
162

Notre Dame Journal of Formal Logic
Volume IV, Number 3, July 1963

STUDIES ON THE AXIOM OF COMPREHENSION

TH. SKOLEM

In a previous paper in this journal (see [1]) I constructed a model M of
a set theory such that the axiom

(Ey) (x) (xeyoφ(x))

is valid, where φ(x) may contain some parameters#i,..., zn and is built by
conjunction and disjunction alone from atomic propositions uev, where u and
v are any two of x,zί9.., zn. In particular it was also allowed that φ(x) is
just a propositional constant 0 (false) or 1 (true). In this note I shall add a
few further results concerning models of set theories for which certain
axioms are given. In § 1 I first mention some general forms of the compre-
hension axiom and then prove a further theorem on the model in [1]. In § 2
I give a new proof of a result in [2], where a certain 3-valued logic was
considered. In § 3 I show some further examples of models of set theories
in ordinary 2-valued logic.

§1.

We may consider 3 forms of the axiom of comprehension. The first is
that partially treated in [1], although I prefer to write it here in the form

(1) (zx) . . . {z\n) {Ey) {x) (xey<^>φ(χ,zlf . . , zn)),

where φ is either a propositional constant or built from atomic expressions
uev by negation, conjunction and disjunction and there are no further vari-
ables in φ than x,zl9..9 zn. The second form is

(2) ( * i ) . . . ( z m ) ( E y ) ( x ) ( x e y 4 r > l T . . . J \ φ ( x , z l 9 . - , z m >U\>- > « * ) ) >

where φ as before is built by the connectives of the propositional calculus

while each TΓ means either universal or existential quantification with re-

gard to Mr. It may be advantagous also to consider a third form

(3) (Ey) (x) (x e y<&TT . . . Uφ(x9u1, . • , u»)) ,
uι n
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where 0 is built by the connectives from atomic terms uev, where u and υ
are amongx9u l9...9 un.

Theorem 1. The model M on the lower half of p. 19 in [1] satisfies the
axiom (2) for any φ without negation.

Proof. It was proved in [1] that axiom (1) is fulfilled in M. Therefore
it will suffice to prove that in M every expression

IT . . . ΉA(x,zlf . . , zm, ulf . . , u n)

is equivalent to an expression B(x,zl9.., zm,Ci,.., cn), where ci,.., cn are
some special elements of M. Here A and B are built from atomic proposi-
tions uev by conjunction and disjunction alone. In order to see that such an
equivalence takes place it will be convenient to deal with the truthvalues so
that conjunction means minimum, disjunction means maximum. Then the
truthvalue of (u)A(u) is minwA(w),that is the minimum of the truthvalues of
A(w)when u runs through all elements of M, and similarly the truth value of
(Eu)A(u) is maxwA(w). Now looking at the ε-table for M we see that the val-
ues of ε(x,y), that is xey9constitute a steadily non-decreasing function with
regard to both x and y when the elements of u are ordered by inclusion. It
is then obvious that every expression A(x,zl9.., zm,Uι,..9 un) built by the
operations max and min from atomsε(u,v) will possess the same property.
As a consequence of this we have for example

m i n ^ i A ( x , z l f . . , z,m ,Uι,u,2, . . ,un) =A(x,z1, . . 9zm ,O,u2, . . ,un)

and

max ^ A ( # , * ! , . . ,Zm>ul9u29 . . ,un) = A(x,zl9 . . ,zm,, V,u2, . . ,un)

where O is the null-set in M and V the total set. Repeating this for
u29...9 un9 we obtain

A \ X , Z ι , . . , Z m 9 U \ , . . ,U'n) A ( X , Z ι , . . , Z m , C \ , . . , C t n ) ,

where each of d,..., cn is either O or V. Thus we get an equivalence of the
desired kind and our theorem is proved.

It was shown in [1] that no finite model exists for which (1) is valid for
φ without negation. It may therefore be of some interest to see that finite
models exist for which (3) is valid for negation free φ. Let us for example
take a model M with the 5 elements 0, 1, 2, 3, 4 while the relation ε is given
by the table

ε 0 1 2 3 4

0 0 0 0 0 1

10 0 0 11

2 0 0 111

3 0 0 111

4 0 1111
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By the way this model was obtained i n [ l ] on p. 18 as a preliminary
step in the construction of a model satisfying (1). Of course (1) is not valid
for this finite model M but (3) is. In order to show this it is again advanta-
gous to notice that ε(x,y) is a steadily non-decreasing function with regard
to x and y in the ordering 0 < 1 <2<3 <4 and consequently every expres-
sion A(x,Uι,.., un) built up by max and min from atomic termsε(u t v)wil l
have the same property with regard to all of the variables x,ulf..., un.
Hence for example minUιA(χ,uι,.., un) where uγ runs through 0,1,2,3,4 or
more explicitly written

min (A(x,0,u2,. . ,un), A(x, l,u2,.. ,un), ,A(x,4,u2,.. ,un))

must be equal to

A(X,O,U2, . . ,Un)

and similarly

maxUίA(x,Uι,u2, . . ,un) = A(x,4,u2, . . ,un).

Repeating this one obtains

TT . . . TTA(x,ulf . . ,un) = B{x) ,

where B(x) contains no variable except x. Indeed B(x) is built by max and
min from atoms ε(u,v), where u and v are either both x or one of them 0 or
4. However ε{u,O) = 0 for all u, ε{u,4) = 1 for all u and for all υ ε{O,v) =
ε(t>,2), ε(4,v) = ε(v,3). Therefore B(x) can in any case be built by max and
min from ε(x,x) which is = ε(x,2) andε(#,2), ε(x,3). However the truthvalues
0,1 together with ε(x,l), ε(x,2) andε(#, 3)yield by max or min again one of
the same values. Therefore B(x) is either one of the truthvalues or it is
ε(x,l) or ε(x,2) or ε(x,3). But that means that the value of B(x) is equal to
one of ε{x,0), ε{x,l), ε{x,2), ε(x,3), ε(x,4) so that (1) is valid.

I shall now show the existence of a set theoretic domain for which axiom
(1) is valid for an arbitrary φ in which also negation may occur, provided
that no atomic term of the forms ueu or ueu occurs. In the first instance it
can be shown that (1) will be valid for a domain M, if and only if M contains
a null set and a total set and the sets in M are reproduced in the following
way:

1) To every a in M there is an individual a such that for all x in M

aex<r^xea

I will call a the convers of a.
2) To every a in M there is an a such that for all x in M

xecί<rJ>X€a.

I call a the complement of a.
3) To any individuals a and b in M there is an individual a U b such that

for all l i n M

xea Όb<^>xea v xeb.

We call a\Jb the union of a and b.
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4) To any a and b in M there is an individualaΓϊb such that for all x in
M

xea Π b<r^>xea & xeb.

The set α f)-b is called the intersection of a and δ.
It is evident that if (1) is valid for all expressions φ, where no term

ueu or ueu occurs, then M possesses the 4 properties of reproduction and
there is a set O and a set V in M. Now let us inversely assume that M has
these properties. We may write any given 0as a disjunction Kx v K2v...v K^,
where each Kr is a conjunction of terms uev andwef, where u and v are
any two different ones of x9zl9..9 zn. Now every z{ezj and zϊezj will simply
be one of the truth values for arbitrarily given z1 ,.., zn. Further ziex can
be replaced by xezi and xeu & xev can be replaced by xeuDv besides
xeu v xev by xeu\jv. By repeated use of these transformations every Kr

can be written in the form xeyΓ, where yr is composed from ^i, . . , zn by
conversion, building of the complement, building of intersections. Finally
the whole expression φ is equivalent ΛΓe^iU^U- . U ^ , so that (1) is correct.

Theorem 2. We may construct a set theoretic domain Mi for which the

axiom (1) is valid for any φ in which no atomic term ueu or ueu occurs.

Proof. We let M be the series of non negative integers. A suitable re-
lation ε can be defined as follows. The number 0 shall be the null-set, that
is for every integer x we shall have xlO. Then 1 shall be the total set, that
is for every integer we have xel. Further the truth values of xey is defined
recursively. Letting p(x,y) be a function such as for example (x+y+l)+ x

2
which yields a one to one correspondence between the pairs of integers and
the integers themselves I take

1) 2n as the complement of 2n+l
2) 6n+7 as the converse of n
3) 6p(m,n)+3 as the intersection of m and n
4) 6p(m,n)+5 as the union of m and n.

It is easy to see that this is a recursive definition of the relation ε.
Indeed we have already determined the truthvalue of xey for y = 0 and y = 1.
Let a pair (x,y) be declared smaller than (z,u) if x+y< z+u. Because of 1) it
is sufficient to be able to determine the truthvalue for an odd number ί pro-
vided that we know the value for all numbers y ^ i - 2 in smaller pairs.
Now i will be of just one of the three forms 6h+7, 6h+3, 6h+5. In the first
case xel has the same truthvalue as hex. In the second case Λreίhasthe
same value SLS xem & xen, where p(mfn) = h and similarly in the third case.
Thus the value of xey is determined by referring it to values for smaller
pairs.

However there is still one thing that ought to be proved namely that the
axiom of extensionality is fulfilled. One observes that every set will be re-
peated infinitely often. For example the integer 3 will be the intersection
of 0 and 0, that is again 0. Now let a < b but having the same elements. It
is then possible to prove by induction that always aey<r^bey. Indeed we
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have at once that this is so for y i 1. Let us therefore assume the correct-
ness of this for all 3̂  = n. If aen and ben have different truthvalues, so have
aen + 1 and ben + 1 if n is even. Therefore, letting v be the odd one of n
and n + i, we have αe z; inequivalent δe v. Here ι̂  may have the form 6h + 7.
Then we get that hea and heb should have different truthvalues contrary to
the supposition that a and b have the same elements. Then v may have the
form 6h + 3. Let c and d be the numbers such that p{c,d) = h. Then it fol-
lows that aec & aed is inequivalent δec & bed, whence either aec inequiva-
lent bee or aed inequivalent bed. However this is contrary to the hypothe-
sis of induction because c and d will be <v - 1 %n. The same reasoning
applies if v has the form 6h + 5. Thus our domain is a correct model.

, §2.

Two years ago I published a paper (see [2]) in which I studied an axiom
of comprehension in a logic with 3 truthvalues say 0, }, 1 and the 3 connec-
tives conjunction, disjunction, negation with values given as minimum, max-
imum, 1-p. I constructed in [2] a model for which (1) was valid. I will here
carry out this construction in a simpler way which is analogous to that in
§1.

We may first notice that (1) is valid in a domain M of objects if and
only if M has the following 5 properties:

1) There is in M a nullset O, a total set V, a set H and a set W such
that for all x in M the value of xe H is } and

xeW*r>xex.

2) Every set a in M has a converse α in M.
3) " " complement a M.
4) Any sets a and b in M has in M an intersection a<^b
5) " M M aunionαuό.

It is evident that M must possess these properties when (1) is valid.
Let us inversely assume that M has all 5 properties. We may also here
write a propositional function φ built by the connectives from atomic terms
uev as a disjunction Kxv K2v ... v K^, where every Kτ is a conjunction of
atoms uev and uev. Here u and v are any two of x,zx,.., zn. For given in-
dividuals £i,.., zn every term Ziezj is just one of O,ί,l. Further Zi ex is
4->xezi9 xez.i<r->xezi, xez{ hxez]<r^xeZiΓ\z^ xex<-*xeW. Therefore every
Kr can be written in the form xeyr, where yτ is built up by the operations
u , - , Π , ϋfrom z\,.. zn and W. Finally we get φ<r>xeyiΌy2U...{jy£ because
of the property 5) which shows that (1) is true for M. Then I assert:

Theorem 3. It is possible to construct a model M for which (1) is valid.

Proof. We may again let M be the sequence of non negative integers
defining a suitable ε-relation between them. We let the integers 0, 1, 2, 4
be respectively the sets 0, V, W,H. Further I put 3 = 2 and for every n > 1

2n + 2 - 2n + 1, 6n + 1 = n for n> 0,
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6p(m,n) + 3 = m On for m + n> 0, 6p(m,n) + 5 = m u n for all m, n.

This yields a recursive definition of the relation ε. Indeed xe2n •+ 2 is
defined as having the values 0, i, 1 according as xe2n + 1 has the values
1, i, 0. Further if y is an odd number, it is either of the form 6n + 1 for
some n, or it is of the form 6p(m,n) + 3 for some m,n or the form 6p{m,ri) +
5. Then xe6n + 1 is defined by saying that it shall have the same truth value
as nex, further xe6p(m,n) +3 the same value as xem &xen and xe6p(m,n)
+ 5 the same value as xem v xen. In all cases xey is determined by refer-
ence to the truthvalues of the ε-relation for smaller pairs. Since these
values are given for y = 0,1,4 we can determine every xey either by xeO, 1
or 4 so that it is found or by xe2. This last truthvalue will depend on x, let
it be called ξ(x). Then in particular xex will be a function/(£(#)), where/
is built by the operations min, max and 1- from the argument ζ(x). How-
ever it was proved in [2] that such a function always has a fixpoint. There-
fore we can always find a value 0, i,l of ξ (x) such that

ί(*) =/(*(*))
or in other words

xex<r>xe W.

According to the preceeding considerations the series of non negative inte-
gers supplied with the defined ε-relation constitute a domain for which (1)
is true. That the axiom of extensionality is valid as well is easily proved
in the same way as we did in § 1.

In an earlier paper (see [3]) I treated the comprehension axiom using
a logic set forth by J. Lukasiewicz with infinitely many truthvalues. I
proved that also for this logic the axiom (1) could be satisfied without con-
tradiction. A modified proof of this similar to those given above is certain-
ly possible. If I have understood correctly what Prof. C. C. Chang at
Princeton wrote to me in a letter, he is able to show the consistency even
of axiom (2). I shall not here pursue any further the problems connected
with many valued logics, but give some further examples of models satisfy-
ing axioms in ordinary 2-valued logic. These are of course of greater in-
terest for mathematicians.

§3.

One has often the impression that mathematicians talk about set theory
as something unique. They appear to mean the Zermelo- Fraenkel theory.
Of course the assumed uniqueness is illusory. Already the axiom of choice
has been a subject of discussion. One might say however that the set theo-
retic reasoning in ordinary mathematics mostly follows the axioms of the
Z+ F- theory except that some authors will not accept the axiom of choice.
By the way, the axiom of choice is quite different from the other axioms
which are or at least can be formulated (see [4]) as cases of the axiom (2).
Some examples of systems of axioms which are cases of (2) shall here be
shown to be consistent.
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First of all it may be noticed that the Z+ F- axioms with the only excep-
tion of the axiom of infinity are valid in certain domains consisting of finite
sets exclusively. The simplest domain of this kind is obtained by defining
an ε-relation between the non negative integers thus: We say that xey shall
mean that x is an exponent of a power of 2 occurring in the decomposition
of y as a sum of different powers of 2. Since for example 7 - 22+ £ + 7 the
integers 0,1,2 are the elements of 7. Every number y will then be con-
ceived as a finite set of numbers. Clearly all Z+ F-axioms are valid except
the axiom of infinity.

Making this domain slightly more complicated we can get infinite sets
but in order to be sure that the other axioms remain valid we would have to
introduce such complications that I cannot carry out. I must be content
with the following remark. Let us say that xe2y shall mean that x is an
exponent of 2 in the decomposition of y as a sum of powers of 2, whereas
xe2y + 1 shall mean that x is not an exponent of 2 in this decomposition of
y. Then the series of integers constitute a domain N oί sets with the fol-
lowing properties:

1) To every m in N there is an individual {m} in N such that
xe {m\<r^χ = m.

2) To m and n in N there is an individual {m,n} in N such that
xe {m, n}<-># = m v x = n

3) To every m in N there is an individual m in N such that
xem<r~>xem

4) To every m in N there is aSm in N such that xeSm^>(Ey(xey & yem)
5) M Dm " xe ϋm<r>(y) (xey v yem)
6) M m and n " intersection m Π n
7) " " " union mXjn
8) There are sets m in N, for example N itself, such that Oem &

(x)(xem —> \x}em)

The proofs of these properties are very simple add are therefore omit-
ted. By the way some of the properties are trivial consequences of the
other ones. Perhaps it ought to be noticed that Sm = N and Dm = Ofor all
infinite sets m. The property 8) is just Zermelo's axiom of infinity. The
existence of a total set N and of complements is not in accordance with the
Z+ F-theory, but in Quine's theory it is so. It would be of great interest to
try to modify the domain so that the mentioned properties remain valid
while further the existence of a powerset \Jm for every m was realized
which means that for all x in the domain

xe\Jm<r^{y)(yex vyem).

I have not made any serious attempt to accomplish this.
I shall now show an example of a domain N with the properties:

1) There is a nullset 0. To every m there is a set {m}.
2) To every m there is a set Zm consisting of the sets m, {m}, {{m}}, ...
3) For every set m there is a powerset Urn,
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We let again N be the sequence of non negative integers. The null set
may be the integer 0. Further 1 can be {0}. For m> 0 we let {m}be 3m.
Further Zm and Urn can be 3m +1 and 3m +2 respectively. It is then clear
that 3m has just the single element m, every 3m+1 has the elements m,3m,
3zm, ... so that it only remains to find the elements of 3m+2. In order to
see that xey can be defined by a kind of recursion we may define first an
auxiliary notion "degree." Every number can be derived from 0 by use of
the three operations

m ^>3m, m^>3m + 1, m->3m + 2,

and this can only be done in one way if we ignore applications of the first
operation on 0 leaving 0 unchanged. By the degree of a number y I will then
understand the number of times the third operation has been applied in the
formation of y from 0. Now xe3m +2 may be defined by xez for z of lower
degree than 3m +2. Indeed for all x of the same or higher degree than y we
shall always have xey. Further for x of lower degree than 3m +2 we have

xe3m + 2o{y){yex v yem).

Since x and m are of lower degree than 3m+2 we observe that this is a
definition of xe3m+2 provided xey is known for y of lower degree than
3m+2. This is a recursive definition of the same kind as that mentioned
for the predicate u(a,k) in [5], p. 287. By the way it is in the case con-
sidered here rather easy to find effectively all elements of 3m +2 for given
m but I omit an exposition of that. I shall only mention as an example that
the elements of 8 are 0, 3n, 3n +1, 3n+1+2 for n = 0,1,2, ... Further it may
be added that every m in our domain has a union Sm. Indeed SO = 0 and
every set 4 0 is of one of the forms {m\ Zm, \Jm, while S{m}= m, SZm =
Z{m], SUm = m.

It will not be difficult in an analogous manner to construct a model
which not only has the properties of the just treated model but also together
with any two of its members m and n contains a member {m,n}.

I have not yet had the opportunity to extend these investigations to sys-
tems of axioms, where also the "Aussonderungsaxiom" or cases of it are
taken into account, but I don't think there will be any essential difficulties.

According to a theorem of Lδwenheim the use of the natural number
series as a model is not a limitation in any case.
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