Notre Dame Journal of Formal Logic Volume V, Number 1, January 1964

A NOTE ON PSEUDO DOUBLY CREATIVE PAIRS

THOMAS G. McLAUGHLIN

1. In [2], Smullyan has called attention to a drawback in the definition of "doubly productive pair" as given in [1]. He has suggested¹ the term "pseudo doubly productive pair" for the concept defined in [1]; in this note, we adopt the suggested terminology and say, in particular, that a pair (α, β) of sets of natural numbers is *pseudo doubly creative* just in case α and β are r.e. sets and the pair (α, β) is pseudo doubly productive. The writer has given² an example of a class of pseudo doubly creative pairs which are not doubly creative according to Smullyan's revised definition³; namely, the class of pairs (ζ, ζ) such that ζ is a creative set. In fact, each such pair $(\zeta, \zeta), \zeta$ creative, is even "pseudo D.C.⁺", i.e., (ζ, ζ) is D.P.⁺ in the sense of [1]. In the present note, we shall look at a few other pairs (α, β) which are pseudo D.C.⁺, and comment on whether their members "differ nicely," in that various of $\alpha - \beta, \beta - \alpha, \alpha \Delta \beta^4$ are recursive or at least r.e. We begin by establishing a simple "chaining" lemma.

Lemma. Suppose (α,β) is pseudo doubly creative under f(x,y), and γ is an r.e. set such that there exists an index, i_0 , of the empty set ϕ for which $\gamma \cap \{f(i_0,y) | \omega_y \subseteq \widetilde{\beta}\} = \phi$. Then, the pair $(\alpha \cup \beta, \beta \cup \gamma)$ is pseudo **D.C.**⁺.

Proof. (i) $\alpha \cup \beta$, $\beta \cup \gamma$ will, of course, be r.e. whenever α, β, γ are all r.e.

(ii) The operation $\omega_x \cup \omega_y$ is effective in the sense of [1, Chapter IV]; hence let $\phi(x,y)$ be a recursive function such that $\omega_i \cup \omega_j = \omega_{\phi(i,j)}$ for all i,j. Suppose $\omega_i \subseteq (\alpha \cup \beta)^{\sim} = \widetilde{\alpha} \cap \widetilde{\beta}, \ \omega_j \subseteq (\beta \cup \gamma)^{\sim} = \widetilde{\beta} \cap \widetilde{\gamma}$; then, $\omega_i \cup \omega_j = \omega_{\phi(i,j)} \subseteq \widetilde{\beta}$. Therefore, since f(x,y) is pseudo doubly productive for $(\widetilde{\alpha},\widetilde{\beta})$, if we let i_0 be an index of ϕ as in hypotheses, we have $f(i_0, \phi(i,j)) \in \widetilde{\alpha} \cap \widetilde{\beta} - (\omega_i \cup \omega_j)$; and so, by the hypothesis on $i_0, f(i_0, \phi(i,j)) \in \widetilde{\alpha} \cap \widetilde{\beta} \cap \widetilde{\gamma} - (\omega_i \cup \omega_j)$. But $\widetilde{\alpha} \cap \widetilde{\beta} \cap \widetilde{\gamma} = (\alpha \cup \beta) \cap (\beta \cup \gamma)^{\sim}$; and thus the function $f(i_0, \phi(x,y))$ is pseudo D.P.⁺ for the pair $((\alpha \cup \beta)^{\sim}, (\beta \cup \gamma)^{\sim})$.

Corollary. Let (α,β) be pseudo doubly creative. Then $(\alpha \cup \beta,\beta)$ is pseudo **D.C.**⁺.

2. From the foregoing lemma we obtain the pseudo D.C.⁺ character of certain pairs (α',β') for which each of $\alpha' - \beta'$ and $\beta' - \alpha'$ (and hence also

Received January 19, 1963

 $\alpha' \Delta \beta'$) is r.e. but not recursive. To accomplish this, we proceed as follows. Let $\phi(x,y)$ be as in the proof of the lemma; and let $\psi(x,y)$, similarly, be a recursive function such that $\omega_{\psi(i,j)} = \omega_i \cap \omega_j$, for all *i* and *j*. Let α and β be *disjoint* pseudo doubly creative sets (hence doubly creative in the sense of the revised notion of double productivity indicated in Note 3), with, say, f(x,y) pseudo doubly productive for (α,β) . It is obvious that $\alpha \cup \beta$ is not simple; so let δ be an infinite recursive subset of $(\alpha \cup \beta)$, and let ζ be any r.e. but not recursive subset of δ . Let d_0 be an index of δ ; d_1 an index of δ ; then, it is easy to check that $g(x,y) = f(\phi(x,d_0), \psi(y,d_1))$ is again pseudo doubly creative for (α,β) . Furthermore, if i_0 is an index of ϕ , then $\{g(i_0,y) \mid \omega_y \subseteq \widetilde{\beta}\}$ is disjoint from δ and so from ζ . Therefore, applying the lemma, the pair $(\alpha' = \alpha \cup \beta, \beta' = \beta \cup \zeta)$ is pseudo **D.C.**+; and both $(\alpha \cup \beta) - (\beta \cup \zeta) = \alpha$ and $(\beta \cup \zeta) - (\alpha \cup \beta) = \zeta$ are r.e. nonrecursive.

(It might be asked whether α' , β' can be taken disjoint. We don't know, at present, the answer to this question; in particular, the arguments used in the neighborhood of [1, p. 115] do not seem quite adaptable to a proof of the negative. If it were the case that $(\widetilde{\alpha}, \widetilde{\beta})$ pseudo D.P.⁺ \Rightarrow ($\widetilde{\alpha}, \widetilde{\beta}$) weakly pseudo D.P.⁺, using the definitions 2 and 2' of [1, pp. 120-121] ('~' is missing from the first ' α' and ' β ' in the statement of 2'), the negative reply would follow easily. But, this implication is not (despite line 5 from the bottom on p. 121 of [1]) obviously true.)

Remark. Let (γ, γ) be pseudo **D.C.**⁺, say under the recursive function f(x,y), and let α , β be recursive subsets of γ . Then the pair $(\gamma - \alpha, \gamma - \beta)$ is pseudo **D.C.**⁺.

Proof. Let $\psi(x,y)$ be as above; and let k_0 be an index of α , j_0 an index of β . Then, for all i,j, $\omega_i \cap \alpha = \omega_{\psi(i,k_0)}$ and $\omega_j \cap \beta = \omega_{\psi(j,j_0)}$, and it is a routine matter to verify that the pair $(\gamma - \alpha, \gamma - \beta)$ is pseudo **D.C.**⁺ under the function $f(\psi(x,k_0), \psi(y,j_0))$.

We will conclude this section by giving an example of a pseudo D.C.⁺ pair (α', β') for which both $\alpha' - \beta'$, $\beta' - \alpha'$ (and hence also $\alpha' \Delta \beta'$) fail to be recursively enumerable (in strong contrast to the examples obtained from the above remark).

Since the implications $(6) \Longrightarrow (3) \Longrightarrow (1)$ of "Theorem 24" of [1, p. 121] are valid, the construction given by Smullyan ([1, pp. 112-113]) of the **D.U.**⁺ pair of r.e. sets (U_1, U_2) yields not only a **D.U.**⁺ but furthermore a pseudo **D.C.**⁺ pair. Specifically, $U_1 = \{f(x, y, z) \mid z \in \omega_x\}, U_2 = \{f(x, y, z) \mid z \in \omega_y\}$, where f(x, y, z) is an arbitrarily prespecified 1-1 recursive function. Here is an informal proof that $U_1 - U_2$ is not r.e.:

Let β be any r.e., nonrecursive set; then, $N - \beta$ is not r.e. Let j_0 be an index of N, k_0 an index of β (i.e., $N = \omega_{j_0}$, $\beta = \omega_{k_0}$); and suppose $U_1 - U_2$ were r.e. Let $\phi(x)$ be a recursive function such that $U_1 - U_2 = \{\phi(0), \phi(1), \ldots\}$. (It is clear enough that $U_1 - U_2 = \phi$.) Since f(x, y, z) is 1-1 recursive, one can effectively determine, for each generated element $\phi(k)$ of $U_1 - U_2$, the unique triple, call it $\lceil \langle x, y, z \rangle_{\phi(k)} \rceil$, such that $\phi(k) = f(x, y, z)$. But the effective sequence $\langle j_0, k_0, 0 \rangle$, $\langle j_0, k_0, 1 \rangle$, ...; and, thereby, one obtains an effective generation of $N - \beta$: contradiction. $U_2 - U_1$ is dealt with similarly. 3. We might point out, finally, that, as a direct consequence of the lemma of section 1 together with a sufficiency condition for (α, β) pseudo doubly productive $\Rightarrow (\alpha, \beta)$ doubly-productive-as-in-note 3 (viz., that there be a recursive set λ such that $\alpha \cap \beta \subseteq \lambda \subseteq \alpha \cup \beta$), we have that if (α, β) is pseudo doubly creative then there is no recursive λ such that either $\alpha \subseteq \lambda \subseteq \alpha \cup \beta$ or $\beta \subseteq \lambda \subseteq \alpha \cup \beta$. For, it is easily seen that if (α, β) is pseudo doubly creative, then $(\alpha \cup \beta, \beta)$, while pseudo doubly creative by the lemma of section 1, is *not* doubly creative in the revised sense.

NOTES

1) In private communication.

2) In a letter to Prof. Smullyan. Given therein also was a sufficient condition (stated in section 3 of this note), appreciably weaker than the condition $\alpha \cap \beta = \phi$, for a pseudo doubly productive pair to be doubly productive as in Note 3 below.

3) It has been pointed out by a referee of a previous draft of this paper that, in [2], Smullyan's new notion of double productivity is not quite accurately stated relative to pp. 107-108 of [1]. (We had been working from the definition as given in a private communication from Prof. Smullyan, and did not notice the slip in his abstract.) A correct statement of the revised notion is this:

 $(\widetilde{\alpha}, \widetilde{\beta})$ is doubly productive just in case there is a recursive function f(x,y) such that $\omega_i \subseteq (\alpha - \beta)^{\sim} \& \omega_j \subseteq (\beta - \alpha)^{\sim} \& \omega_i \cap \omega_j = \phi \Longrightarrow f(i,j) \in \widetilde{\alpha} \cap \widetilde{\beta} \cap \widetilde{\omega_i} \cap \widetilde{\omega_j}$.

4) ' Δ ' denotes the operation of symmetric difference.

REFERENCES

[1] R. M. Smullyan, *Theory of formal systems*, Princeton, 1961.

[2] R. M. Smullyan, On double productivity, Abstract 588-28, Notices Amer. Math. Soc., February, 1962.

University of Illinois Urbana, Illinois