set of internal states

(301) Q = {qO’ d1s 5 Qn-15 9n> In+1 }

contains exactly » +2 states, if its transition-function A is subject of the
conditions: for every ujeU

(3.2) AMgi, uj) =either qjy, Or guy,, foralli=0,1,..., n-1, n,
(3.2) )\(qn+1; u]) = dpiys
and if q,,, ¢ Q"

Characteristic for strong automata is the manner in which the
accepted U-words are correlated with corresponding @-words: If
U, Uiy, ... UpeT(A) then the corresponding @ word is exactly the word
Qit1Gig+1eenn- Giy+1- Further, if a @-word ends with ¢,4,, then the cor-
responding U-word is surely not accepted (This is only a sufficient condi-
dition for non-acceptance).

Definition 3.2. ¥ a C Q(U) and if there exists a strong U-automaton A4,
such that @ = T(A), a is called a strongly U-regular set.

Obviously, the class of all strongly regular sets is a subclass of the
class of all regular sets. We shall now proceed as to get an intrinsic cri-
terion of strong regularity.

Definition 3.3. Let U be some alphabet and » a binary relation on it
(i.e. a subset of the set U X U). I we allow v to be fulfilled also for every
single word of the length 1 (i.e. for every single letter of U), we call » a
birelation on U.

Definition 3.4. Let 7 be a birelation on U. We extend it on the set Q(U)
by
(3.3) 7(X,Y) < r(a(X), a(Y)).

I.e. two words P and Q are 7-related if and only if their beginning let-
ters are v-related.

In the sequel we suppose always that every birelation on an alphabet is
extended by (3.3) into the set of all words in this alphabet.

Definition 3.5. A set a C Q(U) is called strictly U-vegular if there
exist two subalphabets U' C U, U'" C U and a birelation » on U such that
Xea- {0} a(X)eU' a

(3.4)

v(x)
A v(V(X,Z), V(X,Z +uo) ~4X)eU"

Z=0

The second condition on the right side of (3.4) means the following: if
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Uiy Uis. ..« Uiy Ea—{O} then every two consecutive letters are »-related, i.e.

r(ui,,ui,, ) forv=12,..., k-1. o)

In the case that X consists of only one letter, we suppose A HV(X,2).
Z=0

V(X,Z + Uy)) always fulfilled.
Theorem 3.1. Every strongly U-vegular set is strictly U-vegular.

Proof. Let a = T(A), where A is a strong U-automaton, say the auto-
maton A from the definition 3.1. Define

(3.5) U’ = {ui 1M (g0, ) = 4,4,
(3.6) U= {UOICI,'+1€ R},
and the birelation 7 in the following way:
(3.7 (i) <> Mqiv1, %)) = gj 1.
Define the set B by
()
XeB - {0}« ax)eU'sn AN v (V(X,Z), V(X,Z +uy)) A
(3.8) 7=0
L(X)eu,
and add O to the set 8 if and only if Oe€a (i.e. if g,€Q'). We shall prove a=p.
Let first
(3.9) Uighhin ... Uy € a - {O}

and let the length of it be greater than 1.
The corresponding @-word is

(3.10) Git1 Qighlennes Qip+1s
qi+1€Q",

andfor v =1,2,...,k-1
(3.11) Mqo,uiy) =qiye1y Miy y%iy,) = qiysr-

By the first condition in (3.11) and by the definition (3.5) we have
(3.12) ui €U ;
by the condition before (3.11) and by the definition (3.6) we have
(3.13) Uiy €U,
and by the second condition in (3.11) and by the definition (3.7) we have
(3.14) r(u,, ui,, ) forallv=12,...,k-1.

From (3.12), (3.13) and (3.14) follows: u; Ui,,... Uiy € f-{O}.

If uijea- {0} is of length 1, then the corresponding @-word is ¢;,,; so
u;€U' and, as then g;+,€Q , also u;eU'". By the definition of a birelation
follows u;e- {O}.
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Let now
(3.15) Ui Uiy eonon u, €8 - {0}
and let the length of it be greater than 1.

Form the Q-word

(3.16) Diptr Qigrreose Tipra -
As u; €U' we have by (3.5)
(3.17) Mqo, 7/{,'1) =qi+1e

As v (u;,,u;,, ) for v=12,..., k-1we have by (3.7)
(3.18) A(quH, Uiy,) =4, 41 fOrv=12... k1,
and as u;, €U'", we have by (3.6)

(3.19) Qip1€Q".

Therefore u; u;, ... uiy €a-{0}.
I u,ep-{0} is of the length 1, then u,;eU", u,eU'", Mqo,ui) =q;+, and
q;11€Q", from where follows u,ea- {0}

Theorem 3.2. Every strictly U-regular set o is stvongly U-vegular.

As mentioned in the section 1, this theorem is proved by Bodnarcuk in
[9], as theorem 5. As our original proof was almost the same we omit it.

Theovem 3.3. The class of all strongly regular sets is effectively equal
to the class of all strictly vegulay sets. Given a strong automaton one can
effectively obtain the sets U' and U' and the bivelation v of the corvespond-
ing stvictly vegular set. Given such a set, one can effectively construct the
strong automaton for the corrvesponding strongly regular set.

On the ground of this theorem the predicates ‘‘strictly regular’’ and
“strongly regular’’ are equivalent. We shall use them therefore inter-
changeable.

Nevertheless, to point the formal difference, we introduce

Definition 3.6. The quadruple
(3.20) A=<y, U, u", r>,

where U is some alphabet, U' C U, U'' C U, and 7 a birelation on U, is called
a strict U-automaton.
A word XeQ (U) is accepted by A if and only if
uv(x)
(3.21) a(X)eU' » AN v(V(X,2),V(X,Z +uy))a 2HX)eU".
Z=0

The set of all accepted words is denoted by T(A). A set aC Q (U) is
strictly regular if there is some strict U-automaton such that o - {0} = T(4).

As every birelation 7 on an alphabet U can be put in the form of a finite
disjunction
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(3.22) 7 (v, ) <> (x=u Ay=u;) v (X=sj ) AY=0Ujx)V ... v(x=u; A y=u;)

the predicate »(X,Y) is primitive recursive; it is not difficult, by means of
[2], to prove that (3.21) is primitive recursive also. So, we have

Theovem 3.3. Every strictly (or strongly) vegular set is primitive re-
cursive.

4. Strictly regular sets. In this section we shall give more insight into
the structure of strictly regular sets. Much of the material of this section
will consist of counterexamples, which show that many theorems for regular
sets became invalid if the adjective ‘‘regular’® is changed to ‘“‘strictly
regular’’.

Let V be the alphabet

(4.1) V = {vg, v, 02} .

Example 4.1. The set a, consisting of the only word v,v,v,v,, is not
strictly regular.

Proof. It a were strictly regular, we would have: V'={v,}, V' ={v,}
and ¥ = {(v,,v,), (v,,0,), (v,,v9)}. The condition
(%)
Xea- {0} a(X)eV'a N v(V(X,2),V(X,Z + o)) AUX)eV"
Z=0

is satisfied not only by v,v,v,v, but also by words v,v,, v,0,v,0,v, v, and
so on. So, with v,v,v,v4 every strictly regular set must contain these
words too. (Naturally, a is a regular set).

As known, the product a- 3 of two sets a and B is defined by

a-B={XY|Xea rnYep}.

Example 4.2. There exist strictly regular sets whose product is not
strictly regular.

Proof. Let a= {v;v,} and B = {v,v,}. Both sets are strictly regular:
fO’V ’rl = {(vuvz)}; Y2 = {(UI,UO) },

v(x)
Xea- {0} <>a(X)e{v }n AN 7 ((V(X,2),V(X,Z + vo)) A UX)efv, ],
Z=0

(%)
XGB-{O}@(Z(X)E{UI}/\ A 7’2(V(X;Z)3V(X’Z + Z)0))/\ ﬁ(X)G{Uo} .
Z=0
The direct product o8 is {v,v,0,v, }; by the foregoing example this setis
not strictly regular.

Example 4.3. There exist strictly regular sets whose union is not
strictly regular.

Proof. a= {vev, } and B = {v,v,} are strictly regular. I their union
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aup = {vg,, v,v,} were strictly regular, for the corresponding strict auto-
maton A =<V, V', V", »>we had: V' = {vy,0,}, V' = {v,,0,}and » = {(v,,0,),
(v,,v5)} Then we would have vy, v,e T (4), although this word is not in a U B.

Example 4.4. There exists a strictly regular set o whose complement
~ a is not strictly regular.

Proof. Let a= {vg,v,}, ~a contains the word v, v,v0,0,, so its
corresponding birelation » must contain the pairs (vo,2,), (v,,v,) also, and
the corresponding set V' must contain the letter v, and the set V'' the letter
v,. Then obviously we would have v v, v, € ~a, what is impossible.

By foregoing examples we have

Theovem 4.1. The complement of a strictly regular set is not neces-
sary strictly rvegular; the union and the product of two strictly regular sets
are nol necessary strictly regular.

We give now some positive results.
As known, the itevation a* of a set a is the infinite union

a*={0}lUaUa: - aUa a+aU......

Theorem 4.2. The iteration of a strvictly regular set is stvictly regular.

Pyoof. Let
(%)
Xea-{0} <> a(NelU' s A AV(X,2),X,Z +ugd) » 1(X)eU".
Z=0
Define
ri(x,9) <> () v {xeU" ayeU'}
Let OeB and
v(x)
Xep-{0} <> a(X)eU'An A 7 (V(X,Z),VX,Z +uo)) ~0(X)eU".
Z=0

We shall prove: B = a*. If Pea*, then obviously Pef. Let now Pep-{0O}
If the length of P is 1 this is possible only if U'NU'" #@, so PeaC a*,i.e.
Pea*. Let therefore the length of P be greater than 1.

As a(P)eU" there exists a beginning part P, of P of maximal length,
which is in o (In the case a(P)eU'NU" # @, we have eventually P, =aq(P)).
Therefore P = P,Q,, where P, ea,a(P,)eU", £(P,)eU" and (L P),a(Q,)) —
a(@,)4U'. Similar situation is with all consecutive letters of Q,; but
2(@,)eU'". Therefore a(@,)eU'. Repeat now the process with @,. We get

P =P, P;Q;, P,,Pyeq, a(Qz)EU' .

Repeating the process, as the lengths of P;, P, and the following P,-s are
=], and as P is of finite length, we get at last

P=P,P,..... P,, Pyea, v =12,..,k i.e. Pea*,
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Theovem 4.3. The intersection of two strvictly vegular sets is strictly
regulay also.

Proof. Let o and B be strictly U-regular and
v(x)
Xea -{0} <> aX)eU'\a AN 7(V(X,2),V(X,Z +uy)) A 0(X)eUY ;
Z=0

(4.2)

v(x)
(4.3) XeB-{0} <> a(X)eUsn A 72(V(X,2),V(X,Z +u,)) A AX)eUy .
Z=0
Define the birelation p by
p(x,y) <> 7i(x,9) A7z (x,)
and the set vy by:
Ocy <> Oea N B,

v(x)
Xey -{Ot > a(X)eUI NU; A A p(V(X,2),V(X,Z +uo)) A UX)eUi" NUY.

Z=0
Obviously y= anB.

Definition 4.1. The reversion-function R(X) is defined by: R(O) =0,
R(u:X) =u; + R(X).

The reversion of the set a is the set R(a) = {R(X)|Xea). Obviously
R(uilu,-z cey uik) = Ujp o oo Uja Uiy -

Theorem 4.4. The reversion of a strictly regular set is strvictly regu—
lar.

Proof. Let a be defined by (4.2.) Define the birelation p by p(x,v) <>
7, (v,x). Then

v(x)
XeR () -{0} <> a(X)eUY' A /\O p(V(X,Z),V(X,Z +uo)) r9(X)eU;
Z=
(To this theorem compare [3], Th. 4, for regular sets).

Definition 4.2. ¥ X = Yuu; ... .. u;, where £(Y) $u;, then the right u;-
truncation of X is the word Y, in sign: X*/ = Y. If ais a set of words, its
right u; -truncation is the set a"? = {X"?| Xeq}. Similar for the left u; -trun-
cation. (Compare [4], Def. 4).

Theovem 4.5. The truncation of every strvictly vegular set is strictly
regular.

Proof. (Only for the right u;-truncation; for the left-similarly, or by
Theorem 4.4.). Let a be defined by (4.2). Define

T, = {u,' |u,~eUA rl(u,-,ui)}

(¥ »@; ,u;), the set T can contain #;). Then
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v(x)
Xea"i {0} <> a(X)eUi A A 71(V(X,Z),V(X,Z +up)) A
Z=0

x) et - {ush) u{r - {u;t }.

(For regular sets this theoremwas proved by C. C. Elgot: [4], Lemmas 4.1
and 4.2).

5. A proof of the primitive recursiveness of vegular sets. Although
our end here is not the application of foregoing results onto the study of
regular sets,we give here such an application by proving that every regular
set is primitive recursive. Naturally, the theorem is not new, but the proof
proceeds along completely new lines, employing only the devices of the re-
cursive arithmetic of words. Exceptionally we suppose here that the reader
isacquainted with the notions of the primitive recursive arithmetic of words
in a greater extent than it was exposed in the section 2,; we suppose f.i. that
he knows the first half of our paper [2], or of Asser’s paper [6], or of Miss
Peter’s paper [7]. We employ the notations of [2], but chiefly that ones of
the section 2.

Definition 5.1. Let U be the alphabet (2.1) and S = {S,,S,,...., Sy},
p =n, another alphabet. Every mapping ¢ of U onto S, which is (uniquely)
extended to a mapping of Q(U) onto Q(S) by

$(0) =0
o(u; X) =0 (u;)o(X), ¢=0,1,....,n-1
is called a projection.

We note that O represents the empty word in every alphabet. We shall
employ

Theorvem 5.1. Every regulav set a is some projection of a strictly
regular set; if a is given, one can effectively find the corvesponding strictly
regular set and the projection.

A proof of this theorem was given by the author in [1]. We point that
this theorem is implicitely contained almost in every essential study about
finite automata.

To simplify the treatment we suppose: if U is the alphabet

(5.1) U= {uoyttry . oooytty-r}
then S is an initial subalphabet of U:
(5.2) S={uguur,...... yUp_, v, P=n.

This convention makes possible to regard every projection ¢: U—S
as a primitive recursive word-function in Q(U): ¢(u;)=u,;,
i=0,1,...,nm-1, v€) =k-1, is a finite application. Now the definition

(b(o) = O’

(5.3) o(u; X) = o(X) +o(ui), i=0,1,...,n-1
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makes ¢ a primitive recursive word-function in Q(U), with values in the
subset Q(S) < Q(U).
Let @, be a strictly regular set in Q(U), and let

v(x)
(5.4) Xea,-{0}esa(X)eU'n A v (V(X,Z),V(X,Z +u,) A 0(X)eU"
Z=0

By theorem 3.3 the set ¢, is primitive recursive. But with this it is
not proved that the set a = ¢(a,) is primitive recursive also.
To prove this, remark first that

(5.5) Xea <> V (Yea, A¢(Y) =X)
Y

where Y is the unbounded existential quantifiers: ‘‘there is an Y such that
..... " To establish the primitive recursive character of « one has to
bound this quantifier.

To this end we remark that Y in (5.5) is not to be searched in the whole
set Q(U), but only in the finite subset y(X) of all words which are of the
same length as the word X. As the alphabet U consists of » letters, there
are 7n°°® such words, where sqX) denotes the length of X: s40) =0,
so(uiX) = #0So(X).

A simple Godelisation is best suited for our purpose. (Numerals are
part of Q(U): that are words written with the only letter u,; see [2], the end
of the section 10; we write 1 for u,, 2 for ueue, 3 for uguottg, ... ).

Correspond the numeral v +1 to the letter uw,, v = 0,1,...,n-1, (zerois
corresponded to the empty word). To the word u,u, correspond the numeral
n + 1, to the word u,u, the numeral n+2,..... , to the word u,_, u,., the
numeral 1%+ n.

In general, to all words of the length 2 we correspond numerals, begin-
ning with the word Mé”\u—“f (to which we correspond the numeral
k-1
Y ni+ 1) and ending with the word %, _, %,y....%,_; (to which we corre-
imy L —~——p
spond the numeral Y, 7’ ).

i=1

The correspondence of (U) onto Q({#, ) is 1-1. Letgn(X) denote the
numeral corresponding to the word X, and exp(n) the word to which corre-
sponds the numeral #. It is not difficult to prove that exp(z) is a primitive
recursive word function. (Our correspondence is not other than the known
enumeration of all variations with repetition).

If 2 is the length of the word X, then all words of the same length have

k-1 k
their Gédel numerals between y,(%k,n) = 121 ni + 1 and Y, (k,m) = Y % (inclu-
= i=1

sive both numerals). Therefore the set

(5.6) y(X) ={exp(Z) I (so(X),n) = Z = Yy (s0(X),m)}
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is primitive-recursive and can be enumerated effectively, Then
Xea <>{exp(ya(so(X) ) eay a X = d(exp (Ya(so(X) M) t
viexp(¥(so(X),m) + Deay o X = d(exp (Y(so(X),n) + 1}v

L I T v

Texp(Wa(so(X),m)ea; A X= d(exp (Y2 (so(X), )} .
This predicate is obviously primitive recursive. So we have
Theovem 5.2. Every vegularv set is primilive vecursive.
Accidentaly, our proof gives

Theovem 5.3. Every projection of a primitive vecursive set is primi-
tive recursive.

Obviously there are primitive recursive sets which are not regular.
The simplest is the set of all words in the alphabet {S,,S;} which have the
same number of letters Sy,and S,. (See [8] for the proof that it is not regu-
lar). Its characteristic function is (in notations of [2]).

o Iso(X=50(X)), X =5,(X) D

what proves its primitive recursive character.
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